1 4 в минус 1 степени: 1 4 в минус 1 степени

2

Степень с целым показателем

Степень с целым показателем — это степень, показателем которой является любое целое число.

В прошлом уроке мы изучили степень с натуральным показателем. Этот вид степени тоже является степенью с целым показателем, поскольку натуральные числа относятся к целым числам.

Также, мы рассмотрели степень, показателем которой является 0. Этот вид степени тоже является степенью с целым показателем, поскольку 0 относится к целым числам.

Рассмотрим ещё один вид степени с целым показателем, а именно показателем которой является целое отрицательное число. Выглядят эти степени так:

2−2, 10−7, a−8

В дальнейшем любую степень с натуральным, нулевым или целым отрицательным показателем, мы будем называть степенью с целым показателем.

Правило вычисления

Рассмотрим следующую последовательность степеней:

20, 21, 22, 23, 24, 25

Первая степень в этой последовательности это степень 20. Предыдущая степень с целым показателем будет уже с отрицательным показателем и выглядеть как 2−1.

2−1, 20, 21, 22, 23, 24, 25

А предыдущая степень с целым показателем, которая располагается до 2−1, будет степень 2−2

2−2, 2−1, 20, 21, 22, 23, 24, 25

Продолжим эту последовательность в сторону степеней с целыми отрицательными показателями:

2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25

Теперь попробуем вычислить эти степени. Степени с натуральными показателями и степень, показателем которой является 0, вычисляются легко:

А как вычислить степени с отрицательными показателями? Для начала немного отойдём от темы и затронем несколько закономерностей.

В отрицательную степень число возводится немного иначе. Следует понимать, что если при возведении в положительную степень число увеличивается, то при возведении в отрицательную степень это число наоборот уменьшается.

Если мы возьмём какое-нибудь число n, и начнём последовательно увеличивать его степень, то получим последовательность чисел, в которой каждое число меньше следующего в n раз.

Например, возьмём число 2. Начиная с нуля будем последовательно увеличивать его показатель:

20, 21, 22, 23, 24, 25

Вычислим эти степени:

1, 2, 4, 8, 16, 32

Получили последовательность чисел, в которой каждое число меньше следующего числа в 2 раза. Тогда логично предположить, что число, располагающееся до единицы, будет в два раза меньше единицы. Его можно получить, если 1 разделить на 2

Вернёмся к нашей исходной последовательности, где мы вычисляли степени. Получается, что степень 2−1 мы вычислили. Она равна рациональному числу 

Предыдущее за числом должно быть в два раза меньше, чем . Чтобы его получить разделим  на 2

Получили . Это значение степени 2−2

Продолжая деление на 2 можно получить значения остальных степеней с целыми отрицательными показателями:

Заметим, что в данной последовательности значения степеней с отрицательными показателями являются обратными числами к значениям степеней с натуральными показателями:

К примеру, значение степени в 22 есть число 4. А значение степени 2−2 есть число . Числа 4 и  являются обратными друг другу. А степени 22 и 2−2 отличаются только тем, что у них противоположные показатели.

Можно сделать вывод, что для вычисления степени с отрицательным показателем, нужно записать дробь, в числителе которой единица, а в знаменателе та же самая степень, но с противоположным показателем. Покажем это на примере степени 2−2

Вычислим степень, находящуюся в знаменателе:

Таким образом, чтобы вычислить степень вида an можно воспользоваться следующим правилом:

Данное правило можно доказать, используя правило деления степеней с одинаковыми основаниями. Допустим, потребовалось вычислить выражение 2: 25. Запишем это деление в виде дроби

Воспользуемся правилом деления степеней с одинаковыми основаниями:

Получили степень с отрицательным показателем 2−2. Ранее мы выяснили, что её значение равно . Чтобы убедиться в этом, попробуем вычислить выражение   как обычно, не используя правило деления степеней:

Получили рациональное число . Сократим его на 8. Тогда получим 


Пример 2. Найти значение выражения 9−2

Воспользуемся правилом вычисления степени с целым отрицательным показателем:


Пример 3. Найти значение выражения 3−3

Следует упомянуть, что правило  работает только тогда, когда a ≠ 0.

Действительно, если a будет равным нулю, то в знаменателе получим 0, а на нуль делить нельзя.


Пример 4. Найти значение выражения 


Пример 5. Найти значение выражения 

При возведении обыкновенных дробей в отрицательную степень, можно пользоваться формулой . Решим предыдущие два примера с помощью этой формулы:

Желательно уметь возводить обыкновенную дробь в отрицательную степень как с помощью формулы, так и без неё.


Тождественные преобразования

Все тождественные преобразования, которые мы рассматривали при изучении степени с натуральным показателем, сохраняются и для степеней с целыми отрицательными показателями.

Например, чтобы представить выражение 2−1 × 2−3 в виде степени, можно воспользоваться основным свойством степени:

2−1 × 2−3 = 2−1 + (−3) = 2−4


Пример 2. Найти значение выражения 5−15 × 516

Воспользуемся основным свойством степени:

5−15 × 516 = 5−15 + 16 = 5= 5

или:

Видим, что первый вариант решения намного проще и удобнее.


Пример 3. Найти значение выражения (10−4)−1

Воспользуемся правилом возведения степени в степень:

(10−4)−1 = 10−4 × (−1) = 104 = 10000


Пример 4. Найти значение выражения 

Представим число основание 10 в виде произведения 2 × 5. Тогда числитель примет вид (2 × 5)−6

В числителе применим правило возведения в степень произведения:

Сократим получившуюся дробь на 5−6

Вычислим степень 2−6


Поднятие степени из знаменателя в числитель и наоборот

Если знаменатель дробного выражения содержит степень, то данную степень можно поднять в числитель, изменив знак показателя этой степени на противоположный. Значение выражения при этом не меняется. Данное преобразование иногда используется при упрощении выражений.

Рассмотрим следующее равенство:

Данное равенство является верным, поскольку выражение  равно 20, а любое число в нулевой степени есть единица.

Попробуем поднять степень 22 из знаменателя в числитель, изменив знак показателя этой степени на противоположный. При этом, поднятую степень и ту степень, которая располагалась в числителе, соединим знаком умножения:

Получили выражение 22 × 2−2. Чтобы его вычислить, воспользуемся основным свойством степени:

22 × 2−2 = 22 + (−2) = 20 = 1

Получился тот же результат, что и раньше. Значит значение выражения не изменилось. Как это работает?

Если в равенстве  поменять местами левую и правую часть, то получим равенство . Это позволяет заменять в выражениях дробь вида  на тождественно равное ей выражение a−n.

Теперь представим выражение  в виде произведения . То есть заменим деление умножением. Напомним, что при замене деления умножением, делимое умножают на число, обратное делителю. А обратное делителю число в данном случае это дробь 

Теперь воспользуемся правилом .  В произведении  заменим дробь  на тождественно равное ей выражение 2−2

Далее, как и раньше применяем основное свойство степени:

Получился тот же результат 1.

Таким же образом можно опустить степень из числителя в знаменатель, изменив знак показателя этой степени на противоположный.

Рассмотрим выражение . Чтобы найти его значение, воспользуемся правилом деления степеней с одинаковыми основаниями. В результате получим

Теперь попробуем решить этот пример, опустив степень 2−2 из числителя в знаменатель, изменив знак показателя этой степени на противоположный. При этом, опущенную степень 2−2 и ту степень, которая располагалась в знаменателе, соединим знаком умножения. А в числителе останется единица:

Дальнейшее вычисление не составит особого труда:

Как и в прошлом примере выражение  представимо в виде произведения 

Этим и объясняется появление единицы в числителе, после того как степень 2−2 была опущена в знаменатель.

Переносимых в знаменатель либо в числитель степеней может быть несколько. Например, знаменатель дроби  содержит степени 32, a3b4. Перенесём эти степени в числитель, изменив знаки их показателей на противоположные. В результате получим выражение 32a3b4.

Пример 2. Поднять степени из знаменателя дроби  в числитель


Пример 3. Поднять степени из знаменателя дроби  в числитель


Пример 4. Поднять степень из знаменателя дроби  в числитель


Пример 5. Опустить степень из числителя дроби  в знаменатель


Пример 6. Степень из числителя дроби  опустить в знаменатель, а степень из знаменателя поднять в числитель

Представлять дробь  в виде произведения  вовсе не обязательно. Если пропустить эту запись, то данный пример можно решить короче:


Пример 7. В дроби  перенести из знаменателя в числитель только те степени, которые имеют отрицательные показатели:


Пример 8. Представить произведение 3x−5 в виде дроби, не содержащей степени с отрицательным показателем.

Перепишем произведение 3x−5 с помощью знака умножения:

3 × x−5

Сомножитель 3 оставим без изменений, а сомножитель x−5 заменим на тождественно равную ему дробь 

Теперь согласно правилу умножения целого числа на дробь, умножим множитель 3 на числитель дроби . В результате образуется дробь 


Пример 9. Представить произведение 3(x + y)−4 в виде дроби, не содержащей степени с отрицательным показателем.

Выражение состоит из сомножителей 3 и (x + y)−4. Сомножитель 3 оставим без изменений, а сомножитель (x + y)−4 заменим на тождественно равную ему дробь 

Теперь умножим множитель 3 на числитель дроби . В результате образуется дробь 


Пример 10. Представить дробь  в виде произведения.

Чтобы решить этот пример, достаточно поднять степень x2 в числитель, изменив знак показателя этой степени на противоположный:

Как и в прошлых примерах дробь  можно было представить в виде произведения . Затем воспользовавшись правилом , заменить сомножитель  на тождественно равный ему сомножитель x−2.


Пример 11. Представить дробь  в виде произведения.


Пример 12. Найти значение выражения 

Поднимем степень 2−3 из знаменателя в числитель, а степень 10−2 из числителя опустим в знаменатель:

Вычислим значения степеней, содержащихся в числителе и в знаменателе:

Сократим полученную дробь на 25. Тогда останется дробь , значение которой равно 2.

А если бы мы не подняли степень 2−3 в числитель, и степень 10−2 не опустили в знаменатель, а стали вычислять каждую степень по отдельности, то получили бы не очень компактное решение:


Возведение числа 10 в целую отрицательную степень

Число 10 в отрицательную степень возводится таким же образом, как и другие числа. Например:

Замечаем, что количество нулей, которые получаются в ответе равны модулю показателя исходной степени. Например, в степени 10−2 модуль показателя равен 2. Это значит, что в ответе будет содержаться два нуля. Так оно и есть:

Чтобы возвести число 10 в отрицательную степень, нужно перед единицей записать количество нулей, равное модулю показателя исходной степени.

При этом после первого нуля следует поставить запятую. Примеры:


Представление чисел 0,1, 0,01, 0,001 в виде степени с основанием 10

Чтобы представить числа 0,1, 0,01, 0,001 в виде степени с основанием 10, нужно записать основание 10, и в качестве показателя указать отрицательный показатель, модуль которого равен количеству нулей исходного числа.

Представим число 0,1 в виде степени с основанием 10. Видим, что в числе 0,1 один нуль. Значит, число 0,1 в виде степени с основанием 10 будет представлено как 101. Показатель степени 101 равен −1. Модуль этого показателя равен количеству нулей в числе 0,1

0,1 = 101

Число 0,1 это результат деления , а эта дробь есть значение степени 101.


Пример 2. Представить число 0,01 в виде степени с основанием 10.

В числе 0,01 два нуля. Значит, число 0,01 в виде степени с основанием 10 будет представлено как 10−2. Показатель степени 10−2 равен −2. Модуль этого показателя равен количеству нулей в числе 0,01

0,01 = 10−2

Число 0,01 это результат деления , то есть , а эта дробь есть значение степени 10−2.


Пример 3. Представить число 0,001 в виде степени с основанием 10.

0,001 = 10−3


Пример 4. Представить число 0,0001 в виде степени с основанием 10.

0,0001 = 10−4


Пример 5. Представить число 0,00001 в виде степени с основанием 10.

0,00001 = 10−5


Стандартный вид числа

Запишем число 2 000 000 в виде произведения числа 2 и 1 000 000

2 × 1 000 000

Сомножитель 1 000 000 можно заменить на степень 106

2 × 106

Такой вид записи называют стандартным видом числа. Стандартный вид числа позволяет записывать в компактном виде как большие, так и маленькие числа.

Например, маленькое число 0,005 можно записать в виде произведения числа 5 и десятичной дроби 0,001.

5 × 0,001

Десятичную дробь 0,001 можно заменить на степень с 10−3

5 × 10−3

Значит, число 0,005 в стандартном виде будет выглядеть как 5 × 10−3

0,005 = 5 × 10−3

По стандартному виду числа можно вычислить изначальное число. Так, при записи числа 2 000 000 в стандартном виде, мы получили произведение 2 × 106. Если вычислить это произведение, то снова получим 2 000 000

2 × 106 = 2 × 1 000 000 = 2 000 000

А при записи числа 0,005 в стандартном виде мы получили произведение 5 × 10−3. Если вычислить это произведение, то получим 0,005

То есть записывая число в стандартном виде нужно записывать его так, чтобы сохранить его изначальное значение.

Стандартным видом числа называют запись вида × 10n, где 1 ≤ < 10 и n — целое число.

Число а это исходное число, которое надо записать в стандартном виде. Оно должно удовлетворять неравенству 1 ≤ < 10. Чаще всего исходное число надо приводить к виду, при котором неравенство 1 ≤ < 10 становится верным.

Например, представим число 12 в стандартном виде. Для начала проверим становится ли верным неравенство 1 ≤ < 10 при подстановке числа 12 вместо а

1 ≤ 12 < 10

Неравенство верным не становится. Чтобы сделать неравенство верным, приведём число 12 к виду, при котором оно удовлетворяло бы данному неравенству. Для этого передвинем в числе 12 запятую влево на одну цифру:

1,2

Число 12 обратилось в число 1,2. Это число будет удовлетворять неравенству 1 ≤ < 10

1 ≤ 1,2 < 10

Теперь наша задача состоит в том, чтобы записать произведение × 10n. С числом а мы разобрались — этим числом у нас будет 1,2. А как подобрать степень с основанием 10?

После переноса запятой на одну цифру влево, число 12 утратило своё изначальное значение. Запятая на одну цифру влево двигается тогда, когда число делят на 10. А чтобы восстановить изначальное значение числа запятую нужно передвинуть обратно в правую сторону на одну цифру, то есть умножить число 1,2 на 10.

Значит, чтобы записать число 12 в стандартном виде, нужно представить его в виде произведения 1,2 × 10¹

12 = 1,2 × 10¹


Пример 2. Записать число 0,5 в стандартном виде.

Число 0,5 не удовлетворяет неравенству 1 ≤ a< 10, поэтому передвинем запятую в этом числе на одну цифру вправо. В результате получим число 5, которое удовлетворяет неравенству 1 ≤ a< 10.

Теперь запишем произведение вида × 10n. Число a в данном случае это 5. А степень с основанием 10 надо выбрать так, чтобы произведение × 10n стало равным числу 0,5. Число 0,5 получится если умножить число 5 на множитель 0,1, который представим в виде степени 10−1. В результате получим следующую запись:

0,5 = 5 × 10−1


Пример 3. Записать число 652 000 в стандартном виде.

Число 652 000 не удовлетворяет неравенству 1 ≤ a< 10, поэтому передвинем запятую в этом числе на пять цифр влево. В результате получим число 6,52000 которое удовлетворяет неравенству 1 ≤ a< 10.

Теперь запишем произведение вида × 10n. Число a в данном случае это 6,52000. А степень с основанием 10 надо выбрать так, чтобы произведение × 10n стало равным числу 652 000. Число 652 000 получится если число 6,52000 умножить на 100 000, а это есть степень 105. В результате получим следующую запись:

652 000 = 6,52000 × 105

Нули в конце десятичной дроби 6,52000 можно отбросить. Тогда получим более компактную запись:

652 000 = 6,52 × 105


Пример 5. Записать число 1 024 000 в стандартном виде.

Число 1 024 000 не удовлетворяет неравенству 1 ≤ a< 10, поэтому передвинем запятую в этом числе на шесть цифр влево. В результате получим число 1,024000 которое удовлетворяет неравенству 1 ≤ a< 10.

Теперь запишем произведение вида × 10n. Число a в данном случае это 1,024000 . А степень с основанием 10 надо выбрать так, чтобы произведение × 10n было равно изначальному числу 1 024 000. Число 1 024 000 получится если число 1,024000 умножить на 1 000 000, а это есть степень 106. В результате получим следующую запись:

1 024 000 = 1,024000 × 106

Нули в конце десятичной дроби 1,024000 можно отбросить:

1 024 000 = 1,024 × 106

Отбрасывать можно только те нули, которые располагаются в конце, и после которых нет других цифр, бóльших нуля. В приведённом примере были отброшены только три нуля, а нуль располагавшийся между запятой и цифрой 2 был сохранен, несмотря на то, что он тоже располагался после запятой.


Пример 6. Записать число 0,000325 в стандартном виде.

Передвинем в данном числе запятую так, чтобы оно удовлетворяло неравенству 1 ≤ a< 10. В результате получим число 3,25

Теперь запишем произведение вида × 10n. Число a в данном случае это 3,25. А степень с основанием 10 надо выбрать так, чтобы произведение × 10n было равно изначальному числу 0,000325. Число 0,000325 получится если число 3,25 умножить на множитель 0,0001 который представим в виде степени 10−4. В результате получим следующую запись:

0,000325 = 3,25 × 10−4


Задания для самостоятельного решения

Задание 1. Вычислите степень 3−2

Решение:

Показать решение

Задание 2. Вычислите степень (−3)−2

Решение:

Показать решение

Задание 3. Вычислите степень −3−2

Решение:

Показать решение

Задание 4. Вычислите степень (−1)−9

Решение:

Показать решение

Задание 5. Вычислите степень

Решение:

Показать решение

Задание 6. Вычислите степень

Решение:

Показать решение

Задание 7. Вычислите степень −(−2)−3

Решение:

Показать решение

Задание 8. Вычислите степень

Решение:

Показать решение

Задание 9. Найдите значение выражения 8 × 4

−3

Решение:

Показать решение

Задание 10. Найдите значение выражения 18 × (−9)−1

Решение:

Показать решение

Задание 11. Найдите значение выражения 2−3 − (−2)−4

Решение:

Показать решение

Задание 12. Найдите значение выражения

Решение:

Показать решение

Задание 13. Представить произведение a4b в виде дроби, не содержащей степени с отрицательным показателем.

Решение:

Показать решение

Задание 14. Представить произведение 7xy3 в виде дроби, не содержащей степени с отрицательным показателем.

Решение:

Показать решение

Задание 15. Представить произведение 6(xy)6 в виде дроби, не содержащей степени с отрицательным показателем.

Решение:

Показать решение

Задание 16. Представить произведение x−1y−2 в виде дроби, не содержащей степени с отрицательным показателем.

Решение:

Показать решение

Задание 17. Представить произведение 9a−1(a − b)−2 в виде дроби, не содержащей степени с отрицательным показателем.

Решение:

Показать решение

Задание 18. Представьте дробь  в виде произведения.

Решение:

Показать решение

Задание 19. Представьте дробь  в виде произведения.

Решение:

Показать решение

Задание 20. Представьте дробь  в виде произведения.

Решение:

Показать решение

Задание 21. Представьте дробь  в виде произведения.

Решение:

Показать решение

Задание 22. Представьте дробь  в виде произведения.

Решение:

Показать решение

Задание 23. Представьте дробь  в виде произведения.

Решение:

Показать решение

Задание 24. Представьте дробь  в виде произведения.

Решение:

Показать решение

Задание 25. Представьте дробь  в виде произведения.

Решение:

Показать решение

Задание 26. Представьте дробь  в виде произведения.

Решение:

Показать решение

Задание 27. Представьте число 3 000 000 в стандартном виде.

Решение:

3 000 000 = 3 × 106

Показать решение

Задание 28. Представьте число 0,35 в стандартном виде.

Решение:

0,35 = 3,5 × 10−1

Показать решение

Задание 29. Представьте число 21,56 в стандартном виде.

Решение:

21,56 = 2,156 × 101

Показать решение

Задание 30. Представьте число 0,000008 в стандартном виде.

Решение:

0,000008 = 8 × 10−6

Показать решение

Задание 31. Представьте число 0,000335 в стандартном виде.

Решение:

0,000335 = 3,35 × 10−4

Показать решение

Задание 32. Найдите значение выражения .

Решение:

Показать решение

Задание 33. Найдите значение выражения .

Решение:

Показать решение

Задание 34. Найдите значение выражения .

Решение:

Показать решение

Задание 35. Представьте в виде степени выражение .

Решение:

Показать решение

Задание 36.

Представьте в виде степени выражение .

Решение:

Показать решение

Задание 37. Представьте в виде степени выражение .

Решение:

Показать решение

Задание 38. Представьте в виде степени выражение .

Решение:

Показать решение


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Опубликовано

Калькулятор дробей


Этот калькулятор дробей выполняет базовые и расширенные операции с дробями, выражения с дробями в сочетании с целыми, десятичными и смешанными числами. Он также показывает подробную пошаговую информацию о процедуре расчета дроби. Калькулятор помогает найти значение из операций с несколькими дробями. Решайте задачи с двумя, тремя и более дробями и числами в одном выражении.

Правила выражения с дробями:

Дроби — используйте косую черту для деления числителя на знаменатель, т.е. для пятисотых введите 5/100 . Если вы используете смешанные числа, оставьте пробел между целой и дробной частями.

Смешанные числа (смешанные числа или дроби) сохраняют один пробел между целым числом и дробью
и используют косую черту для ввода дробей, например, 1 2/3 . Пример отрицательной смешанной дроби: -5 1/2 .
Поскольку косая черта одновременно является знаком дробной строки и деления, используйте двоеточие (:) в качестве оператора деления дробей, т. е. 1/2 : 1/3 .
Decimals (десятичные числа) вводятся с десятичной точкой . и они автоматически преобразуются в дроби — т.е. 1,45 .

Математические символы


46 5 ×
Символ Название символа Символ Значение Пример
+ плюс 0046 1/2 + 1/3
знак минус вычитание 1 1/2 — 2/3
* звездочка умножение 2/3 * 3/4 ​​

9

знак умножения умножение 2 /3 × 5/6
: знак деления деление 1/2 : 3
4 деления 4 деления 6 деление 1/3 / 5 1/2
• сложение дробей и смешанных чисел: 8/5 + 6 2/7
• деление целых чисел и дробей: 5 ÷ 1/2
• сложные дроби: 5/8 : 2 2/3
• десятичная дробь: 0,625
• Преобразование дроби в десятичную: 1/4
• Преобразование дроби в процент: 1/8 %
• сравнение дробей: 1/4 2/3
• умножение дроби на целое число: 6 * 3/4 ​​
• квадратный корень дроби: sqrt(1/16)
• уменьшение или упрощение дроби (упрощение) — деление числителя и знаменателя дроби на одно и то же ненулевое число — эквивалентная дробь: 4/22
• выражение со скобками: 1/3 * (1/2 — 3 3/8)
• составная дробь: 3/4 от 5/7
• кратные дроби: 2/3 от 3/5
• разделить, чтобы найти частное: 3/5 ÷ 2/3

Калькулятор следует известным правилам для порядка операций .

Наиболее распространенные мнемоники для запоминания этого порядка операций:
PEMDAS — Скобки, Экспоненты, Умножение, Деление, Сложение, Вычитание.
BEDMAS — Скобки, Экспоненты, Деление, Умножение, Сложение, Вычитание
BODMAS — Скобки, Порядок, Деление, Умножение, Сложение, Вычитание.
GEMDAS — Символы группировки — скобки (){}, возведения в степень, умножение, деление, сложение, вычитание.
MDAS — Умножение и деление имеют тот же приоритет, что и сложение и вычитание. Правило MDAS является частью порядка операций правила PEMDAS.
Будьте осторожны; всегда выполняйте умножение и деление перед сложением и вычитанием . Некоторые операторы (+ и -) и (* и /) имеют одинаковый приоритет и должны оцениваться слева направо.

  • Дробями
    Муравей за первый час поднимается на 2/5 шеста, а за следующий час – на 1/4 шеста. Какую часть шеста преодолевает муравей за два часа?
  • Вычислить выражение
    Вычислить значение выражения z/3 — 2 z/9 + 1/6, для z = 2
  • Out 550,000,00
    Из 550,000,00 было использовано количество 325,000,00. Какая часть от общей суммы была использована?
  • Наименьшие члены 2
    Мы можем записать выражение 4/12 в его наименьшем члене как 1/3. Чему равно 3/15 в наименьшем члене?
  • Петрушка
    Бабушка Милки посадила 12 рядов овощей. 1/6 рядов — морковь. Остальное петрушка. Сколько рядов засажено петрушкой?
  • В столовой
    В классной комнате Джейкоба 18 учеников. Шесть учеников приносят обед в школу. Остальные обедают в столовой. Проще говоря, какая часть студентов обедает в столовой?
  • Дети
    Двое взрослых, двое детей и четверо младенцев находятся в автобусе. Какую часть населения составляют младенцы?
  • Знаменатель 2
    Знаменатель дроби равен пяти, а числитель равен 7. Запишите дробь.
  • Корзина с фруктами
    Если в корзине семь яблок и пять апельсинов, какая часть апельсинов в корзине с фруктами?
  • Кто-то
    Кто-то съел 1/10 торта, осталось только 9/10. Если вы съедите 2/3 оставшегося торта, сколько всего торта вы съедите?
  • Четверть
    Четверть числа 72:

другие математические задачи »