Чтобы найти критические значения, нам нужно определить первую производную.
f'(x) = 2sinx*cosx — sqrt(3)*cosx
Разложим на множители:
f'(x)=cosx ( 2sinx — sqrt3)
Критические значения — нули производной.
==> cosx (2sinx- sqrt3) = 0
==> cosx = 0 ==> x= pi/2
==>…
См.
Этот ответ сейчас
Начать 48-часовую бесплатную пробную версию 92 — sqrt(3)*sinx 0 Чтобы найти критические значения, нам нужно определить первую производную. f'(x) = 2sinx*cosx — sqrt(3)*cosx Разложим на множители: f'(x)=cosx ( 2sinx — sqrt3) Критические значения — нули производной. ==> cosx (2sinx- sqrt3) = 0 ==> cosx = 0 ==> x= pi/2 ==> 2sinx-sqrt3 = 0 ==> sinx= sqrt3/2 ==> x2= pi/3, 5pi/6 Тогда критические значения: x= ( pi/2, pi/3, 2pi/3} 92 — sqrt3*sin(pi/3) = 3/4 — 3/2= -3/4
f(2pi/3)= -3/4
Утверждено редакцией eNotes
Математика
Последний ответ опубликован 07 сентября 2010 г. в 12:47:25.
Что означают буквы R, Q, N и Z в математике?
14 Ответы воспитателя
Математика
Последний ответ опубликован 07 октября 2013 г. в 20:13:27.
Как определить, является ли это уравнение линейной или нелинейной функцией?
84 Ответы педагога
Математика
Последний ответ опубликован 14 ноября 2011 г. в 5:49:28.
Решите для b2:A= 1/2h (b1+b2)
1 Ответ воспитателя
Математика
Последний ответ опубликован 3 октября 2011 г. в 14:12:01.
Этот предел представляет собой производную некоторой функции f при некотором числе a. укажите это f и a. lim h->0 [(4-й корень из)(16+h)-2]/h a=? ф=?
1 Ответ учителя
Математика
Последний ответ опубликован 17 августа 2010 г.