2 x умножить на 2: 2 x умножить на 2

Как решить один и тот же пример разными способами: китайский метод умножения, египетский, метод решетки | 116.ru

Привычные нам способы решения примеров далеко не единственно верные

Поделиться

Складывать, вычитать, умножать и делить мы все научились еще в школьные годы. Многие даже неплохо сохранили эти навыки и до сих пор могут что-нибудь да умножить. В уме. Но что, если приходится умножать многозначные числа? Понятно, что проще всего воспользоваться калькулятором. Но мы не ищем легких путей — вместо них мы нашли несколько способов решить одни и те же примеры. Ими до сих пор пользуются в разных странах, и это не привычное нам умножение столбиком.

В качестве примера, решить который мы попробуем семью разными методами, мы взяли не самый сложный, но и не самый простой: 223 х 304. Произведение этих множителей равняется 67 792. Нам было важно, чтобы числа были не двузначные и чтобы хотя бы в одном из них был ноль (потом объясним зачем). А теперь давайте посчитаем.

Чтобы решить наш пример этим способом, сперва запишем множители. После этого нужно представить число 223 в виде суммы степеней двоек — начинаем с единицы и умножаем на два, пока не получим число, которое будет больше, чем 223. Получится 256. Это уже много. А раз много, значит нам это не нужно. Остается 128.

Поделиться

Дальше нужно число 304 умножить на все получившиеся числа. Но понадобятся нам не все. Из чисел левого столбца нам нужно собрать число 223. Идем снизу вверх. Берем 128, прибавляем к нему 64. Получается 192. Если прибавить к этой сумме 32, получится 224, а это уже перебор. Поэтому 32 пропускаем и прибавляем все остальные. Выйдет наше 223. На те числа, что остались (а это все, кроме 32), мы и будем умножать наше 304. Теперь суммируем всё, что у нас получилось. Сумма этих чисел окажется 67 792.

Поделиться

Если вам кажется, что умножать 304 на 128 в такой ситуации будет полнейшим безумием, воспользуйтесь хитростью и просто умножайте каждое предыдущее число на два — так будет проще.

Всё, что вам понадобится, чтобы решить любой пример с умножением этим крестьянским методом, — это уметь умножать и делить на два.

Для начала будем последовательно делить на два первое число, пока оно не превратится в единицу. Думаете, не получится в случае с числом 223? Только не в древнерусском способе! Если в результате будет получаться число с остатком, отбрасываем эти остатки куда подальше — они нам не пригодятся.

Поделиться

После этой нехитрой процедуры беремся за второй множитель — его будем на два умножать. Столько же раз, сколько делили первый множитель, пока он не достиг единицы. Умножили? Теперь вычеркивайте все строчки, в которых в левом столбце есть четное число. У нас такая строчка одна — с цифрой шесть.

Поделиться

Дальше — самая нелегкая задача этого метода: суммировать все числа, что стоят справа (включая 304). Сложно, но у древнерусских счетоводов не было другого выбора, и им приходилось всё считать вручную. У нас, к счастью, есть калькуляторы, так что мы с удовольствием воспользуемся этой возможностью. И калькулятор покажет 67 792. Если вы хотите проверить, действительно ли работает этот метод, можете поменять множители местами и всё пересчитать, но, забегая вперед, мы вам скажем, что от перестановки мест множителей произведение не меняется даже в этом случае.

Первым дело запишем наши числа одно над другим и подведем под ними черту. И умножим каждую цифру верхнего числа на каждую цифру нижнего. Если будут получаться двузначные числа, пишем их как есть, а вот однозначные пишем в виде «ноль и цифра» — например, 08 вместо просто 8.

Поделиться

Получив эту хитрую комбинацию, умножаем соседние цифры (2 на 0, 2 на 4) и в обратную стороны (2 на 3 и 3 на 0). Идем еще дальше и стараемся не запутаться — перемножаем первую верхнюю цифру на третью нижнюю, а третью верхнюю — на первую нижнюю. Умножение закончилось.

Поделиться

Давайте складывать то, что у нас получилось. А получилось у нас 67 792.

Выписываем наших героев и подводим под ними черту, как делали это в методе треугольника. Затем перемножим крайние цифры — 2 и 4. Результат (его мы записываем как 08) будет первой строкой нашего решения. Следом за ними умножаем вторую цифру левого множителя на первую и третью — правого. Запишем их во вторую строку. Начало ромбу положено.

Поделиться

Ну а дальше умножаем друг на друга цифры из разряда сотен, десятков и единиц и так же записываем их в одну строку. Результат заносим в третью строчку.

Теперь берем вторую цифру во втором множителе и умножаем на первую и третью из первого. Четвертая строка решения готова. Последней, пятой строкой записываем произведение последней цифры первого множителя и первой цифры второго. Наш ромб готов. Осталось только суммировать цифры, расположенные друг над другом. Метод, конечно, красивый, но совсем не простой в применении.

Поделиться

Вот мы и добрались до того момента, где объясним, зачем нам понадобились трехзначные числа, да еще и с нулем. В китайском методе нам придется считать, чертить и рисовать. Так что для начала разберем принцип его работы на простом примере и умножим 34 на 62. Для этого нарисуем черты. Сперва три горизонтальные, потом, через промежуток, еще четыре. Это три десятка и четыре единицы нашего первого числа. А число 62 по такому же принципу превращается в шесть и две вертикальные черты. Теперь нам нужно разграничить зоны единиц, десятков и сотен.

Поделиться

После этого считаем точки пересечения всех черточек. В зоне единиц их восемь, в зоне десятков — 30, в зоне сотен — 18. Теперь нужно это сложить: 1800+300+8 = 2 108. На калькуляторе, умножая 34 на 62, получится тот же результат.

Переходим к нашему изначальному примеру и умножим 223 на 304. Рисуем две, две и три горизонтальные линии, три вертикальные слева и четыре справа. Место посередине оказывается пустым, поэтому здесь у нас будет воображаемая линия. (Цифры у нас стали крупнее, поэтому и зон будет больше.) И считаем точки пересечения.

Поделиться

Складываем, начиная с единиц. Там, где получились двузначные числа, оставляем единицы, а десятки перекидываем в соседнюю область. То есть там, где стояли рядом 8 и 12, оказались 9 и 2, а соседство 6 и 17 превратилось в 7 и 7. Считаем, что у нас получилось, справа налево: 67 792.

Чтобы решить наш пример методом решетки (его еще называют древнеиндийским методом), первым делом надо нарисовать таблицу, у которой будет три столбца и три строки — по количеству цифр в умножаемых числах. Потом делим каждую ячейку по диагонали на две части. Решетка готова.

Теперь по горизонтали выписываем цифры числа 223, а по вертикали — числа 304. И перемножаем каждое число сверху на каждое число справа. Результат вписываем в наши ячейки таким образом: сверху — десятки, снизу — единицы (если десятков нет, пишем ноль).

Поделиться

Теперь складываем цифры, которые получились в наших диагоналях. По периметру, начиная с правого нижнего угла и поднимаясь до левого верхнего. Если число вышло двузначным, оставляем только единицу, а десятки плюсуются к единицам числа предыдущего — совсем как в сложении, к которому мы привыкли.

Поделиться

Выписываем ответ, начиная с левой стороны: 67 792. Что и требовалось доказать.

Этот метод похож на метод решетки, но есть отличия. Здесь мы снова рисуем таблицу на три столбца и три строки, но ни на какие ячейки не делим. А наши числа записываем не в виде отдельных цифр, а сотнями, десятками и единицами.

Поделиться

Дальше начинаем умножать те цифры, что сверху, на те, что справа.

Поделиться

Умножили? Осталось только всё сложить: 60 000 + 6000 + 900 + 800 + 80 + 12 = 67 792. Тот результат, который и получится, если умножить 223 на 304.

Разные способы решить один и тот же пример, к слову, далеко не единственная математическая причуда. На днях одна несложная на первый взгляд задачка рассорила весь интернет — скандал разгорелся из-за простого примера для 6-классников. И мы попробовали решить его с математиком.

Как решить один и тот же пример разными способами: китайский метод умножения, египетский, метод решетки | sochi1.ru

Привычные нам способы решения примеров далеко не единственно верные

Поделиться

Складывать, вычитать, умножать и делить мы все научились еще в школьные годы. Многие даже неплохо сохранили эти навыки и до сих пор могут что-нибудь да умножить. В уме. Но что, если приходится умножать многозначные числа? Понятно, что проще всего воспользоваться калькулятором. Но мы не ищем легких путей — вместо них мы нашли несколько способов решить одни и те же примеры. Ими до сих пор пользуются в разных странах, и это не привычное нам умножение столбиком.

В качестве примера, решить который мы попробуем семью разными методами, мы взяли не самый сложный, но и не самый простой: 223 х 304. Произведение этих множителей равняется 67 792. Нам было важно, чтобы числа были не двузначные и чтобы хотя бы в одном из них был ноль (потом объясним зачем). А теперь давайте посчитаем.

Чтобы решить наш пример этим способом, сперва запишем множители. После этого нужно представить число 223 в виде суммы степеней двоек — начинаем с единицы и умножаем на два, пока не получим число, которое будет больше, чем 223. Получится 256. Это уже много. А раз много, значит нам это не нужно. Остается 128.

Поделиться

Дальше нужно число 304 умножить на все получившиеся числа. Но понадобятся нам не все. Из чисел левого столбца нам нужно собрать число 223. Идем снизу вверх. Берем 128, прибавляем к нему 64. Получается 192. Если прибавить к этой сумме 32, получится 224, а это уже перебор. Поэтому 32 пропускаем и прибавляем все остальные. Выйдет наше 223. На те числа, что остались (а это все, кроме 32), мы и будем умножать наше 304. Теперь суммируем всё, что у нас получилось. Сумма этих чисел окажется 67 792.

Поделиться

Если вам кажется, что умножать 304 на 128 в такой ситуации будет полнейшим безумием, воспользуйтесь хитростью и просто умножайте каждое предыдущее число на два — так будет проще.

Всё, что вам понадобится, чтобы решить любой пример с умножением этим крестьянским методом, — это уметь умножать и делить на два.

Для начала будем последовательно делить на два первое число, пока оно не превратится в единицу. Думаете, не получится в случае с числом 223? Только не в древнерусском способе! Если в результате будет получаться число с остатком, отбрасываем эти остатки куда подальше — они нам не пригодятся.

Поделиться

После этой нехитрой процедуры беремся за второй множитель — его будем на два умножать. Столько же раз, сколько делили первый множитель, пока он не достиг единицы. Умножили? Теперь вычеркивайте все строчки, в которых в левом столбце есть четное число. У нас такая строчка одна — с цифрой шесть.

Поделиться

Дальше — самая нелегкая задача этого метода: суммировать все числа, что стоят справа (включая 304). Сложно, но у древнерусских счетоводов не было другого выбора, и им приходилось всё считать вручную. У нас, к счастью, есть калькуляторы, так что мы с удовольствием воспользуемся этой возможностью. И калькулятор покажет 67 792. Если вы хотите проверить, действительно ли работает этот метод, можете поменять множители местами и всё пересчитать, но, забегая вперед, мы вам скажем, что от перестановки мест множителей произведение не меняется даже в этом случае.

Первым дело запишем наши числа одно над другим и подведем под ними черту. И умножим каждую цифру верхнего числа на каждую цифру нижнего. Если будут получаться двузначные числа, пишем их как есть, а вот однозначные пишем в виде «ноль и цифра» — например, 08 вместо просто 8.

Поделиться

Получив эту хитрую комбинацию, умножаем соседние цифры (2 на 0, 2 на 4) и в обратную стороны (2 на 3 и 3 на 0). Идем еще дальше и стараемся не запутаться — перемножаем первую верхнюю цифру на третью нижнюю, а третью верхнюю — на первую нижнюю. Умножение закончилось.

Поделиться

Давайте складывать то, что у нас получилось. А получилось у нас 67 792.

Выписываем наших героев и подводим под ними черту, как делали это в методе треугольника. Затем перемножим крайние цифры — 2 и 4. Результат (его мы записываем как 08) будет первой строкой нашего решения. Следом за ними умножаем вторую цифру левого множителя на первую и третью — правого. Запишем их во вторую строку. Начало ромбу положено.

Поделиться

Ну а дальше умножаем друг на друга цифры из разряда сотен, десятков и единиц и так же записываем их в одну строку. Результат заносим в третью строчку.

Теперь берем вторую цифру во втором множителе и умножаем на первую и третью из первого. Четвертая строка решения готова. Последней, пятой строкой записываем произведение последней цифры первого множителя и первой цифры второго. Наш ромб готов. Осталось только суммировать цифры, расположенные друг над другом. Метод, конечно, красивый, но совсем не простой в применении.

Поделиться

Вот мы и добрались до того момента, где объясним, зачем нам понадобились трехзначные числа, да еще и с нулем. В китайском методе нам придется считать, чертить и рисовать. Так что для начала разберем принцип его работы на простом примере и умножим 34 на 62. Для этого нарисуем черты. Сперва три горизонтальные, потом, через промежуток, еще четыре. Это три десятка и четыре единицы нашего первого числа. А число 62 по такому же принципу превращается в шесть и две вертикальные черты. Теперь нам нужно разграничить зоны единиц, десятков и сотен.

Поделиться

После этого считаем точки пересечения всех черточек. В зоне единиц их восемь, в зоне десятков — 30, в зоне сотен — 18. Теперь нужно это сложить: 1800+300+8 = 2 108. На калькуляторе, умножая 34 на 62, получится тот же результат.

Переходим к нашему изначальному примеру и умножим 223 на 304. Рисуем две, две и три горизонтальные линии, три вертикальные слева и четыре справа. Место посередине оказывается пустым, поэтому здесь у нас будет воображаемая линия. (Цифры у нас стали крупнее, поэтому и зон будет больше.) И считаем точки пересечения.

Поделиться

Складываем, начиная с единиц. Там, где получились двузначные числа, оставляем единицы, а десятки перекидываем в соседнюю область. То есть там, где стояли рядом 8 и 12, оказались 9 и 2, а соседство 6 и 17 превратилось в 7 и 7. Считаем, что у нас получилось, справа налево: 67 792.

Чтобы решить наш пример методом решетки (его еще называют древнеиндийским методом), первым делом надо нарисовать таблицу, у которой будет три столбца и три строки — по количеству цифр в умножаемых числах. Потом делим каждую ячейку по диагонали на две части. Решетка готова.

Теперь по горизонтали выписываем цифры числа 223, а по вертикали — числа 304. И перемножаем каждое число сверху на каждое число справа. Результат вписываем в наши ячейки таким образом: сверху — десятки, снизу — единицы (если десятков нет, пишем ноль).

Поделиться

Теперь складываем цифры, которые получились в наших диагоналях. По периметру, начиная с правого нижнего угла и поднимаясь до левого верхнего. Если число вышло двузначным, оставляем только единицу, а десятки плюсуются к единицам числа предыдущего — совсем как в сложении, к которому мы привыкли.

Поделиться

Выписываем ответ, начиная с левой стороны: 67 792. Что и требовалось доказать.

Этот метод похож на метод решетки, но есть отличия. Здесь мы снова рисуем таблицу на три столбца и три строки, но ни на какие ячейки не делим. А наши числа записываем не в виде отдельных цифр, а сотнями, десятками и единицами.

Поделиться

Дальше начинаем умножать те цифры, что сверху, на те, что справа.

Поделиться

Умножили? Осталось только всё сложить: 60 000 + 6000 + 900 + 800 + 80 + 12 = 67 792. Тот результат, который и получится, если умножить 223 на 304.

Разные способы решить один и тот же пример, к слову, далеко не единственная математическая причуда. На днях одна несложная на первый взгляд задачка рассорила весь интернет — скандал разгорелся из-за простого примера для 6-классников. И мы попробовали решить его с математиком.

Мэтуэй | Популярные задачи

92) 9(3x) по отношению к x
92+1
1 Найти производную — d/dx бревно натуральное х
2 Оценить интеграл интеграл натурального логарифма x относительно x
3 Найти производную — d/dx
21 Оценить интеграл интеграл от 0 до 1 кубического корня из 1+7x относительно x
22 Найти производную — d/dx грех(2x)
23 Найти производную — d/dx
41 Оценить интеграл интеграл от cos(2x) относительно x
42 Найти производную — d/dx 1/(корень квадратный из х)
43 Оценка интеграла 9бесконечность
45 Найти производную — d/dx х/2
46 Найти производную — d/dx -cos(x)
47 Найти производную — d/dx грех(3x)
68 Оценить интеграл
интеграл от sin(x) по x
69 Найти производную — d/dx угловой синус(х)
70 Оценить предел ограничение, когда x приближается к 0 из (sin(x))/x 92 по отношению к х
85 Найти производную — d/dx лог х
86 Найти производную — d/dx арктан(х)
87 Найти производную — d/dx бревно натуральное 5х92

ФОЛЬГА не сработает, так как же умножать большие многочлены?

SimpleFOIL

Purplemath

Иногда (например, в математическом анализе) вам нужно будет умножить один многочленный многочлен на другой многочленный многочлен. Вы можете сделать это по горизонтали, если хотите, но есть так много места для ошибки, что я всегда переключаюсь на вертикальное умножение, как только длина полинома превышает два члена (и обычно для биномов тоже). Для больших умножений вертикальное умножение обычно выполняется быстрее и с гораздо большей вероятностью даст вам правильный ответ.

Content Continues Below

MathHelp.com

Advanced Polynomial Multiplication

Here’s what the multiplication looks like when it’s done horizontally:

(4 x 2 − 4 x − 7)( x + 3)

(4 x 2 — 4 x — 7) ( x ) + (4 x 2 — 4 x 2 — 4 x 2 — 4 ( ( ( ( ( ( 2) 2) х 2 ( х ) — 4 x ( x ) — 7 ( x ) +4 x 2 (3) — 4 x (3) — 7 (3)

4 (3) — 7 (3)

4 . x 2 − 7 x + 12 x 2 − 12 x − 21

4 x 3 − 4 x 2 + 12 x 2 − 7 x − 12 x − 21

4 x 3 + 8 x 2

− 19 x − 21

Это было больно! Теперь сделаю по вертикали:

Вот было лот проще! Но в любом случае ответ один и тот же:

4 x 3 + 8 x 2 — 19 x — 21


Я просто собираюсь сделать это вертикально; по горизонтали слишком много хлопот.

Обратите внимание: поскольку порядок умножения не имеет значения, я все же могу поместить полином » x  + 2″ внизу для вертикального умножения, точно так же, как я всегда помещал меньшее число внизу, когда выполнял обычное вертикальное умножение с простыми числами еще в начальной школе.

x 4 + 5 x 3 + 10 x 2 x — 34


x — 34


. x 4 — 6
x
3 — 47 x 2 + 83 x — 35


членов ) «пробелы».

Первый полином имеет размер x 3 терм, x 2 терм и постоянный терм, но не x терм; а второй многочлен имеет член x 3 , член x и постоянный член, но не член x 2 . Когда я выполняю вертикальное умножение, мне нужно будет оставить пробелы в моей настройке, соответствующие «пробелам» в степенях членов полиномов, потому что мне почти наверняка понадобится пробел.

(Это похоже на использование нулей в качестве «заполнителей» в обычных числах. У вас может быть цифра тысяч, равная 3, цифра сотен, равная 2, и цифра единиц, равная 5, поэтому вы должны поставить 0 для десятков цифр, образуя число 3205.)

Вот как это выглядит:

Видите, как мне нужны пробелы? Видите, как мне помогло то, что я выстроил все в соответствии со степенью термина? Если бы я не оставил пропусков при записи исходных множителей, мои термины легко могли бы сместиться в строках ниже.

Потратив время на то, чтобы четко и ясно расписать все, я избавил себя от многих ненужных трудностей.

Мой ответ:

2 x 6 + 4 x 5 + x 4 + 11 x 3 + 2 x 2 + 4 x + 4 x 2 + 4 x + 4


у меня как-то можно было посмотреть огромный полином и 4


термины прямо, в то время как он делал умножения и сложения в своей голове. Он записывал термины один за другим, начиная с самой высокой степени до самой низкой, двигаясь прямо от исходного продукта к окончательному ответу. Он серьезно напугал нас всех!

Хотя вы можете стремиться к такому мастерству, не отказывайтесь от инструмента вертикального умножения, по крайней мере, когда вы только начинаете. Не пытайтесь напугать своих одноклассников, пока вы не станете

действительно хороши в использовании обычных методов.


Вы можете использовать виджет Mathway ниже, чтобы попрактиковаться в умножении общих многочленов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *