Формула самая сложная математическая – Фото: Наука: Наука и техника: Lenta.ru

Содержание

Самые красивые физические и математические формулы.: moris_levran — LiveJournal


Математик Анри Пуанкаре в книге «Наука и метод» писал: «Если бы природа не была прекрасна, она не стоила бы того, чтобы ее знать, жизнь не стоила бы того, чтобы ее переживать. Я здесь говорю, конечно, не о той красоте, которая бросается в глаза… Я имею в виду ту более глубокую красоту, которая открывается в гармонии частей, которая постигается только разумом. Это она создает почву, создает каркас для игры видимых красок, ласкающих наши чувства, и без этой поддержки красота мимолетных впечатлений была бы несовершенна как все неотчетливое и преходящее. Напротив красота интеллектуальная дает удовлетворение сама по себе».

П.А.М. Дирак писал: «У теоретической физики есть еще один верный путь развития. Природе присуща та фундаментальная особенность, что самые основные физические законы описываются математической теорией, аппарат которой обладает необыкновенной силой и красотой. Чтобы понять эту теорию, нужно обладать необычайно высокой математической квалификацией. Вы можете спросить: почему природа устроена именно так? На это можно ответить только одно: согласно нашим современным знаниям, природа устроена именно так, а не иначе».


Семь лет назад украинский физик (и художник) Наталия Кондратьева обратилась к ряду ведущих математиков мира с вопросом: «Какие три математические формулы, на ваш взгляд, самые красивые?»
В беседе о красоте математических формул приняли участие сэр Михаэль Атья и Дэвид Элварси из Британии, Яков Синай и Александр Кириллов из США, Фридрих Херцебрух и Юрий Манин из Германии, Давид Рюэль из Франции, Анатолий Вершик и Роберт Минлос из России и другие математики из разных стран. Из украинцев в дискуссии приняли участие академики НАНУ Владимир Королюк и Анатолий Скороход. Часть полученных таким образом материалов и легла в основу изданной Натальей Кондратьевой научной работы «Три самые красивые математические формулы».
— Какую цель вы ставили, обращаясь к математикам с вопросом о красивых формулах?
— Каждое новое столетие приносит обновление научной парадигмы. В самом начале века с ощущением, что мы стоим у порога новой науки, ее новой роли в жизни человеческого общества, я обратилась к математикам с вопросом о красоте идей, стоящих за математическими символами, т.е. о красоте математических формул.
Уже сейчас можно отметить некоторые особенности новой науки. Если в науке ХХ века очень важную роль играла «дружба» математики с физикой, то сейчас математика эффективно сотрудничает с биологией, генетикой, социологией, экономикой… Следовательно, наука будет исследовать соответствия. Математические структуры будут исследовать соответствия между взаимодействиями элементов различных областей и планов. И многое, что раньше мы воспринимали на веру как философские констатации, будет утверждено наукой как конкретное знание.
Этот процесс начался уже в ХХ веке. Так, Колмогоров математически показал, что случайности нет, а есть очень большая сложность. Фрактальная геометрия подтвердила принцип единства в многообразии и т.д.
— Какие же формулы были названы самыми красивыми?
— Сразу скажу, что цели устроить конкурс формулам не было. В своем письме к математикам я писала: «Люди, которые хотят понять, какими законами управляется мир, становятся на путь отыскания гармонии мира. Путь этот уходит в бесконечность (ибо движение вечно), но люди всё равно идут им, т.к. есть особая радость встретить очередную идею или представление. Из ответов на вопрос о красивых формулах, возможно, удастся синтезировать новую грань красоты мира. Кроме того, эта работа может оказаться полезной для будущих ученых как мысль о великой гармонии мира и математики как способе отыскания этой красоты».
Тем не менее среди формул оказались явные фавориты: формула Пифагора и формула Эйлера.
Вслед за ними расположились скорее физические, чем математические формулы, которые в ХХ веке изменили наше преставление о мире, —Максвелла, Шредингера, Эйнштейна.
Также в число самых красивых попали формулы, которые еще находятся на стадии дискуссии, такие, например, как уравнения физического вакуума. Назывались и другие красивые математические формулы.
— Как вы думаете, почему на рубеже второго и третьего тысячелетий формула Пифагора названа одной из самых красивых?
— Во времена Пифагора эта формула воспринималась как выражение принципа космической эволюции: два противоположных начала (два квадрата, соприкасающихся ортогонально) порождают третье, равное их сумме. Можно дать геометрически очень красивые интерпретации.
Возможно, существует какая-то подсознательная, генетическая память о тех временах, когда понятие «математика» означало — «наука», и в синтезе изучались арифметика, живопись, музыка, философия.
Рафаил Хасминский в своем письме написал, что в школе он был поражен красотой формулы Пифагора, что это во многом определило его судьбу как математика.
— А что можно сказать о формуле Эйлера?
— Некоторые математики обращали внимание, что в ней «собрались все», т.е. все самые замечательные математические числа, и единица таит в себе бесконечности! — это имеет глубокий философский смысл.
Недаром эту формулу открыл Эйлер. Великий математик много сделал, чтобы ввести красоту в науку, он даже ввел в математику понятие «градус красоты». Вернее, он ввел это понятие в теорию музыки, которую считал частью математики.
Эйлер полагал, что эстетическое чувство можно развивать и что это чувство необходимо ученому.
Сошлюсь на авторитеты… Гротендик: «Понимание той или иной вещи в математике настолько совершенно, насколько возможно прочувствовать ее красоту».
Пуанкаре: «В математике налицо чувство». Он сравнивал эстетическое чувство в математике с фильтром, который из множества вариантов решения выбирает наиболее гармоничный, который, как правило, и есть верный. Красота и гармония — синонимы, а высшее проявление гармонии есть мировой закон Равновесия. Математика исследует этот закон на разных планах бытия и в разных аспектах. Недаром каждая математическая формула содержит знак равенства.
Думаю, что высшая человеческая гармония есть гармония мысли и чувства. Может быть, поэтому Эйнштейн сказал, что писатель Достоевский дал ему больше, чем математик Гаусс.
Формулу Достоевского «Красота спасет мир» я взяла в качестве эпиграфа к работе о красоте в математике. И он также обсуждался математиками.
— И они согласились с этим утверждением?
— Математики не утверждали и не опровергали этого утверждения. Они его уточнили: «Осознание красоты спасет мир». Здесь сразу вспомнилась работа Юджина Вигнера о роли сознания в квантовых измерениях, написанная им почти пятьдесят лет назад. В этой работе Вигнер показал, что человеческое сознание влияет на окружающую среду, т.е., что мы не только получаем информацию извне, но и посылаем наши мысли и чувства в ответ. Эта работа до сих пор актуальна и имеет как своих сторонников, так и противников. Я очень надеюсь, что в ХХI веке наука докажет: осознание красоты способствует гармонизации нашего мира.

1. Формула Эйлера. Многие видели в этой формуле символ единства всей математики, ибо в ней «-1 представляет арифметику, i — алгебру, π — геометрию и e — анализ».

2. Это простое равенство показывает, величина 0,999 (и так до бесконечности) эквивалентна единице. Многие люди не верят, что это может быть правдой, хотя существует несколько доказательств, основанных на теории пределов. Тем не менее, равенство показывает принцип бесконечности.


3. Это уравнение было сформулировано Эйнштейном в рамках новаторской общей теории относительности в 1915 году. Правая часть этого уравнения описывает энергию, содержащуюся в нашей Вселенной (в том числе» темную энергию»). Левая сторона описывает геометрию пространства-времени. Равенство отражает тот факт, что в общей теории относительности Эйнштейна, масса и энергия определяют геометрию, и одновременно кривизну, которая является проявлением гравитации. Эйнштейн говорил, что левая часть уравнений тяготения в общей теории относительности, содержащая гравитационное поле, красива и как будто вырезана из мрамора, в то время как правая часть уравнений, описывающая материю, всё ещё уродлива, будто сделана из обыкновенной деревяшки.

4. Еще одна доминирующая теория физики — Стандартная модель — описывает электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Некоторые физики считают, что она отображает все процессы, происходящие во Вселенной, кроме темной материи, темной энергии и не включает в себя гравитацию. В Стандартную модель вписывается и неуловимый до прошлого года бозон Хиггса, хотя не все специалисты уверены в его существовании.

5. Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Ее мы помним еще со школы и считаем, что автор теоремы — Пифагор. На самом деле этой формулой пользовались еще в Древнем Египте при строительстве пирамид.

6. Теорема Эйлера. Эта теорема заложила фундамент нового раздела математики — топологии. Уравнение устанавливает связь между числом вершин, ребер и граней для многогранников, топологически эквивалентных сфере.

7. Специальная теория относительности описывает движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. Эйнштейн составил формулу, которая описывает, что время и пространство не являются абсолютными понятиями, а скорее являются относительными в зависимости от скорости наблюдателя. Уравнение показывает, как расширяется или замедляется время в зависимости от того, как и куда движется человек.

8. Уравнение было получено в 1750-х годах Эйлером и Лагранжем при решении задачи об изохроне. Это проблема определения кривой, по которой тяжелая частица попадает в фиксированную точку за фиксированное время, независимо от начальной точки. В общих словах, если ваша система имеет симметрию, есть соответствующий закон сохранения симметрии.

9. Уравнение Каллана — Симанзика. Оно представляет собой дифференциальное уравнение, описывающее эволюцию н-корреляционной функции при изменении масштаба энергий, при которых теория определена и включает в себя бета-функции теории и аномальные размерности. Это уравнение помогло лучше понять квантовую физику.

10. Уравнение минимальной поверхности. Это равенство объясняет формирование мыльных пузырей.

11. Прямая Эйлера. Теорема Эйлера была доказана в 1765 году. Он обнаружил, что середины сторон треугольника и основания его высот лежат на одной окружности.

12. В 1928 году П.А.М. Дирак предложил свой вариант уравнения Шредингера – которое соответствовало теории А. Эйнштейна. Учёный мир был потрясён – Дирак открыл своё уравнение для электрона путём чисто математических манипуляций с высшими математическими объектами, известными как спиноры. И это было сенсацией – до сих пор все великие открытия в физике должны стоять на прочной базе экспериментальных данных. Но Дирак считал, что чистая математика, если она достаточно красива, является надёжным критерием правильности выводов. «Красота уравнений важнее, чем их соответствие экспериментальным данным. … Представляется, что если стремишься получить в уравнениях красоту и обладаешь здоровой интуицией, то ты на верном пути». Именно благодаря его выкладкам был открыт позитрон – антиэлектрон, и предсказал наличие у электрона «спина» — вращения элементарной частицы.

13. Дж. Максвелл получил удивительные уравнения, объединившие все явления электричества, магнетизма и оптики. Замечательный немецкий физик, один из создателей статистической физики, Людвиг Больцман, сказал об уравнениях Максвелла: «Не Бог ли начертал эти письмена?»

14. Уравнение Шредингера.Уравнение, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона в классической механике.

moris-levran.livejournal.com

Воплощение формул | Журнал Популярная Механика

Художник, который превращает абстрактные математические концепции в реальные и завораживающие физические объекты.

По легенде, Пифагор первым обнаружил, что две одинаково натянутые струны издают приятный звук, если их длины соотносятся как небольшие целые числа. С тех пор людей завораживает таинственная связь красоты и математики, вполне материальной гармонии форм, колебаний, симметрии — и совершенной абстракции чисел и отношений. Эта связь эфемерна, но ощутима, недаром художники уже много лет пользуются законами геометрии и вдохновляются математическими закономерностями. Генри Сегерману трудно было отказаться от этого источника идей: в конце концов, он математик и по призванию, и по профессии.

Бутылка Клейна «Мысленно склеив края двух лент Мёбиуса, — говорит Генри Сегерман, — можно получить бутылку Клейна, которая также имеет одну поверхность. Здесь мы видим бутылку Клейна, полученную из лент Мёбиуса с круглым краем. Вернее, то, как она может выглядеть в трехмерном пространстве. Раз исходные «круглые» ленты Мёбиуса уходят в бесконечность, то такая бутылка Клейна будет продолжаться в бесконечность дважды и сама себя пересечет, что видно на скульптуре». Увеличенная копия этой скульптуры украшает факультет математики и статистики Мельбурнского университета.

Фракталы

«Я родился в семье ученых, и думаю, что мой интерес ко всему, что требует развитого пространственного мышления, связан именно с этим», — говорит Генри. Сегодня он — уже выпускник магистратуры Оксфордского и докторантуры Стэнфордского университетов, занимает должность младшего профессора в Университете Оклахомы. Но успешная научная карьера — лишь одна сторона его многогранной личности: еще более 12 лет назад математик начал устраивать художественные акции… в виртуальном мире Second Life. Этот трехмерный симулятор с элементами социальной сети тогда был весьма популярен, позволяя пользователям не только общаться друг с другом, но и обустраивать свои виртуальные «аватарки» и зоны для развлечений, работы и т. д.


Имя: Генри Сегерман
Год рождения: 1979
Образование: Стэнфордский университет
Город: Стилуотер, США
Кредо: «Возьмите всего одну идею, но покажите ее так ясно, как только возможно»

Сегерман пришел сюда, вооружившись формулами и числами, и обустроил свой виртуальный мир на математический лад, наполнив его невиданными фрактальными фигурами, спиралями и даже тессерактами, четырехмерными гиперкубами. «Получилась такая проекция четырехмерного гиперкуба в трехмерной вселенной Second Life — которая сама по себе является проекцией трехмерного виртуального мира на двумерный, плоский экран», — замечает художник.

Кривая Гильберта: непрерывная линия заполняет пространство куба, ни разу не прерываясь и не пересекаясь сама с собой. Кривые Гильберта представляют собой фрактальные структуры, и если увеличить масштаб, можно увидеть, что части этой кривой повторяют форму целого. «Я тысячи раз видел их на иллюстрациях и компьютерных моделях, но, когда впервые взял такую 3D-скульптуру в руки, сразу заметил, что она еще и пружинит, — говорит Сегерман. — Физические воплощения математических концепций всегда чем-нибудь да удивляют».

Однако работать с материальными скульптурами ему понравилось куда больше. «Вокруг нас постоянно циркулируют огромные объемы информации, — говорит Сегерман. — К счастью, реальный мир обладает очень большой пропускной способностью, которая в Сети пока недостижима. Дайте человеку готовую вещь, целостную форму — и он воспримет ее сразу во всей ее сложности, не дожидаясь загрузки». Так что начиная с 2009 года Сегерман создал чуть больше сотни скульптур, и каждая из них — наглядное и, насколько возможно, точное физическое воплощение абстрактных математических концепций и законов.

Многогранники

Эволюция художественных экспериментов Сегермана с 3D-печатью странным образом повторяет эволюцию математических идей. Среди его первых опытов — классические платоновы тела, набор из пяти симметричных фигур, сложенных правильными треугольниками, пятиугольниками и квадратами. За ними последовали полуправильные многогранники — 13 архимедовых тел, грани которых образованы неодинаковыми правильными многоугольниками.

Стэнфордский кролик Созданная в 1994 году трехмерная модель. Сложенная из почти 70 000 треугольников, она служит простым и популярным тестом эффективности программных алгоритмов. Например, на кролике можно проверить эффективность сжатия данных или сглаживания поверхности для компьютерной графики. Поэтому для специалистов эта форма — все равно что фраза «Съешь еще этих мягких французских булок» для любителя поиграться с компьютерными шрифтами. Скульптура «Стэнфордский кролик» — это та же модель, поверхность которой «замощена» буквами слова «кролик» (bunny).

Уже эти простейшие формы, перекочевав с двумерных иллюстраций и идеального мира воображения в трехмерную реальность, вызывают внутреннее восхищение их лаконичной и совершенной красотой. «Связь математической красоты с красотой визуальных или звуковых произведений искусства мне кажется очень зыбкой. В конце концов, много людей остро чувствуют одну форму этой красоты, совершенно не понимая другой. Математические идеи можно транслировать в зримые или звучащие формы, но не все, и далеко не так легко, как может показаться», — добавляет Сегерман.

Вскоре за классическими фигурами последовали все более и более сложные формы, вплоть до таких, о которых вряд ли могли помыслить Архимед или Пифагор — правильных многогранников, без промежутка заполняющих гиперболическое пространство Лобачевского. Такие фигуры с невероятными названиями вроде «тетраэдральные соты порядка 6» или «шестиугольные мозаичные соты» невозможно представить в воображении, не имея под рукой наглядной картинки. Или — одной из скульптур Сегермана, которые представляют их в привычном нам трехмерном евклидовом пространстве.

Платоновы тела: сложенные правильными треугольниками тетраэдр, октаэдр и икосаэдр, а также состоящий из квадратов куб и икосаэдр на основе пятиугольников. Сам Платон связывал их с четырьмя стихиями: «гладкие» октаэдрические частицы, по его представлениям, складывали воздух, «текучие» икосаэдры — воду, «плотные» кубы — землю, а острые и «колючие» третраэдры — огонь. Пятый элемент, додекаэдр, философ считал частицей мира идей.

Работа художника начинается с 3D-модели, которую он выстраивает в профессиональном пакете Rhinoceros. По большому счету, этим она и заканчивается: само производство скульптур, распечатку модели на 3D-принтере, Генри просто заказывает через Shapeways, большое онлайн-сообщество энтузиастов трехмерной печати, и получает готовый объект из пластика или металломатричного композита на основе стали и бронзы. «Это очень легко, — говорит он. — Просто загружаешь модель на сайт, нажимаешь кнопку «Добавить в корзину», оформляешь заказ — и через пару недель тебе доставляют его почтой».

Дополнение восьмерки Представьте, что вы завязали узел внутри твердого тела, а потом удалили его; оставшаяся полость называется дополнением узла. На этой модели показано дополнение одного из самых простых узлов, восьмерки.

Красота

В конечном итоге эволюция математических скульптур Сегермана заводит нас в сложную и завораживающую область топологии. Этот раздел математики изучает свойства и деформации плоских поверхностей и пространств разной размерности, и для него важны их более широкие характеристики, чем для классической геометрии. Куб здесь можно легко, как пластилин, превратить в шар, а чашку с ручкой скатать в бублик, не нарушив в них ничего важного — известный пример, который нашел воплощение в изящной «Топологической шутке» Сегермана.

Тессеракт — четырехмерный куб: подобно тому как квадрат можно получить смещением отрезка перпендикулярно ему на равное его длине расстояние, куб можно получить аналогичным копированием квадрата в трех измерениях, а сдвинув куб в четвертом, мы «нарисуем» тессеракт, или гиперкуб. У него будет 16 вершин и 24 грани, проекции которых на наше трехмерное пространство выглядят мало похожими на обычный трехмерный куб.

«В математике очень важно эстетическое чувство, математики любят «красивые» теоремы, — рассуждает художник. — Трудно определить, в чем именно состоит эта красота, как, впрочем, и в других случаях. Но я бы сказал, что красота теоремы — в простоте, которая позволяет что-то понять, увидеть какие-то простые связи, прежде казавшиеся невероятно сложными. В основе математической красоты может лежать чистый, эффективный минимализм — и удивленный возглас: «Ага!»». Глубокая красота математики может пугать, как ледяная вечность дворца Снежной королевы. Однако вся эта холодная гармония неизменно отражает внутреннюю упорядоченность и закономерность той Вселенной, в которой мы живем. Математика — лишь язык, который безошибочно соответствует этому изящному и сложному миру. Парадоксально, но в нем находятся физические соответствия и приложения для почти любого высказывания на языке математических формул и отношений. Даже самым абстрактным и «искусственным» построениям рано или поздно находится приложение в реальном мире.

Топологическая шутка: с определенной точки зрения поверхности кружки и бублика «одинаковы», точнее говоря — гомеоморфны, поскольку способны переходить одна в другую без разрывов и склеек, за счет постепенной деформации.

Евклидова геометрия стала отражением классического стационарного мира, дифференциальное исчисление пригодилось ньютоновской физике. Невероятная риманова метрика, как оказалось, необходима для описания нестабильной Вселенной Эйнштейна, а многомерные гиперболические пространства нашли применение в теории струн. В этом странном соответствии абстрактных выкладок и чисел основаниям нашей реальности, возможно, и кроется секрет той красоты, которую мы обязательно чувствуем за всеми холодными расчетами математиков.

Статья «Генри Сегерман и его математические этюды» опубликована в журнале «Популярная механика» (№6, Июнь 2016).

www.popmech.ru

Красота математики

Совместное исследование нейробиологов и математиков показало, что восприятие красивых математических формул затрагивает тот же отдел мозга, что и восприятие живописи и музыки. Эта работа стала одной из первых попыток разобраться с понятием математической красоты с помощью строгого научного метода. Однако, знаменитый американский специалист в области алгебраической геометрии Дэвид Мамфорд считает, что красота математических рассуждений слишком сложна и многогранна, чтобы точно указать в мозгу центр, отвечающий за ее восприятие.

Красота и подброшенная монетка

Однажды у петербургского математика, известного специалиста в области динамических систем Анатолия Вершика брали интервью для телевидения. Корреспондент попросил написать на доске какую-нибудь красивую формулу – для фона. Вершик написал формулировку Большой эргодической теоремы – широкого обобщения закона больших чисел.

Основная часть формулировки Большой эргодической теоремы (она же теорема Биркгофа – Хинчина)

Этот закон объясняет, что суммарный эффект большого числа случайных событий мало зависит от исхода каждого отдельного из них. Молекулы воздуха движутся хаотично, но они вдруг не разлетятся вокруг вас в разные стороны, и вы не задохнетесь. Единожды подброшенная монета может выпасть орлом или решкой – это случайность, но если подбросить монету сто, тысячу, миллион раз, число выпадений орла и решки окажутся почти равными – случайность пасует перед количеством. Вообще говоря, именно благодаря закону больших чисел мы можем изучать явления нашего мира, не отвлекаясь на его хаотическую сущность, благодаря ему мы можем с уверенностью делать вывод о большом на основе малого. Это удивительный случай, когда математика явно обнажает фундаментальное устройства природы – красота эргодической теоремы определяется, конечно, этим, а не симпатичными греческими буквами “фи”, “мю” и “сигма” в ее формулировке.

Красота и мозг

Первая часть формул из эксперимента Атьи и Зеки

“Математика, если правильно на нее посмотреть, несет не только правду, но и высшую красоту”, – писал философ Бертран Рассел в работе “Мистицизм и логика” в 1918 году. О красоте математического рассуждения, теоремы и даже определения, наверное, хотя бы раз в жизни задумывался любой исследователь, использующий математику в своей работе. Но насколько эта категория универсальна, даже среди самих математиков? Можно ли сравнить понятие о прекрасном в этой точной науке с красотой в поэзии, музыке, изобразительном искусстве? В начале 2014 года в журнале Frontiers in Humann Neuroscience была опубликована статья группы авторов, ключевыми из которых были британский нейробиолог Семир Зеки и британский математик Майкл Атья. Зеки прославился работами, связывающими чувственное восприятие с конкретными областями в мозгу, на протяжении своей карьеры он поставил множество экспериментов над приматами и людьми, в которых искал корреляции между опытом любви, красоты и ненависти с работой тех или иных отделов мозга. Майкл Атья – лауреат обеих крупнейших в математике Филдсовской и Абелевской премий, известен в первую очередь работами в области алгебраической топологии, в частности, созданием K-теории.

Вторая часть формул из эксперимента Атьи и Зеки

Эти заслуженные специалисты в очень далеких друг от друга научных направлениях встретились, чтобы попробовать подступиться к математической красоте с помощью строгого научного подхода. В 2004 году Зеки опубликовал работу, в которой обсуждалась физиологическая подоплека опыта восприятия изобразительного искусства. В том опыте группе испытуемых было предложено оценить 300 картин по шкале “прекрасная – нейтральная – уродливая”. Затем участникам опыта демонстрировали те же полотна, а происходящие в их мозгу процессы параллельно отслеживали с помощью магнитно-резонансной томографии. Оказалось, разница в реакции на красивые и отвратительные изображения особенно заметна в отделе мозга, называющемся медиальная орбитофронтальная кора – мОФК (это часть коры головного мозга, находящаяся примерно за глазами и завернутая “внутрь”). Научные данные о конкретных функциях тех или иных участков мозга далеко не полны, но другие исследования связывают орбитофронтальную кору с контролем импульсов (ее повреждения могут привести, например, к агрессии и сексуальной распущенности), а также за представление ценности вознаграждения на основе сенсорной информации. Можно ли сказать, что Зеки открыл в мозге “центр красоты”? Вряд ли, да и сам нейробиолог этого совсем не утверждает: он лишь говорит, что между восприятием прекрасного изобразительного искусства и работой мОФК наблюдается определенная корреляция.

Через девять лет после этого эксперимента, в 2011 году, Семир Зеки опубликовал еще одну работу – на этот раз он изучал восприятие музыки. И тут важнейшую роль, как показал опыт, играет отдел оМФК. К концу 2013 года Зеки и Майкл Атья задались вопросом: не связано ли и восприятие математической красоты с тем же отделом мозга? Новый опыт во многом повторял эксперименты 2004 и 2011 годов: 15 молодым математикам показали 60 формул – в списке были и знаменитые теоремы, и фундаментальные тождества и определения. Сначала испытуемые поставили каждой из них оценку по шкале от –5 (уродливая) до +5 (прекрасная). Спустя 2-3 недели им снова продемонстрировали все 60 формул одну за другой, но в другом порядке, параллельно наблюдая за функциональной магнитно-резонансной томограммой. Исследователи также попросили участников опыта оценить понятность каждой формулы – чтобы затем статистически разобраться с ловушкой “красиво – то, что понятно”.

Третья часть формул из эксперимента Атьи и Зеки

Скорее любопытными, чем существенными с научной точки зрения оказались результаты субъективной оценки красоты формул из списка. Лучшую среднюю оценку (3,375) с заметным отрывом от других получила формула Эйлера, номер 1 в списке, связывающая самые важные математические константы: 0, 1, e, Pi, корень из минус единицы и три действия – сложение, умножение и возведение в степень, причем каждая константа и каждое действие участвуют в формуле только один раз. Действительно, это выражение в элементарном виде связывает чрезвычайно далекие на первый взгляд области математики; легко предположить, что формула Эйлера была бы названа самым красивым математическим тождеством и при глобальном опросе. Самой уродливой, опять же, с большим отрывом от остальных (средний балл –1,687), оказалась формула Рамануджана (номер 14 в списке) для разложения в ряд 1/Pi – в списке не было более громоздкого и несимметричного выражения. В то же время, эта внешне уродливая формула чрезвычайно полезна для инженеров – с ее помощью можно быстро получать приближенные значения числа Pi. Даже первый член ряда (для k=1) дает значение Pi с точностью до шестого знака после запятой. Можно найти в тождестве Рамануджана и абстрактную красоту – она связывает фундаментальную константу, описывающую свойства правильной окружности, с чрезвычайно прихотливо выбранными числами – 9801, 1103, 396 и 26390. Почему именно они дают возможность вычислить Pi? Чем хуже какие-нибудь другие числа, например, условные 1110, 47569, 7890 и 515? В несимметричности устройства природы тоже легко обнаружить прекрасное.

А вот значимым результатом опыта оказалось подтверждение гипотезы – различие в восприятии красивых формул по сравнению с уродливыми и нейтральными отражалось в первую очередь (хотя и не исключительно) в работе той же зоны мозга, медиальной орбитофронтальной коры, что и восприятие художественной красоты в эксперименте десятилетней давности. Значит ли это, что математическая и художественная красота влияют на нас схожим образом, что у этого чувственного опыта одинаковая физиологическая подоплека? Видимо, отчасти это верно. С другой стороны, низкий балл формулы Рамануджана говорит о том, что как минимум отчасти при оценке учитывались внешние характеристики записи выражения – его краткость и симметричность. Естественно, что такое восприятие красоты очень похоже на восприятие художественного полотна и задействует те же участки мозга.

Красота и математические племена

А как быть с той стороной математической красоты, которая определила выбор Анатолия Вершика, – с изяществом, глубиной и проникновением в подлинную суть природы? В середине октября американский математик Дэвид Мамфорд, как и Майкл Атья, лауреат «математического Нобеля», Филдсовской медали, ответил на статью Зеки и Атьи пространным эссе “Математика, красота и отделы мозга”. Мамфорд подчеркивает, что его рассуждения основаны не на строгом научном методе, а на собственном богатом опыте и общении с крупнейшими математическими мыслителями 20-го и 21-го века. Мамфорд предлагает разделить математиков на четыре группы (или “племени”) по тому, что движет ими в исследовательской работе – “в путешествии по эзотерическому миру”, как формулирует автор. Эти группы – Первооткрыватели, Алхимики, Борцы и Детективы.

Четвертая часть формул из эксперимента Атьи и Зеки

К Первооткрывателям американский ученый относит исследователей, которые, подобно путешественникам прошлого, исследуют малоизведанные математические континенты и открывают новые материки. Среди Первооткрывателей Мамфорд выделяет Собирателей драгоценных камней, для которых важнее всего найти новый математический объект, и Картографов, которые прокладывают на новых землях маршруты, по которым вслед за Первооткрывателями пройдут другие ученые.

К числу первооткрывателей относятся, например, античные математики, когда-то нашедшие все правильные многогранники – трехмерные многогранники, каждая грань которых – правильный многоугольник, а в каждой вершине сходится одинаковое число ребер. Таких многогранников существует только пять – тетраэдр, октаэдр, икосаэдр, куб и додекаэдр. По всей видимости, три из них были известны еще Пифагору, но еще два, октаэдр и икосаэдр, были открыты Таэтетом Афинским только 100 лет спустя. Как могло быть сделано такое открытие? Наитие, фантазия, пространственное воображение, озарение – вот главные инструменты Первооткрывателей, которых среди математиков много и сегодня. Конечно же, не все из них геометры, так, Дэвид Мамфорт упоминает американского математика Майка Артина, построившего теорию так называемых некоммутативных колец – абстрактных математических структур, в которых объекты можно складывать и перемножать, но x умножить на y не обязательно равно y умножить на x. Вряд ли сам Артин мог бы рассказать, как ему удалось наткнуться на этот богатейший математический материк, но воображение, способность представлять себе геометрические фигуры, свойственная многим Первооткрывателям, вряд ли сыграла здесь роль. Согласно апокрифу, когда алгебраиста Ирвина Каплански спросили, что он видит, когда думает о кольце (ring), он ответил: “Я вижу букву R”, то есть стандартное обозначение кольца в математической записи.

Мамфорд отмечает, что из 60 формул исследования Зеки и Атьи только три (с номерами 12, 15 и 28), так или иначе, имели отношение к открытиям Первооткрывателей. Но разве мало красоты в способности человека к озарению – и имеет ли эта красота отношение к визуальному восприятию прекрасного?

Пятая часть формул из эксперимента Атьи и Зеки

Второе математическое племя – Алхимики. Источник их вдохновения – скрытые связи между различными математическими областями. Обнаружение таких связей, похоже, по словам Мамфорда, “как если бы мы налили содержимое одной мензурки в другую и получили бы что-то удивительное, подобное взрыву”. Алхимической можно назвать связь между трисекцией угла и поиском корней многочлена третьей степени, найденную в эпоху Возрождения. Связывающая e, Pi и корень из минус единицы формула Эйлера – тоже, безусловно, алхимическая. Но и формула Рамануджана, в которой Pi выражено через несколько чисел, могла быть придумана только Алхимиком. Красота математической алхимии – в обнажении общности законов природы, она как раз того рода, что заставила сделать свой выбор Анатолия Вершика.

Третья группа – Борцы. Хотя математика точная наука, в ней слишком много объектов и величин, которые мы можем оценить, только сравнивая друг с другом. Хлеб Борцов – сравнения, асимптотические приближения, приближенные оценки. Характерным плодом Борца в списке Зеки – Атьи является формула Стирлинга для факториала (номер 41 в списке). Факториал натурального числа N – это произведение всех чисел от 1 до N. Такая функция повсеместно встречается в математике – от комбинаторики и теории вероятностей, где факториалы позволяют подсчитывать число событий определенного рода, до анализа, где они возникают, например, при разложении в ряд. Но факториалы неудобны, математикам куда проще обращаться с показательными функциями и экспонентами и перейти от одного к другому позволяет – пусть и асимптотически – как раз формула Стирлинга. “Важно осознавать, что за пределами чистой математики именно неравенства играют центральную роль в экономике, компьютерных науках, статистике, теории игр и исследовании операций. Возможно, обсессия тождествами – аберрация, уникальная для специалистов в чистой математике, – тогда как реальный мир управляется неравенствами”, – пишет Мамфорд. Математическая красота, которой добиваются Борцы, – не в последнюю очередь красота способности математики сложить людям на практике, в которой этой точной науке так часто наивно отказывают.

Обычное состояние математика – находиться в тупике

Наконец, последние – Детективы. Это люди, цель которых – раскрыть большое дело, найти решение какой-то особенно важной и глубокой задачи. Они повсюду ищут улики, они могут вскрыть в комнате паркет, надеясь найти под ним другой уровень объяснения. Они пользуются плодами Первооткрывателей, Алхимиков и Борцов, но ради своей собственной цели. И продвижение дается дорого: “Обычное состояние математика – находиться в тупике”, – говорил американский математик Питер Сарнак. Типичный детектив – Эндрю Уайлз, доказавший не поддававшуюся никому три с половиной века Большую теорему Ферма (номер 58 в списке). Еще один Детектив – Григорий Перельман, за несколько лет аскетического затворничества разобравшийся с гипотезой Пуанкаре. Именно такие люди становятся образцами для массового архетипа математика – гении, посвятившие себя решению абстрактной головоломки. И даже если путь к доказательству не обязательно окажется изящным, подвиг их разума, нашедшего выход из вечного тупика, красив особой красотой, не похожей на красоту открытий остальных математических племен.

Шестая часть формул из эксперимента Атьи и Зеки

Мамфорд отмечает, что для каждой из четырех групп – Первооткрывателей, Алхимиков, Борцов и Детективов можно подобрать отдел мозга, наиболее соответствующий их методам, и это будут разные участки мозга, а не одна только медиальная орбитофронтальная кора. Но даже такая попытка описать физиологическую основу математической красоты – спекуляция. “Предвидение нового абстрактного мира, раскрытие новых тайн, построение глобальных иерархий и решение сложнейших головоломок – вот четыре аспекта математики, которые ученые находят наиболее красивыми, – заключает Дэвид Мамфорд. – Но каждый из этих характерных видов красоты связан с различными видами ментальной деятельности. Можно ли надеяться связать каждую из них с конкретной зоной мозга?” Действительно, исследование Зеки и Атьи, основанное на достаточно ограниченном эксперименте, доказывает лишь то, что восприятие математической красоты в одном из ее аспектов в чем-то похоже на восприятие каких-то граней художественной или музыкальной красоты.

***

Но есть ли что-то в математической красоте, объединяющее все ее ипостаси, описанные Мамфордом, и фундаментально отличающее ее от других видов прекрасного (а может, наоборот – связывающее с ними)? “Платон считал математическую красоту высшей формой прекрасного, – пишут Семир Зеки и Майкл Атья, – ведь она происходит из чистого разума и связана с вечной и неизменной истиной”.

Именно те правила, которые кажутся интересными математику, и выбрала природа

Анатолий Вершик написал на доске формулировку Большой эргодической теоремы, потому что она, плод чистого разума, описывает глубинное устройство природы. “Математик играет в игру, правила для которой он выдумывает сам, физик играет игру по правилам, которые даны природой, – писал один из создателей квантовой механики, Нобелевский лауреат Поль Дирак в 1939 году. – Но со временем становится все более очевидно, что именно те правила, которые кажутся интересными математику, и выбрала природа”. Красота математики – в способности увидеть истинную суть вещей. Пожалуй, это относится к любой красоте.

www.svoboda.org

Пять удивительных математических фактов / Habr

Для начала небольшой спойлер

Да я знаю, что если написать фамилию с заглавной буквы, казуса не получится. Дальше перевод.

Математика – одна из немногих областей знаний, которая может быть объективно названа истинной, потому что ее теоремы основаны на чистой логике. Но в то же время эти теоремы часто оказываются очень странными и противоречащими интуиции.

Некоторые люди считают математику скучной. Следующие примеры показывают, что она какая угодно, но не такая

5. Случайные наборы данных


Как это ни странно, случайные данные на самом деле не такие уж и случайные. В приведенных данных, представляющих собой все от биржевых курсов до населения городов, высот зданий и протяженностей рек, около 30 процентов всех чисел начинаются с единицы. Меньшее количество начинается с 2, еще меньше с 3 и так далее, с 9 начинается только каждое двадцатое число. И чем больше набор данных, чем шире порядок охватываемых величин, тем сильнее проявляется эта закономерность.
4. Спирали простых чисел


В силу того, что простые числа неделимы (кроме как на единицу и самого себя), и того, что все остальные числа могут быть представлены в виде их произведения, простые числа часто рассматриваются как «атомы» в мире математики. Несмотря на свою важность, распределение простых чисел до сих пор остается тайной. Нет такого правила, которое бы однозначно говорило, какие числа будут простыми и через сколько встретится следующее простое число.

Кажущаяся случайность простых чисел делает факты, обнаруженные в «Скатерти Улама» очень странными.

В 1963 году математик Станислав Улам, обнаружил удивительную закономерность, когда разрисовывал свою записную книжку во время презентации: если записывать целые числа по спирали, простые числа выстраиваются вдоль диагональных линий. Само по себе это не очень удивительно, если помнить, что все простые числа, кроме двойки, нечетные, а диагональные линии в спиралях целых чисел поочередно являются нечетными. Более необычной была тенденция простых чисел лежать преимущественно на одних диагоналях и практически отсутствовать на других. Причем закономерность наблюдалась вне зависимости от того, с какого числа начиналась спираль (с единицы или любого другого).

Даже если масштабировать спираль, чтобы она вмещала гораздо большее количество чисел, можно увидеть, что скопление простых чисел на одних диагоналях гораздо плотнее, чем на других. Существуют математические предположения, объясняющие эту закономерность, но пока они не доказаны.

3. Выворачивание сферы

В одной важной области математики, которая называется топология, два объекта считаются эквивалентными или гомеоморфными, если один из них может быть преобразован в другой путем скручивания или растягивания поверхности. Объекты считаются разными, если для преобразования требуются разрезы или изломы поверхности.

В качестве примера рассмотрим тор – объект в форме пончика. Если поставить его вертикально, расширить одну сторону и вдавить верхушку этой же стороны, то получится цилиндрический объект с ручкой. В среде математиков существует классическая шутка, что топологи не могут отличить пончика от чашки с кофе.

С другой стороны, ленты Мебиуса – петли с единственным перегибом не являются гомеоморфными петлями без перегибов (цилиндры), потому что нельзя распрямить ленту Мебиуса, без того чтобы разрезать ее, перевернуть одну сторону и склеить заново.

Топологов давно интересует вопрос, будет ли сфера гомеоморфной самой себе, будучи вывернутой наизнанку? Другими словами, можно ли выворачивать сферу? На первый взгляд это кажется невозможным, потому что нельзя проткнуть дырку в сфере. Но, оказывается, выворачивание сферы возможно. Как это делается, показано на видео .
Поражает тот факт, что тополог Бернард Морин, который является главным разработчиком приведенного метода выворачивания сферы, слеп.

2. Математика стен


Несмотря на то, что стены могут быть украшены бесконечным количеством завитушек, говоря математическим языком, существует конечное число отдельных геометрических шаблонов. Все периодические рисунки Эшера, обои, плиточные дизайны и вообще все двумерные повторяющиеся группы фигур, могут быть отнесены к той или иной так называемой «плоской кристаллографической группе». И знаете, сколько существует таких групп? Ровно 17.
1. Сонет


«Как сонет Шекспира схватывает саму суть любви, или картина показывает внутреннюю красоту человека, уравнение Эйлера проникает в самые глубины существования.»

Математик из Стэнфорда Кейт Девлин (Keith Devlin) написал эти слова об уравнении в эссе 2002 года, которое называлось «Самое прекрасное уравнение». Но почему от формулы Эйлера перехватывает дыхание? И что она вообще значит?

Во-первых, буква «e» представляет собой иррациональное число (с бесконечным количеством цифр), которое начинается с 2.71828… Открытое в контексте непрерывно начисляемого сложного процента, оно описывает темпы экспоненциального роста от колоний популяций насекомых до радиоактивного распада. В математике число обладает рядом неожиданных свойств, например, оно равняется сумме обратных факториалов от нуля до бесконечности. В конечном счете константа e оккупировала математику, взявшись вроде бы ниоткуда, но оказавшись в большом числе важных уравнений.

Далее. i представляет собой так называемую мнимую единицу – квадратный корень из минус 1. «Так называемую», потому что в реальности не существует числа, которое, будучи умноженным само на себя, в результате дало отрицательное число (потому отрицательные числа не имеют действительных квадратных корней). Но в математике существует большое количество ситуаций, когда приходится извлекать квадратный корень из отрицательного числа. Число i используется как своеобразная пометка того места, где такая операция была произведена.

Пи – отношение длины окружности к ее диаметру, одна из любимых и наиболее интересных констант в математике. Подобно e, она появилась в большом количестве математических и физических формул как будто из ниоткуда.

Константа e, возведенная в степень мнимая единица, умноженная на Пи равняется минус одному. Из уравнения Эйлера следует, что добавление к этому единицы дает ноль. Трудно поверить, что все эти странные числа, одно из которых даже не относится к реальному миру, могут быть так просто скомбинированы. Но это доказанный факт.

habr.com

Математическая формула успеха

Каждый день наш мозг принимает тысячи решений, начиная с простых (надеть голубую рубашку или серую?), рутинных (куда пойти на обед?), до решений, которые мы даже не воспринимаем как решения, но они жизненно необходимы для нас (уже пора выходить из дому?).

Но часто перед нами возникает действительно важный выбор с долгосрочными последствиями. Например, для бизнеса: кого нанять на эту должность? Для вашей карьеры: на какую работу стоит согласиться? И в личной жизни, как правило, нужно выбрать только одного мужа или жену.

А вы уверены, что выбрали лучший вариант?

Вы не можете быть уверены. Если вы отвергаете возможность, которая существует прямо сейчас, нет никакой гарантии, что будущие варианты будут лучше. Если вас не вполне устраивает работа, которую вам предложили, стоит ли принять ее? А если компания вашей мечты пригласит вас на следующей неделе? … А если не пригласит?

В жизни есть целый класс подобных проблем, когда вам нужно принять решение, но:

  • Вы не знаете, какие возможности могут возникнуть в будущем.
  • У вас еще много времени или, наоборот, нужно сделать выбор прямо сейчас.
  • После того как вы приняли решение, вы [пусть на какое-то время] лишаетесь других возможностей.

Проблема секретаря

Проблема секретаря — известный пример из этой дилеммы. Представьте, что вы проводите собеседование со множеством кандидатов на одну вакансию секретаря. Кандидаты проходят собеседование в случайном порядке, и вы должны принять решение по каждому из них сразу же по окончании интервью. После того, как вы откажете кандидату, он уйдет и больше не вернется.

При вынесении решения вы можете сравнивать его с предыдущими кандидатами, но вы не имеете ни малейшего представления о следующих кандидатах. В какой момент нужно остановить процесс и сделать выбор?

Это суть малоизвестной математической теории, которая может помочь вам в принятии решения такого типа. Она называется теорией оптимальной остановки случайных процессов. И она помогает максимизировать вероятность того, что вы закончите выбор с наилучшим результатом.

Так как же это работает?

Основанная на теории вероятности, теория оптимальной остановки имеет более интересную родословную, чем большинство ее математических собратьев. Она превратилась в стратегию азартных игр. В 1875 году английский математик из университета Кембриджа использовал теорию оптимальной остановки, чтобы определить, когда следует прекратить покупать моментальные лотерейные билеты. Давайте посмотрим, как это работает для нашего примера с наймом секретаря.

Допустим, вы хотите заполнить вакансию секретаря в течение восьми недель, и вы можете брать интервью у трех кандидатов в неделю. Это означает, что в общей сложности вы можете провести 24 потенциальных интервью.

Теория оптимальной остановки говорит: прямо с места в карьер отвергайте первые 37 процентов заявителей, которых увидите. Это означает, что вы должны провести интервью с первыми пришедшими девятью кандидатами и попрощаться с ними со всеми, независимо от того, хорошими или ужасными они вам покажутся.

И затем вы должны нанять первого же из следующих кандидатов, который покажется вам лучшим, чем первые девять. Это и есть ваша оптимальная точка остановки.

Имеется и действительно сложная математическая формула для определения оптимальной точки останова, или времени для старта, чтобы максимизировать ожидаемую выгоду. Неплохо?
Тем не менее, простая формула 37% также отлично работает. Почему?

Предположим, вы наняли первого же человека, которого увидели. Это все равно что ткнуть пальцем в небо. В этом случае ваши шансы выбрать лучшего кандидата — 1 из 24, то есть вероятность, что вы сделали правильный выбор составляет всего 4,1%. Вы действительно должны увидеть больше кандидатов, чтобы получить представление о возможных вариантах.

Но по мере того, как вы будете принимать все больше и больше кандидатов, повышаются шансы, что вы уже видели лучшего кандидата и отказали ему. Этот риск возрастает с каждым следующим кандидатом, которому вы отказали. Логично?

Проблема разборчивой невесты

Теории оптимальной остановки применима и в личной жизни. Вот пример, известный как проблема разборчивой невесты. Предположим, вам 20 лет и вы хотите выйти замуж до 30 лет. Вы можете знакомиться с одним молодым человеком каждые шесть месяцев, итого с 20 кандидатами в течение 10 лет. Теория оптимальной остановки говорит, что вам нужно отвергнуть первых семерых (и забыть о них, потому что они не будут вас вечно ждать) и выйти замуж за следующего человека, который окажется лучше, чем первые семь.

Если вы безработный и хотите устроиться на работу в течение шести месяцев, вам нужно ходить на одно интервью в неделю. Из 26 возможных мест, вы должны отказаться от первых 10, а затем сказать «да» следующему лучшему варианту.

Конечно, все это не на 100% надежно — это теория! Да, ваш лучший кандидат (или идеальный супруг или работа мечты), может оказаться в первой группе, которую вы должны отвергнуть. Но в среднем, однако, эта теория действительно максимизирует ваш шанс сделать наилучший выбор из множества вариантов. Например, она отлично работает при покупке недвижимости.

Теория оптимальной остановки очень полезна и для HR-менеджеров при найме работников, где цена неверных решений может быть высока. На самом деле, цена ошибочных решений о браке ничуть не меньше…

Так что, у вас есть математически доказанная стратегия оптимального выбора при найме, любви, карьере и в жизни в целом! Теперь вы знаете, когда нужно сказать стоп!

Источник inc.com

www.arbconsulting.ru

Самые красивые формулы математики

Семь лет назад украинский физик (и художник) Наталия Кондратьева обратилась к ряду ведущих математиков мира с вопросом: «Какие три математические формулы, на ваш взгляд, самые красивые?» В беседе о красоте математических формул приняли участие сэр Михаэль Атья и Дэвид Элварси из Британии, Яков Синай и Александр Кириллов из США, Фридрих Херцебрух и Юрий Манин из Германии, Давид Рюэль из Франции, Анатолий Вершик и Роберт Минлос из России и другие математики из разных стран. Из украинцев в дискуссии приняли участие академики НАНУ Владимир Королюк и Анатолий Скороход. Часть полученных таким образом материалов и легла в основу изданной Натальей Кондратьевой научной работы «Три самые красивые математические формулы».

— Какую цель вы ставили, обращаясь к математикам с вопросом о красивых формулах?

— Каждое новое столетие приносит обновление научной парадигмы. В самом начале века с ощущением, что мы стоим у порога новой науки, ее новой роли в жизни человеческого общества, я обратилась к математикам с вопросом о красоте идей, стоящих за математическими символами, т.е. о красоте математических формул.

Уже сейчас можно отметить некоторые особенности новой науки. Если в науке ХХ века очень важную роль играла «дружба» математики с физикой, то сейчас математика эффективно сотрудничает с биологией, генетикой, социологией, экономикой… Следовательно, наука будет исследовать соответствия. Математические структуры будут исследовать соответствия между взаимодействиями элементов различных областей и планов. И многое, что раньше мы воспринимали на веру как философские констатации, будет утверждено наукой как конкретное знание.

Этот процесс начался уже в ХХ веке. Так, Колмогоров математически показал, что случайности нет, а есть очень большая сложность. Фрактальная геометрия подтвердила принцип единства в многообразии и т.д.

— Какие же формулы были названы самыми красивыми?

— Сразу скажу, что цели устроить конкурс формулам не было. В своем письме к математикам я писала: «Люди, которые хотят понять, какими законами управляется мир, становятся на путь отыскания гармонии мира. Путь этот уходит в бесконечность (ибо движение вечно), но люди всё равно идут им, т.к. есть особая радость встретить очередную идею или представление. Из ответов на вопрос о красивых формулах, возможно, удастся синтезировать новую грань красоты мира. Кроме того, эта работа может оказаться полезной для будущих ученых как мысль о великой гармонии мира и математики как способе отыскания этой красоты».

Тем не менее среди формул оказались явные фавориты: формула Пифагора и формула Эйлера.

Вслед за ними расположились скорее физические, чем математические формулы, которые в ХХ веке изменили наше преставление о мире, — Максвелла, Шредингера, Эйнштейна.

Также в число самых красивых попали формулы, которые еще находятся на стадии дискуссии, такие, например, как уравнения физического вакуума. Назывались и другие красивые математические формулы.

— Как вы думаете, почему на рубеже второго и третьего тысячелетий формула Пифагора названа одной из самых красивых?

— Во времена Пифагора эта формула воспринималась как выражение принципа космической эволюции: два противоположных начала (два квадрата, соприкасающихся ортогонально) порождают третье, равное их сумме. Можно дать геометрически очень красивые интерпретации.

Возможно, существует какая-то подсознательная, генетическая память о тех временах, когда понятие «математика» означало — «наука», и в синтезе изучались арифметика, живопись, музыка, философия.

Рафаил Хасминский в своем письме написал, что в школе он был поражен красотой формулы Пифагора, что это во многом определило его судьбу как математика.

— А что можно сказать о формуле Эйлера?

— Некоторые математики обращали внимание, что в ней «собрались все», т.е. все самые замечательные математические числа, и единица таит в себе бесконечности! — это имеет глубокий философский смысл.

Недаром эту формулу открыл Эйлер. Великий математик много сделал, чтобы ввести красоту в науку, он даже ввел в математику понятие «градус красоты». Вернее, он ввел это понятие в теорию музыки, которую считал частью математики.

Эйлер полагал, что эстетическое чувство можно развивать и что это чувство необходимо ученому.

Сошлюсь на авторитеты… Гротендик: «Понимание той или иной вещи в математике настолько совершенно, насколько возможно прочувствовать ее красоту».

Пуанкаре: «В математике налицо чувство». Он сравнивал эстетическое чувство в математике с фильтром, который из множества вариантов решения выбирает наиболее гармоничный, который, как правило, и есть верный. Красота и гармония — синонимы, а высшее проявление гармонии есть мировой закон Равновесия. Математика исследует этот закон на разных планах бытия и в разных аспектах. Недаром каждая математическая формула содержит знак равенства.

Думаю, что высшая человеческая гармония есть гармония мысли и чувства. Может быть, поэтому Эйнштейн сказал, что писатель Достоевский дал ему больше, чем математик Гаусс.

Формулу Достоевского «Красота спасет мир» я взяла в качестве эпиграфа к работе о красоте в математике. И он также обсуждался математиками.

— И они согласились с этим утверждением?

— Математики не утверждали и не опровергали этого утверждения. Они его уточнили: «Осознание красоты спасет мир». Здесь сразу вспомнилась работа Юджина Вигнера о роли сознания в квантовых измерениях, написанная им почти пятьдесят лет назад. В этой работе Вигнер показал, что человеческое сознание влияет на окружающую среду, т.е., что мы не только получаем информацию извне, но и посылаем наши мысли и чувства в ответ. Эта работа до сих пор актуальна и имеет как своих сторонников, так и противников. Я очень надеюсь, что в ХХI веке наука докажет: осознание красоты способствует гармонизации нашего мира.

Более подробные материалы по теме можно найти на сайте Наталии Кондратьевой.


 Похожие публикации

2009-02-11 • Просмотров [ 8402 ]


primat.org

Репетитор о сложных темах по математике — Колпаков Александр Николаевич

Ошибочно считать, что к каждой теме по алгебре и геометрии можно приклеить ярлык: простая или сложная. В большей степени вопрос относится не к сложности какого-либо изучаемого понятия / фигуры, а к уровню заданий. Практически в любом разделе математики репетитор может встретить и сложную, и легкую (обычно подготовительную) задачу. И если мы все-таки пытаемся сравнивать темы по степени их «тяжести» для детского ума, нужно оговаривать, о каком уровне учащегося идет речь.

Когда меня спрашивают: «Какую самую сложную тему по математике мы будем изучать в этом году?», или более конкретно: «Новая тема сложная?», — я обычно отвечаю вопросом на вопрос: «Сложная для кого? Для тебя или для репетитора? Ты сам должен определить насколько трудно дается ТЕБЕ этот материал».

Сложность темы во многом зависит от уровня общей математической подготовки / подводки, осуществляемой репетитором по математике для ее лучшего восприятия. Понятно, что у детей с хорошей вычислительно — логической базой порог усвоения значительно выше, чем у остальных. И сложных тем меньше. При методически правильной работе репетитора градус проблем по материалу, подаваемого конкретному учащемуся, можно значительно снизить. Что я и делаю. Для меня вопрос о сложности темы – лишь вопрос проведения виртуозной подготовительной работы. Изнурительной и неспешной. Поэтому когда родители выделяется на уроки достаточное количество времени, то, как правило, мы получаем великолепные результаты. Ученик не замечает никаких особых сложностей. По крайней мере, при работе с базовыми заданиями.

И все-таки, позволю себе отметить несколько тем и разделов, вызывающих проблемы у среднестатистического незапущенного ученика наиболее часто. Как правило, они «вылетают» по причине недостаточного внимания со стороны школьного преподавателя к определенным разделам математики в целом.
1) Векторы и действия с ними
2) Задачи с параметрами
3) Текстовые задачи (на вычисления в 4 — 5 классе и уравнения в 7 — 9 классе)
4) Тригонометрические формулы и преобразования
5) Задачи на построения циркулем и линейкой
6) Производные и первообразные
7) Задачи на доказательства и выводы (в любом разделе математики)
8) Делимость целых чисел (простые и составные числа, НОК, НОД, разложение на простые множители
9) Уравнения и неравенства с модулями

Надо сказать, что любая новая тема – отчасти сложна для любого ученика. Просто более способный школьник быстрее к ней адаптируется, чем менее способный. Репетитор по математике в таком случае только ускоряет процесс адаптации.

ankolpakov.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *