Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ слоТСния тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹: Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ, ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹, Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ слоТСния синусов ΠΈ косинусов, tg суммы ΠΈ разности

Mathway | ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ

1Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(30)
2Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(45)
3Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(30 Π³Ρ€Π°Π΄. )
4Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(60 Π³Ρ€Π°Π΄. )
5Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅tan(30 Π³Ρ€Π°Π΄. )
6Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅arcsin(-1)
7Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(pi/6)
8
Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅
cos(pi/4)
9Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(45 Π³Ρ€Π°Π΄. )
10Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(pi/3)
11Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅arctan(-1)
12Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos(45 Π³Ρ€Π°Π΄. )
13Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos(30 Π³Ρ€Π°Π΄. )
14Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅tan(60)
15
Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅
csc(45 Π³Ρ€Π°Π΄. )
16Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅tan(60 Π³Ρ€Π°Π΄. )
17Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sec(30 Π³Ρ€Π°Π΄. )
18Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos(60 Π³Ρ€Π°Π΄. )
19Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos(150)
20Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(60)
21Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos(pi/2)
22Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅tan(45 Π³Ρ€Π°Π΄. )
23Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅arctan(- ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 3)
24Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅csc(60 Π³Ρ€Π°Π΄. )
25Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sec(45 Π³Ρ€Π°Π΄. )
26Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅csc(30 Π³Ρ€Π°Π΄. )
27Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(0)
28Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(120)
29Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos(90)
30ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусыpi/3
31Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅tan(30)
32ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹45
33Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos(45)
34Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒsin(theta)^2+cos(theta)^2
35ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусыpi/6
36Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cot(30 Π³Ρ€Π°Π΄. )
37Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅arccos(-1)
38Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅arctan(0)
39Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cot(60 Π³Ρ€Π°Π΄. )
40ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹30
41ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы(2pi)/3
42Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin((5pi)/3)
43Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin((3pi)/4)
44Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅tan(pi/2)
45Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(300)
46Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos(30)
47Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos(60)
48Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos(0)
49Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos(135)
50Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos((5pi)/3)
51Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos(210)
52Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sec(60 Π³Ρ€Π°Π΄. )
53Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(300 Π³Ρ€Π°Π΄. )
54ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹135
55ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹150
56ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы(5pi)/6
57ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы(5pi)/3
58ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹89 Π³Ρ€Π°Π΄.
59ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹60
60Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(135 Π³Ρ€Π°Π΄. )
61Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(150)
62Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(240 Π³Ρ€Π°Π΄. )
63Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cot(45 Π³Ρ€Π°Π΄. )
64ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы(5pi)/4
65Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(225)
66Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(240)
67Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos(150 Π³Ρ€Π°Π΄. )
68Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅tan(45)
69Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒsin(30 Π³Ρ€Π°Π΄. )
70Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sec(0)
71Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos((5pi)/6)
72Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅csc(30)
73Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅arcsin(( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 2)/2)
74 Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅tan((5pi)/3)
75Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅tan(0)
76Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒsin(60 Π³Ρ€Π°Π΄. )
77Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅arctan(-( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 3)/3)
78ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы(3pi)/4
79Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin((7pi)/4)
80Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅arcsin(-1/2)
81
Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅
sin((4pi)/3)
82Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅csc(45)
83Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒarctan( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 3)
84Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(135)
85Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(105)
86Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(150 Π³Ρ€Π°Π΄. )
87Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin((2pi)/3)
88Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅tan((2pi)/3)
89ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусыpi/4
90Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(pi/2)
91Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sec(45)
92Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos((5pi)/4)
93Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos((7pi)/6)
94Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅arcsin(0)
95Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin(120 Π³Ρ€Π°Π΄. )
96Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅tan((7pi)/6)
97Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅cos(270)
98Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅sin((7pi)/6)
99Найти Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅arcsin(-( ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· 2)/2)
100ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ· градусов Π² Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹88 Π³Ρ€Π°Π΄.

ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°: Π‘ΠΏΡ€Π°Π². ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹

ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°: Π‘ΠΏΡ€Π°Π². ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹
Β Β 

ГусСв Π’. А., ΠœΠΎΡ€Π΄ΠΊΠΎΠ²ΠΈΡ‡ А. Π“. ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°: Π‘ΠΏΡ€Π°Π². ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹: Кн. для учащихся.β€” М.: ΠŸΡ€ΠΎΡΠ²Π΅Ρ‰Π΅Π½ΠΈΠ΅, 1988.β€” 416 с.

Π’ ΠΊΠ½ΠΈΠ³Π΅ Π΄Π°Π½ΠΎ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ΅ ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ основных Ρ€Π°Π·Π΄Π΅Π»ΠΎΠ² ΡˆΠΊΠΎΠ»ΡŒΠ½Ρ‹Ρ… курсов Π°Π»Π³Π΅Π±Ρ€Ρ‹ ΠΈ Π½Π°Ρ‡Π°Π» Π°Π½Π°Π»ΠΈΠ·Π°, Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Книга ΠΎΠΊΠ°ΠΆΠ΅Ρ‚ ΠΏΠΎΠΌΠΎΡ‰ΡŒ Π² систСматизации ΠΈ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠΈ Π·Π½Π°Π½ΠΈΠΉ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅.



ОглавлСниС

Π‘Π›ΠžΠ’Πž К УЧАЩИМБЯ
ГЛАВА I. Π§Π˜Π‘Π›Π
Β§ 1. ΠΠ°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Π΅ числа
2. АрифмСтичСскиС дСйствия Π½Π°Π΄ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами.
3. Π”Π΅Π»Π΅Π½ΠΈΠ΅ с остатком.
4. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊΠΈ дСлимости.
5. Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ числа Π½Π° простыС ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ.
6. Наибольший ΠΎΠ±Ρ‰ΠΈΠΉ Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл.
7. НаимСньшСС ΠΎΠ±Ρ‰Π΅Π΅ ΠΊΡ€Π°Ρ‚Π½ΠΎΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл.
8. Π£ΠΏΠΎΡ‚Ρ€Π΅Π±Π»Π΅Π½ΠΈΠ΅ Π±ΡƒΠΊΠ² Π² Π°Π»Π³Π΅Π±Ρ€Π΅. ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅.
Β§ 2. Π Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа
10. РавСнство Π΄Ρ€ΠΎΠ±Π΅ΠΉ. ОсновноС свойство Π΄Ρ€ΠΎΠ±ΠΈ. Π‘ΠΎΠΊΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Π΄Ρ€ΠΎΠ±Π΅ΠΉ.
11. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Ρ€ΠΎΠ±Π΅ΠΉ ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŽ.
12. АрифмСтичСскиС дСйствия Π½Π°Π΄ ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹ΠΌΠΈ дробями.
13. ДСсятичныС Π΄Ρ€ΠΎΠ±ΠΈ.
14. АрифмСтичСскиС дСйствия Π½Π°Π΄ дСсятичными дробями.
15. ΠŸΡ€ΠΎΡ†Π΅Π½Ρ‚Ρ‹.
16. ΠžΠ±Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ Π΄Ρ€ΠΎΠ±ΠΈ Π² Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΡƒΡŽ Π΄Π΅ΡΡΡ‚ΠΈΡ‡Π½ΡƒΡŽ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π΄Ρ€ΠΎΠ±ΡŒ.
17. ΠžΠ±Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ бСсконСчной дСсятичной пСриодичСской Π΄Ρ€ΠΎΠ±ΠΈ Π² ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡƒΡŽ Π΄Ρ€ΠΎΠ±ΡŒ.
18. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Π°Ρ прямая.
19. ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… чисСл.
Β§ 3. Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа
21. Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа. Числовая прямая.
22 ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΡ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… числовых мноТСств.
23. Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… чисСл.
25. ЧисловыС ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ.
26. ΠœΠΎΠ΄ΡƒΠ»ΡŒ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ числа.
27. Π€ΠΎΡ€ΠΌΡƒΠ»Π° расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ прямой.
28. ΠŸΡ€Π°Π²ΠΈΠ»Π° дСйствий Π½Π°Π΄ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами.
29. Бвойства арифмСтичСских дСйствий Π½Π°Π΄ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ числами.
30. ΠŸΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΈ.
31. ЦСлая Ρ‡Π°ΡΡ‚ΡŒ числа. Дробная Ρ‡Π°ΡΡ‚ΡŒ числа.
32. Π‘Ρ‚Π΅ΠΏΠ΅Π½ΡŒ с Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΌ.
33. Π‘Ρ‚Π΅ΠΏΠ΅Π½ΡŒ с Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΌ. Π‘Ρ‚Π΅ΠΏΠ΅Π½ΡŒ с ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Ρ†Π΅Π»Ρ‹ΠΌ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΌ.
34. Π‘Ρ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½Ρ‹ΠΉ Π²ΠΈΠ΄ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ числа.
35. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ арифмСтичСского корня.
36. ΠšΠΎΡ€Π΅Π½ΡŒ Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΠΉ стСпСни ΠΈΠ· ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ числа.
37. Π‘Ρ‚Π΅ΠΏΠ΅Π½ΡŒ с Π΄Ρ€ΠΎΠ±Π½Ρ‹ΠΌ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΌ.
38. Бвойства стСпСнСй с Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ показатСлями.
39. ΠŸΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½Ρ‹Π΅ значСния чисСл. ΠΠ±ΡΠΎΠ»ΡŽΡ‚Π½Π°Ρ ΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ.
40. ДСсятичныС приблиТСния Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ числа ΠΏΠΎ нСдостатку ΠΈ ΠΏΠΎ ΠΈΠ·Π±Ρ‹Ρ‚ΠΊΡƒ.
41. ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ извлСчСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня ΠΈΠ· Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ числа.
42. ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ΠΎ стСпСни с ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΌ.
43. Бвойства стСпСнСй с Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ показатСлями.
Β§ 4. ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½Ρ‹Π΅ числа
45. АрифмСтичСскиС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π½Π°Π΄ комплСксными числами.
46. АлгСбраичСская Ρ„ΠΎΡ€ΠΌΠ° комплСксного числа.
47. ΠžΡ‚Ρ‹ΡΠΊΠ°Π½ΠΈΠ΅ комплСксных ΠΊΠΎΡ€Π½Π΅ΠΉ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.
ГЛАВА II. ΠΠ›Π“Π•Π‘Π ΠΠ˜Π§Π•Π‘ΠšΠ˜Π• Π’Π«Π ΠΠ–Π•ΠΠ˜Π―
49. ДопустимыС значСния ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ….
50. ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ тоТдСствСнного прСобразования выраТСния. ВоТдСство.
Β§ 6. Π¦Π΅Π»Ρ‹Π΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ выраТСния
52. ΠœΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Ρ‹. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ΠΎΠ² ΠΊ стандартному Π²ΠΈΠ΄Ρƒ.
53. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ сокращСнного умноТСния.
54. Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ΠΎΠ² Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ. 3.
112. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x-m)+n
113. Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.
114. Бпособы построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
115. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(kx).
116. Π‘ΠΆΠ°Ρ‚ΠΈΠ΅ ΠΈ растяТСниС Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.
117. Π“Ρ€Π°Ρ„ΠΈΠΊ гармоничСского колСбания
ГЛАВА IV. ВРАНБЦЕНДЕНВНЫЕ Π’Π«Π ΠΠ–Π•ΠΠ˜Π―
Β§ 12. ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, содСрТащих ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΡƒΡŽ ΠΏΠΎΠ΄ Π·Π½Π°ΠΊΠΎΠΌ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°
119. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ числа ΠΏΠΎ Π΄Π°Π½Π½ΠΎΠΌΡƒ основанию.
120. Бвойства Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠ².
121. ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ ΠΊ Π½ΠΎΠ²ΠΎΠΌΡƒ основанию Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°.
122. Π›ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅.
123. ДСсятичный Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ. Π₯арактСристика ΠΈ мантисса дСсятичного Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°.
Β§ 13. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΈ ΠΈΡ… использованиС для прСобразования тригономСтричСских Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ
125. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ слоТСния ΠΈ вычитания Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ².
126. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ привСдСния.
127. Π‘ΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρƒ тригономСтричСскими функциями ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°.
128. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°.
129. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ пониТСния стСпСни.
130. ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ суммы тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π² ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅.
131. ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ произвСдСния тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π² сумму.
132. ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ выраТСния a cos t + b sin t ΠΊ Π²ΠΈΠ΄Ρƒ A sin (t + a).
133. ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, содСрТащих ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ тригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.
ГЛАВА V. Π£Π ΠΠ’ΠΠ•ΠΠ˜Π― И Π‘Π˜Π‘Π’Π•ΠœΠ« Π£Π ΠΠ’ΠΠ•ΠΠ˜Π™
Β§ 14. УравнСния с ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ
135. Π Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.
136. Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ уравнСния.
137. ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния.
138. НСполныС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния.
139. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π’ΠΈΠ΅Ρ‚Π°.
140. БистСмы ΠΈ совокупности ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.
141. УравнСния, содСрТащиС ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΡƒΡŽ ΠΏΠΎΠ΄ Π·Π½Π°ΠΊΠΎΠΌ модуля.
142. ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ слСдствия уравнСния. ΠŸΠΎΡΡ‚ΠΎΡ€ΠΎΠ½Π½ΠΈΠ΅ ΠΊΠΎΡ€Π½ΠΈ.
143. УравнСния с ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»Π΅.
144. ΠžΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния уравнСния.
145. Π Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ уравнСния.
146. РСшСниС уравнСния p(x) = 0 ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ разлоТСния Π΅Π³ΠΎ Π»Π΅Π²ΠΎΠΉ части Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ.
147. РСшСниС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ввСдСния Π½ΠΎΠ²ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
148. Π‘ΠΈΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния.
149. РСшСниС Π·Π°Π΄Π°Ρ‡ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ составлСния ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.
150. Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ уравнСния.
151. ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ уравнСния.
152. ЛогарифмичСскиС уравнСния.
153. ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ-логарифмичСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.
154. ΠŸΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠ΅ тригономСтричСскиС уравнСния.
155. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ тригономСтричСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.
156. Π£Π½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Π°Ρ подстановка (для тригономСтричСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ).
157. ΠœΠ΅Ρ‚ΠΎΠ΄ ввСдСния Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° (для тригономСтричСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ).
158. ГрафичСскоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.
159. УравнСния с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ.
Β§ 15. УравнСния с двумя ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ
161. Π“Ρ€Π°Ρ„ΠΈΠΊ уравнСния с двумя ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ.
162. Π›ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ с двумя ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ ΠΈ Π΅Π³ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ.
Β§ 16. БистСмы ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ
164. РСшСниС систСм Π΄Π²ΡƒΡ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ с двумя ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ подстановки.
165. РСшСниС систСм Π΄Π²ΡƒΡ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ с двумя ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ слоТСния.
167. ГрафичСскоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ систСм Π΄Π²ΡƒΡ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ с двумя ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ.
168. ИсслСдованиС систСмы Π΄Π²ΡƒΡ… Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ с двумя ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ.
169. РСшСниС систСм Π΄Π²ΡƒΡ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ с двумя ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ умноТСния ΠΈ дСлСния.
170. БистСмы ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈ логарифмичСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.
171. БистСмы тригономСтричСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ с двумя ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ.
172. БистСмы Ρ‚Ρ€Π΅Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ с трСмя ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ.
173. РСшСниС Π·Π°Π΄Π°Ρ‡ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ составлСния систСм ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.
Π“Π»Π°Π²Π° VI. НЕРАВЕНБВВА
Β§ 17. РСшСниС нСравСнств с ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ
175. ГрафичСскоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ нСравСнств с ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
176. Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ нСравСнства с ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
177. БистСмы нСравСнств с ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
178. Π‘ΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ нСравСнств с ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
179. Π”Ρ€ΠΎΠ±Π½ΠΎ-Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ нСравСнства.
180. НСравСнства Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни.
181. ГрафичСскоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ нСравСнств Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни.
182. НСравСнства с модулями.
183. РСшСниС Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… нСравСнств ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΎΠ².
184. ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ нСравСнства.
185. ЛогарифмичСскиС нСравСнства.
186. Π˜Ρ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ нСравСнства.
187. РСшСниС тригономСтричСских нСравСнств.
188. НСравСнства ΠΈ систСмы нСравСнств с двумя ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ.
Β§ 18. Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ нСравСнств
190. БинтСтичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° нСравСнств.
191. Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ нСравСнств ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΎΡ‚ ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ.
192. ИспользованиС нСравСнств ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.
ГЛАВА VII. Π­Π›Π•ΠœΠ•ΠΠ’Π« ΠœΠΠ’Π•ΠœΠΠ’Π˜Π§Π•Π‘ΠšΠžΠ“Πž ΠΠΠΠ›Π˜Π—Π
Β§ 19. ЧисловыС ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ
194. Бпособы задания ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ.
195. ВозрастаниС ΠΈ ΡƒΠ±Ρ‹Π²Π°Π½ΠΈΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ.
196. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ арифмСтичСской прогрСссии.
197. Бвойства арифмСтичСской прогрСссии
198. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ гСомСтричСской прогрСссии.
199. Бвойства гСомСтричСской прогрСссии.
200. ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»Π΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ.
201. ВычислСниС ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠ² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ.
202. Π‘ΡƒΠΌΠΌΠ° бСсконСчной гСомСтричСской прогрСссии ΠΏΡ€ΠΈ |q| Β§ 20. ΠŸΡ€Π΅Π΄Π΅Π» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
204. ВычислСниС ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈ Ρ…->ΠΎΠΎ.
205. ΠŸΡ€Π΅Π΄Π΅Π» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅. НСпрСрывныС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.
206. Π’Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ асимптота.
207. ВычислСниС ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅.
Β§ 21. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΈ Π΅Π΅ примСнСния
209. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.
210. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ диффСрСнцирования. Π’Π°Π±Π»ΠΈΡ†Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ….
211. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ суммы, произвСдСния, частного.
212. БлоТная функция ΠΈ Π΅Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅.
213. ЀизичСский смысл ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.
214. Вторая производная ΠΈ Π΅Π΅ физичСский смысл.
215. ΠšΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.
216. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊ исслСдованию Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π° ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎΡΡ‚ΡŒ.
217. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊ исслСдованию Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π° экстрСмум.
218. ΠžΡ‚Ρ‹ΡΠΊΠ°Π½ΠΈΠ΅ наибольшСго ΠΈ наимСньшСго Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅.
219. ΠžΡ‚Ρ‹ΡΠΊΠ°Π½ΠΈΠ΅ наибольшСго ΠΈΠ»ΠΈ наимСньшСго значСния Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° Π½Π΅Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΌ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅.
220. Π—Π°Π΄Π°Ρ‡ΠΈ Π½Π° отысканиС Π½Π°ΠΈΠ±ΠΎΠ»ΡŒΡˆΠΈΡ… ΠΈΠ»ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½.
221. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° тоТдСств.
222. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° нСравСнств.
223. ΠžΠ±Ρ‰Π°Ρ схСма построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.
Β§ 22. ΠŸΠ΅Ρ€Π²ΠΎΠΎΠ±Ρ€Π°Π·Π½Π°Ρ ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»
225. Π’Π°Π±Π»ΠΈΡ†Π° ΠΏΠ΅Ρ€Π²ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ….
226. ΠŸΡ€Π°Π²ΠΈΠ»Π° вычислСния ΠΏΠ΅Ρ€Π²ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ….
227. Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π».
228. Бвязь ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ² ΠΈ ΠΏΠ΅Ρ€Π²ΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΠΉ (Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΡŒΡŽΡ‚ΠΎΠ½Π°β€”Π›Π΅ΠΉΠ±Π½ΠΈΡ†Π°).
229. ΠŸΡ€Π°Π²ΠΈΠ»Π° вычислСния ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ².
230. ИспользованиС ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° для вычислСния ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ плоских Ρ„ΠΈΠ³ΡƒΡ€.
Π“Π•ΠžΠœΠ•Π’Π Π˜Π―. ГЛАВА I. Π“Π•ΠžΠœΠ•Π’Π Π˜Π§Π•Π‘ΠšΠ˜Π• Π€Π˜Π“Π£Π Π« НА ΠŸΠ›ΠžΠ‘ΠšΠžΠ‘Π’Π˜
2. Π’ΠΎΡ‡ΠΊΠ°. ΠŸΡ€ΡΠΌΠ°Ρ.
3. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡ. Аксиомы. Π’Π΅ΠΎΡ€Π΅ΠΌΡ‹.
Β§ 2. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ свойства ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΡ… гСомСтричСских Ρ„ΠΈΠ³ΡƒΡ€
5. Π›ΡƒΡ‡.
6. ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ. ΠšΡ€ΡƒΠ³.
7. ΠŸΠΎΠ»ΡƒΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ.
8. Π£Π³ΠΎΠ». Градусная ΠΌΠ΅Ρ€Π° ΡƒΠ³Π»Π°.
9. Π‘ΠΌΠ΅ΠΆΠ½Ρ‹Π΅ ΠΈ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ ΡƒΠ³Π»Ρ‹.
10. Π¦Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ вписанныС ΡƒΠ³Π»Ρ‹.
11. ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС.
12. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых.
13. ΠŸΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ прямыС.
14. ΠšΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΊ окруТности.
15. Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ.
16. РавСнство Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².
17. Π Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ.
18. Π‘ΡƒΠΌΠΌΠ° ΡƒΠ³Π»ΠΎΠ² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.
19. ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°.
20. ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΠΈ, вписанныС Π² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΈ описанныС ΠΎΠΊΠΎΠ»ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.
Β§ 3. ГСомСтричСскиС построСния Π½Π° плоскости
22. ΠŸΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° построСниС.
23. ГСомСтричСскоС мСсто Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π° плоскости.
Β§ 4. Π§Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ
25. ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ.
26. ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Π ΠΎΠΌΠ±. ΠšΠ²Π°Π΄Ρ€Π°Ρ‚.
27. ВрапСция.
Β§ 5. ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ
29. Π’Ρ‹ΠΏΡƒΠΊΠ»Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ.
30. ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ.
31. Π”Π»ΠΈΠ½Π° окруТности.
Β§ 6. РСшСниС Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ²
33. Π‘ΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρƒ сторонами ΠΈ ΡƒΠ³Π»Π°ΠΌΠΈ Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅.
34. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° косинусов. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° синусов.
35. РСшСниС Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².
Β§ 7. ΠŸΠ»ΠΎΡ‰Π°Π΄ΠΈ плоских Ρ„ΠΈΠ³ΡƒΡ€
37. ΠŸΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².
38. ΠŸΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Ρ„ΠΈΠ³ΡƒΡ€.
39. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΊΡ€ΡƒΠ³Π°.
ГЛАВА II. ΠŸΡ€ΡΠΌΡ‹Π΅ ΠΈ плоскости Π² пространствС
Β§ 9. ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ прямых ΠΈ плоскостСй
42. ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ прямой ΠΈ плоскости.
43. ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ плоскости.
Β§ 10. ΠŸΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½ΠΎΡΡ‚ΡŒ прямых ΠΈ плоскостСй
45. ΠŸΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€ ΠΈ наклонная ΠΊ плоскости.
46. ΠŸΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½ΠΎΡΡ‚ΡŒ плоскостСй.
ГЛАВА III. ВЕЛА Π’ ΠŸΠ ΠžΠ‘Π’Π ΠΠΠ‘Π’Π’Π•
Β§ 11. ΠœΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ
48. ΠœΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½Ρ‹Π΅ ΡƒΠ³Π»Ρ‹. ΠœΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ.
49. ΠŸΡ€ΠΈΠ·ΠΌΠ°. ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄. ΠšΡƒΠ±.
50. ΠŸΠΈΡ€Π°ΠΏΡ€ΠΈΠ΄Π°.
51. ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ.
Β§ 12. Π’Π΅Π»Π° вращСния
53. ΠšΠΎΠ½ΡƒΡ.
54. Π¨Π°Ρ€.
Β§ 13. Π˜Π·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ пространствСнных Ρ„ΠΈΠ³ΡƒΡ€ Π½Π° плоскости
56. ΠžΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅.
57. ГСомСтричСскоС мСсто Ρ‚ΠΎΡ‡Π΅ΠΊ Π² пространствС.
Β§ 14. ΠžΠ±ΡŠΠ΅ΠΌΡ‹ Ρ‚Π΅Π»
59. ОбъСм ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°, ΠΏΡ€ΠΈΠ·ΠΌΡ‹ ΠΈ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.
60. ОбъСм Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€Π° ΠΈ конуса.
61. ΠžΠ±Ρ‰Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° объСмов Ρ‚Π΅Π» вращСния.
Β§ 15. ΠŸΠ»ΠΎΡ‰Π°Π΄ΠΈ повСрхностСй Ρ‚Π΅Π»
63. ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ повСрхности.
64. ΠŸΠ»ΠΎΡ‰Π°Π΄ΠΈ повСрхностСй Ρ‚Π΅Π» вращСния.
ГЛАВА IV. Π”Π•ΠšΠΠ Π’ΠžΠ’Π« ΠšΠžΠžΠ Π”Π˜ΠΠΠ’Π«
Β§ 16. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π° плоскости ΠΈ Π² пространствС
66. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ сСрСдины ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°.
Β§ 17. УравнСния Ρ„ΠΈΠ³ΡƒΡ€ Π½Π° плоскости
68. ΠŸΠ΅Ρ€Π΅ΡΠ΅Ρ‡Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… окруТностСй.
69. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой.
70. ΠŸΠ΅Ρ€Π΅ΡΠ΅Ρ‡Π΅Π½ΠΈΠ΅ прямой ΠΈ окруТности.
Β§ 18. УравнСния Ρ„ΠΈΠ³ΡƒΡ€ Π² пространствС
72. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ сфСры.
73. Π’Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ располоТСниС сфСры ΠΈ плоскости.
74. ΠŸΠ΅Ρ€Π΅ΡΠ΅Ρ‡Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… сфСр.
ГЛАВА V. Π Π•ΠžΠ‘Π ΠΠ—ΠžΠ’ΠΠΠ˜Π― Π€Π˜Π“Π£Π 
76. ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ двиТСния.
Β§ 20. ПодобиС Ρ„ΠΈΠ³ΡƒΡ€
78. ΠŸΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹.
ГЛАВА VI. Π’Π•ΠšΠ’ΠžΠ Π«
80. ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°.
81. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°.
Β§ 22. ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π½Π°Π΄ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ
83. Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° число. ΠšΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹.
84. БкалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².
ΠŸΠ Π˜Π›ΠžΠ–Π•ΠΠ˜Π―
Π“Π•ΠžΠœΠ•Π’Π Π˜Π―

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡ Ρ„ΠΎΡ€ΠΌΡƒΠ» тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡ Ρ„ΠΎΡ€ΠΌΡƒΠ» тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

ВригономСтрия β€” это Ρ€Π°Π·Π΄Π΅Π» ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, ΠΈΠ·ΡƒΡ‡Π°ΡŽΡ‰ΠΈΠΉ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρƒ сторонами ΠΈ ΡƒΠ³Π»Π°ΠΌΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ². Π‘Π»ΠΎΠ²ΠΎ «тригономСтрия» происходит ΠΎΡ‚ грСчСских слов Β«Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΒ» ΠΈ Β«ΠΌΠ΅Ρ€Π°Β». БущСствуСт ΡˆΠ΅ΡΡ‚ΡŒ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡΡ Π±ΡƒΠΊΠ²Π°ΠΌΠΈ синус (sin), косинус (cos), тангСнс (tan), косСканс (csc), сСканс (sec) ΠΈ котангСнс (cot). Π­Ρ‚ΠΈ ΡˆΠ΅ΡΡ‚ΡŒ инвСрсий тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΡƒΠ³Π»Ρ‹ ΠΈ тоТдСства Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ для понимания ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π’ этом сообщСнии Π±Π»ΠΎΠ³Π° ΠΌΡ‹ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ рассмотрим эти Ρ‚Π΅ΠΌΡ‹ с опрСдСлСниями, Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠΈ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ. 92 – 2bc cosA

Бписок Ρ„ΠΎΡ€ΠΌΡƒΠ» Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ВригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ сторон ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ВрСмя основными тригономСтричСскими функциями ΡΠ²Π»ΡΡŽΡ‚ΡΡ синус (sin), косинус (cos) ΠΈ тангСнс (tan). Π­Ρ‚ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ мноТСство ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, Ρ„ΠΈΠ·ΠΈΠΊΠ΅, Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ΅ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π½Π°ΡƒΠΊΠ°Ρ….

БущСствуСт ряд Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡. НиТС ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ список Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ»: 92

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ слоТСния ΡƒΠ³Π»ΠΎΠ²: sin(x+y) = sin(x)cos(y)+cos(x)sin(y) ΠΈ cos(x+y)= cos(x)cos(y)-sin( x)sin(y)

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ

Sin, cos ΠΈ tan ΡΠ²Π»ΡΡŽΡ‚ΡΡ основными функциями Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Ѐункция синуса, обозначаСмая ΠΊΠ°ΠΊ sin(?), опрСдСляСтся ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ стороны, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡƒΠ³Π»Ρƒ ? Π½Π° Π΄Π»ΠΈΠ½Ρƒ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹. Ѐункция косинуса, обозначаСмая ΠΊΠ°ΠΊ cos(?), опрСдСляСтся ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ стороны, ΠΏΡ€ΠΈΠ»Π΅Π³Π°ΡŽΡ‰Π΅ΠΉ ΠΊ ΡƒΠ³Π»Ρƒ ? Π½Π° Π΄Π»ΠΈΠ½Ρƒ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹. ΠšΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ функция, обозначаСмая tan(?), опрСдСляСтся ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ стороны, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡƒΠ³Π»Ρƒ ? ΠΊ сосСднСй сторонС.

НиТС ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ основныС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ:

1. sin2? + cos2? = 1 ……………………….(тоТдСство)
2. cosec2? = 1 + тангСнс2? ……………………. (Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ тоТдСство)
3. сСк2? = 1 + дСтская ΠΊΡ€ΠΎΠ²Π°Ρ‚ΠΊΠ°2? ……………………… (Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ тоТдСство)
4. cosec ? = 1/Π³Ρ€Π΅Ρ…? ……………………. (ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅)
5. сСк ? = 1/cos ? …………………….. (ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅)
6. Π·Π°Π³Π°Ρ€ ? = 1/дСтская ΠΊΡ€ΠΎΠ²Π°Ρ‚ΠΊΠ°? ……………………. (ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅)

ВригономСтричСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠ΅ Π²Π·Π°ΠΈΠΌΠ½Ρ‹Π΅ тоТдСства

БущСствуСт нСсколько тригономСтричСских Ρ„ΠΎΡ€ΠΌΡƒΠ», Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΡ… Π²Π·Π°ΠΈΠΌΠ½Ρ‹Π΅ тоТдСства. Π­Ρ‚ΠΎ тоТдСства, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для упрощСния Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, содСрТащих ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ числа. Π’ΠΎΡ‚ нСсколько ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ²:

1. ΠžΠ±Ρ€Π°Ρ‚Π½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° синусу Ρ€Π°Π²Π½Π° косСкансу:

ΠžΠ±Ρ€Π°Ρ‚Π½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° косинуса Ρ€Π°Π²Π½Π° сСкансу:

2. ΠžΠ±Ρ€Π°Ρ‚Π½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° тангСнса Ρ€Π°Π²Π½Π° котангСнсу:

3. ΠžΠ±Ρ€Π°Ρ‚Π½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° косинуса Ρ€Π°Π²Π½Π° синусу:

косинус:

5. ΠžΠ±Ρ€Π°Ρ‚Π½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° котангСнса Ρ€Π°Π²Π½Π° тангСнсу:

Π­Ρ‚ΠΈ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹ΠΌΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ ΠΏΡ€ΠΈ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΈΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ. НапримСр, Ссли Π²Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin15Β°, Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚, Ρ‡Ρ‚ΠΎ sin15Β° = 1/2, Π° Π·Π°Ρ‚Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ тоТдСство для синуса, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Π΅Π³ΠΎ ΠΊΠ°ΠΊ 2sinx=1. Π—Π°Ρ‚Π΅ΠΌ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π½Π°ΠΉΡ‚ΠΈ x, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π±Π°Π·ΠΎΠ²ΡƒΡŽ Π°Π»Π³Π΅Π±Ρ€Ρƒ, ΠΈ Π½Π°ΠΉΡ‚ΠΈ, Ρ‡Ρ‚ΠΎ x = 30Β°.

Π’Π°Π±Π»ΠΈΡ†Π° тригономСтричСских ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ

ВригономСтричСскиС ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ β€” ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ сторон ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ Π½Π΅ зависят ΠΎΡ‚ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

ВригономСтричСскиС ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ для ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°:

Бинус (sin) = ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅Π΅/Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π°
ΠšΠΎΡΠΈΠ½ΡƒΡ (cos) = ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅Π΅/Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π°
ВангСнс (tan) = ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ΅/ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅Π΅

ВригономСтричСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠ΅ пСриодичСскиС тоТдСства (Π² Ρ€Π°Π΄ΠΈΠ°Π½Π°Ρ…) )

1. sin(x+y) = sin x cos y + cos x sin y 92 Π³ΠΎΠ΄Π°

ВригономСтричСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠ΅ тоТдСства ΠΊΠΎΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ (Π² градусах)

БущСствуСт нСсколько тригономСтричСских Ρ„ΠΎΡ€ΠΌΡƒΠ», Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΡ… тоТдСства ΠΊΠΎΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Π°ΠΆΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅ со стСпСнями. К Π½ΠΈΠΌ относятся:

– sin(90Β° – x) = cos(x)
– cos(90Β° – x) = sin(x)
– tan(90Β° – x) = cot(x)

ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· эти Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ вывСсти ΠΈΠ· основного опрСдСлСния ΠΊΠΎΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ: f(x) = 1/f(?/2 – x). Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ это ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, Π»Π΅Π³ΠΊΠΎ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ, ΠΊΠ°ΠΊ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ Π²Ρ‹ΡˆΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹.

НапримСр, Π΄Π°Π²Π°ΠΉΡ‚Π΅ посмотрим Π½Π° ΠΏΠ΅Ρ€Π²ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ: sin(90Β° – x) = cos(x). ΠœΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ наши извСстныС значСния ΠΈ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡ‚ΡŒ порядок, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ: cos(x) = 1/sin(?/2 – x). ΠžΡ‚ΡΡŽΠ΄Π° ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ 90Β° Π½Π° ?/2 ΠΈ ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚.

ВригономСтричСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠ΅ тоТдСства суммы ΠΈ разности

ΠŸΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅ с тригономСтричСскими функциями Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π·Π½Π°Ρ‚ΡŒ нСсколько основных тоТдСств. Π­Ρ‚ΠΈ тоТдСства, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠ΅ суммы ΠΈ разности, ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‡Π΅Π½ΡŒ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ ΠΏΡ€ΠΈ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΈΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Π’ΠΎΡ‚ самыС основныС тоТдСства суммы ΠΈ разности:

sin(x + y) = sin(x)cos(y) + cos(x)sin(y)
cos(x + y) = cos(x) cos(y) – sin(x)sin(y)
tan(x + y) = tan(x) + tan(y)/[1 – tan(x)*tan(y)]

Π­Ρ‚ΠΈ тоТдСства ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΈΠ· Π±ΠΎΠ»Π΅Π΅ Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» слоТСния для синуса ΠΈ косинуса:

sin(x + y)= sin x cos y + cos x sin y
cos (x+y)= cos x cos y – sin x sin y
ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ для получСния ΠΌΠ½ΠΎΠ³ΠΈΡ… Π΄Ρ€ΡƒΠ³ΠΈΡ… тригономСтричСских тоТдСств.

92А)

Π­Ρ‚ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для нахоТдСния Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ для ΡƒΠ³Π»ΠΎΠ², ΠΊΡ€Π°Ρ‚Π½Ρ‹Ρ… ΠΈΠ»ΠΈ Π΄ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π΄Ρ€ΡƒΠ³ΠΈΠΌ ΡƒΠ³Π»Π°ΠΌ. НапримСр, Ссли извСстно Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin60Β°, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для sin(2A), Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin120Β°.

ВригономСтричСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰ΠΈΠ΅ тоТдСства ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½ ΡƒΠ³Π»ΠΎΠ²

ВригономСтрия β€” это Ρ€Π°Π·Π΄Π΅Π» ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, ΠΈΠ·ΡƒΡ‡Π°ΡŽΡ‰ΠΈΠΉ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρƒ ΡƒΠ³Π»Π°ΠΌΠΈ ΠΈ сторонами Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ². НаиболСС распространСнными тригономСтричСскими функциями ΡΠ²Π»ΡΡŽΡ‚ΡΡ синус, косинус ΠΈ тангСнс. Π­Ρ‚ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ мноТСство ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π² Π½Π°ΡƒΠΊΠ΅ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ΅.

ВоТдСства ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой Π½Π°Π±ΠΎΡ€ тригономСтричСских тоТдСств, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΡ… ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ синуса, косинуса ΠΈΠ»ΠΈ тангСнса ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρ‹ ΡƒΠ³Π»Π°. Π­Ρ‚ΠΈ тоТдСства ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для упрощСния Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡.

Π’ΠΎΡ‚ нСсколько ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² тоТдСств ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°:

sin(?/2) = ?( (1 – cos(?)) / 2 )
cos(?/2) = ?( (1 + cos(?) )) / 2 )
tan(?/2) = 1 / ?( (1 – cos(?)) / (1 + cos(?)) )

Π­Ρ‚ΠΈ тоТдСства ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для упрощСния Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΡ… тригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. НапримСр, Ссли Π²Ρ‹ Ρ…ΠΎΡ‚ΠΈΡ‚Π΅ Π½Π°ΠΉΡ‚ΠΈ синус ΡƒΠ³Π»Π° ?, Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ тоТдСство sin(?) = 2sin(?/2)cos(?/2). Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ, Ссли Π²Ρ‹ Π·Π½Π°Π΅Ρ‚Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(?/2), Π½ΠΎ Π½Π΅ Π·Π½Π°Π΅Ρ‚Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sin(?).

ВригономСтричСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ с тоТдСствами Π΄Π²ΠΎΠΉΠ½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ²

Для Π½Π°Ρ‡Π°Π»Π° Π΄Π°Π²Π°ΠΉΡ‚Π΅ вспомним ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ тригономСтричСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ВригономСтричСская функция β€” это функция, которая ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ ΡƒΠ³ΠΎΠ» Π² качСствС Π²Ρ…ΠΎΠ΄Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ Π²ΠΎΠ·Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ сторон ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. НаиболСС распространСнными тригономСтричСскими функциями ΡΠ²Π»ΡΡŽΡ‚ΡΡ синус, косинус ΠΈ тангСнс, хотя ΠΈΡ… Π³ΠΎΡ€Π°Π·Π΄ΠΎ большС.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π΄Π°Π²Π°ΠΉΡ‚Π΅ ΠΏΠ΅Ρ€Π΅ΠΉΠ΄Π΅ΠΌ ΠΊ тоТдСствам с Π΄Π²ΠΎΠΉΠ½Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ. ВоТдСство Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° β€” это тоТдСство, Π²Π΅Ρ€Π½ΠΎΠ΅ для всСх ΡƒΠ³Π»ΠΎΠ². НапримСр, для всСх ΡƒΠ³Π»ΠΎΠ² x Π²Π΅Ρ€Π½ΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ тоТдСство: 92(x) = 1

ВригономСтричСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰ΠΈΠ΅ тоТдСства Ρ‚Ρ€ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°

ΠŸΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅ с тригономСтричСскими функциями Π²Π°ΠΆΠ½ΠΎ ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ пСриодичСскиС. Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‚ΡΡ снова ΠΈ снова. ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” это врСмя, Π·Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ функция повторяСтся. НапримСр, функция косинуса ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ 2pi Ρ€Π°Π΄ΠΈΠ°Π½, Ρ‡Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΎΠ½Π° Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡ‚ΡŒΡΡ ΠΊΠ°ΠΆΠ΄Ρ‹Π΅ 2pi Ρ€Π°Π΄ΠΈΠ°Π½ (ΠΈΠ»ΠΈ 360 градусов).

БущСствуСт ряд Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… тоТдСств с Ρ‚Ρ€ΠΎΠΉΠ½Ρ‹ΠΌΠΈ ΡƒΠ³Π»Π°ΠΌΠΈ, ΠΎ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π²Π°ΠΌ слСдуСт Π·Π½Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅ с тригономСтричСскими функциями. Π­Ρ‚ΠΈ тоТдСства ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для упрощСния ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ для ΠΏΠΎΠΌΠΎΡ‰ΠΈ Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡. 93(?)

ВригономСтричСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ – тоТдСства суммы ΠΈ произвСдСния

Π’ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ тригономСтричСскиС тоТдСства – это уравнСния, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠ΅ тригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ истинныС для всСх Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…, ΠΊΠΎΠ³Π΄Π° ΠΎΠ±Π΅ части равСнства ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹. ВригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Π°ΠΆΠ½Ρ‹ ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ пСриодичСских явлСний, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π΄Ρ€ΡƒΠ³ΠΈΡ… прилоТСниях.

БущСствуСт бСсконСчноС количСство тригономСтричСских тоТдСств, Π½ΠΎ Π΅ΡΡ‚ΡŒ нСсколько особСнно ΠΏΠΎΠ»Π΅Π·Π½Ρ‹Ρ…, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ тоТдСства суммы ΠΈ произвСдСния. Π’ этом Ρ€Π°Π·Π΄Π΅Π»Π΅ ΠΌΡ‹ рассмотрим эти удостовСрСния ΠΈ нСсколько ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΈΡ… использования.

ВоТдСство суммы ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ для Π»ΡŽΠ±Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ² A ΠΈ B Π²Π΅Ρ€Π½ΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ равСнство: ΡƒΠ³Π»Ρ‹. НапримСр, рассмотрим Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ sin(30Β° + 45Β°). Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ тоТдСство суммы, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠ΅Ρ€Π΅ΠΏΠΈΡΠ°Ρ‚ΡŒ это ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

sin(30Β° + 45Β°) = sin30Β°cos45Β° + cos30Β°sin45Β°
= 0,5cos45Β° + 0,866sin45Β°
= 0,7378640776699029…

тоТдСство произвСдСния ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ для Π»ΡŽΠ±Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ² A ΠΈ B Π²Π΅Ρ€Π½ΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

sinAcosB = 1/2[cos(A – B) – cos(A + B)]

Π­Ρ‚ΠΎ тоТдСство ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ. К Π½ΠΈΠΌ относятся синус ΠΈ косинус суммы ΠΈΠ»ΠΈ разности, Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°.

Бинус ΠΈ косинус суммы ΠΈΠ»ΠΈ разности ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ:

sin(A+B) = sinAcosB + cosAsinB 92 A)/cos A) // Π·Π½Π°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Ссли A находится Π² ΠΊΠ²Π°Π΄Ρ€Π°Π½Ρ‚Π΅ I ΠΈΠ»ΠΈ IV,

ВригономСтричСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠ΅ тоТдСства суммы Π² ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅

БущСствуСт мноТСство Ρ„ΠΎΡ€ΠΌΡƒΠ» Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΡ… тоТдСства суммы Π² ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹. Π­Ρ‚ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для упрощСния ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ нСизвСстных ΡƒΠ³Π»ΠΎΠ² ΠΈΠ»ΠΈ сторон Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ³ΠΎ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ. НиТС пСрСчислСны Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… тригономСтричСских Ρ„ΠΎΡ€ΠΌΡƒΠ», Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΡ… тоТдСства суммы ΠΈ произвСдСния:

— ВоТдСство суммы произвСдСния для Sin: sin(A + B) = sinAcosB + cosAsinB
— Π‘ΡƒΠΌΠΌΠ° идСнтичности ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π° для Cos: cos(A + B) = cosAcosB – sinAsinB
— Π€ΠΎΡ€ΠΌΡƒΠ»Π° разности для Sin: sin(A – B) = sinAcosB – cosAsinB
— Π€ΠΎΡ€ΠΌΡƒΠ»Π° разности для Cos: cos(A – B) = cosAcosB + sinAsinB
— Π€ΠΎΡ€ΠΌΡƒΠ»Π° Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° для Sin: sin2A = 2sinAcosA
— Π€ΠΎΡ€ΠΌΡƒΠ»Π° Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° для Cos: cos2A = cos2A – sin2A

ΠžΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ тригономСтричСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹

ΠžΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ тригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡, связанных с ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ΠΌ ΡƒΠ³Π»ΠΎΠ² Π² Ρ€Π°Π΄ΠΈΠ°Π½Π°Ρ… ΠΈΠ»ΠΈ градусах. Π­Ρ‚ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ΡƒΠ³Π»Π°, Π½Π΅ зная Π΄Π»ΠΈΠ½Ρ‹ сторон Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. НаиболСС распространСнными ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹ΠΌΠΈ тригономСтричСскими функциями ΡΠ²Π»ΡΡŽΡ‚ΡΡ:

– арккосинус (acos)
– арксинус (asin)
– арктангСнс (atan)
– котангСнс (cot)
– сСканс (sec)
– синус (sin)
– тангСнс (tan)

ВригономСтричСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠ΅ синус ΠΈ Π—Π°ΠΊΠΎΠ½Ρ‹ косинуса

Π—Π°ΠΊΠΎΠ½Ρ‹ синуса ΠΈ косинуса β€” это Π΄Π²Π΅ тригономСтричСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π½Π°ΠΌ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ нСизвСстныС стороны ΠΈ ΡƒΠ³Π»Ρ‹ Π² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅. Π­Ρ‚ΠΈ Π·Π°ΠΊΠΎΠ½Ρ‹ Π²Π°ΠΆΠ½Ρ‹ для всСх, ΠΊΡ‚ΠΎ ΠΈΠ·ΡƒΡ‡Π°Π΅Ρ‚ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ всСвозмоТныС свойства Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ².

Π—Π°ΠΊΠΎΠ½ синусов гласит:

sin(A)/a = sin(B)/b = sin(C)/c

Π³Π΄Π΅ A, B ΠΈ C β€” ΡƒΠ³Π»Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Π° a, b , c β€” Π΄Π»ΠΈΠ½Ρ‹ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… сторон. Π˜Ρ‚Π°ΠΊ, Ссли ΠΌΡ‹ Π·Π½Π°Π΅ΠΌ Π΄Π²Π° ΡƒΠ³Π»Π° ΠΈ Π΄Π»ΠΈΠ½Ρƒ ΠΎΠ΄Π½ΠΎΠΉ стороны Π² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π·Π°ΠΊΠΎΠ½ синусов для опрСдСлСния Π΄Π»ΠΈΠ½ Π΄Π²ΡƒΡ… Π΄Ρ€ΡƒΠ³ΠΈΡ… сторон. НапримСр, Ссли ΠΌΡ‹ Π·Π½Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΡƒΠ³ΠΎΠ» A Ρ€Π°Π²Π΅Π½ 60 градусам, ΡƒΠ³ΠΎΠ» B Ρ€Π°Π²Π΅Π½ 30 градусам, Π° Π΄Π»ΠΈΠ½Π° стороны a Ρ€Π°Π²Π½Π° 10 Π΅Π΄ΠΈΠ½ΠΈΡ†Π°ΠΌ, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡ‚ΠΈ сторону b ΠΈ сторону c, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ уравнСния:0003

sin(60)/10 = sin(30)/b ~~> b = 5 Π΅Π΄ΠΈΠ½ΠΈΡ†
sin(60)/10 = sin(C)/c ~~> c = 10/sin(60) ~~> c = 16,97 Π΅Π΄ΠΈΠ½ΠΈΡ†

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ тригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ?

ВригономСтричСская функция β€” это функция, ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π°Ρ ΡƒΠ³ΠΎΠ» с ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΡƒΡ… сторон ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. НаиболСС распространСнными тригономСтричСскими функциями ΡΠ²Π»ΡΡŽΡ‚ΡΡ синус, косинус ΠΈ тангСнс.

Бинус ΡƒΠ³Π»Π° – это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ стороны, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡƒΠ³Π»Ρƒ, ΠΊ Π΄Π»ΠΈΠ½Π΅ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹. ΠšΠΎΡΠΈΠ½ΡƒΡΠΎΠΌ ΡƒΠ³Π»Π° называСтся ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ стороны, ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ ΠΊ ΡƒΠ³Π»Ρƒ, ΠΊ Π΄Π»ΠΈΠ½Π΅ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹. ВангСнс ΡƒΠ³Π»Π° – это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ стороны, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ ΡƒΠ³Π»Ρƒ, ΠΊ Π΄Π»ΠΈΠ½Π΅ стороны, ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ ΠΊ ΡƒΠ³Π»Ρƒ.

Π­Ρ‚ΠΈ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡, связанных с Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ нСизвСстных Π΄Π»ΠΈΠ½ ΠΈΠ»ΠΈ ΡƒΠ³Π»ΠΎΠ². ВригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ°Ρ‚ΡŒ Π² Π²ΠΈΠ΄Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ², ΠΈ эти Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡, связанных с пСриодичСским Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ.

Π Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Ρ‚ΠΈΠΏΡ‹ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ‚Ρ€ΠΈ ΠΎΠ±Ρ‰ΠΈΠ΅ тригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ: синус, косинус ΠΈ тангСнс. КаТдая ΠΈΠ· этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ, которая ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для вычислСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… свойств ΡƒΠ³Π»ΠΎΠ².

Бинус (sin): Бинус ΡƒΠ³Π»Π° – это ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ стороны ΠΊ Π΄Π»ΠΈΠ½Π΅ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹.

ΠšΠΎΡΠΈΠ½ΡƒΡ (cos): ΠšΠΎΡΠΈΠ½ΡƒΡΠΎΠΌ ΡƒΠ³Π»Π° называСтся ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΊΠ°Ρ‚Π΅Ρ‚Π° ΠΊ Π΄Π»ΠΈΠ½Π΅ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹.

ВангСнс (tan): ВангСнс ΡƒΠ³Π»Π° прСдставляСт собой ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ стороны ΠΊ Π΄Π»ΠΈΠ½Π΅ ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ стороны.

Π€ΠΎΡ€ΠΌΡƒΠ»Π° для тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Когда ΠΌΡ‹ Π³ΠΎΠ²ΠΎΡ€ΠΈΠΌ ΠΎ тригономСтричСских функциях, ΠΌΡ‹ ΠΈΠΌΠ΅Π΅ΠΌ Π² Π²ΠΈΠ΄Ρƒ Π³Ρ€ΡƒΠΏΠΏΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠΌΠΎΠ³Π°ΡŽΡ‚ Π½Π°ΠΌ ΠΏΠΎΠ½ΡΡ‚ΡŒ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρƒ ΡƒΠ³Π»Π°ΠΌΠΈ ΠΈ сторонами Π² Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°Ρ…. НаиболСС распространСнными тригономСтричСскими функциями ΡΠ²Π»ΡΡŽΡ‚ΡΡ синус, косинус ΠΈ тангСнс, хотя Π΅ΡΡ‚ΡŒ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ (Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ косСканс, сСканс ΠΈ котангСнс). Π­Ρ‚ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Ρ„ΠΎΡ€ΠΌΡƒΠ»:

Бинус (sin): sin(?) = ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΉ / Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π°
ΠšΠΎΡΠΈΠ½ΡƒΡ (cos): cos(?) = смСТный / Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π°
ВангСнс (tan): tan(?) = ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΉ / смСТный

Π­Ρ‚ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π½Π°ΠΌ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ значСния этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ для любого Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π°. НапримСр, Ссли ΠΌΡ‹ Π·Π½Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΡƒΠ³ΠΎΠ» ? Ρ€Π°Π²Π΅Π½ 30Β°, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ это Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π² ΠΊΠ°ΠΆΠ΄ΡƒΡŽ ΠΈΠ· Π²Ρ‹ΡˆΠ΅ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ», Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

sin(30Β°) = ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ / Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π°
=> sin(30Β°) = 0,5 / 1
=> sin(30Β°) = 0,5

cos(30Β°) = смСТный / Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π°
=> cos(30Β°) = ?3/2 / 1
=> cos(30Β°) = ?3/2

tan(30Β°) = ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΉ / смСТный
=> tan(30Β°) = 0,5/?3 / 1
=> tan(

Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅

ВригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½Ρ‹ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ мноТСство ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ΅. Π’ этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΌΡ‹ ΠΊΡ€Π°Ρ‚ΠΊΠΎ ΠΈΠ·Π»ΠΎΠΆΠΈΠ»ΠΈ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² тригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΈΡ… Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹.ΠœΡ‹ надССмся, Ρ‡Ρ‚ΠΎ эта информация оказалась для вас ΠΏΠΎΠ»Π΅Π·Π½ΠΎΠΉ ΠΈ Π²Ρ‹ Π±ΡƒΠ΄Π΅Ρ‚Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π΅Π΅ для дальнСйшСго понимания этих Π²Π°ΠΆΠ½Ρ‹Ρ… ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΉ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

БущСствуСт мноТСство тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, каТдая ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… опрСдСляСтся ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… сторон ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. НаиболСС распространСнными тригономСтричСскими функциями ΡΠ²Π»ΡΡŽΡ‚ΡΡ синус, косинус ΠΈ тангСнс, Π½ΠΎ Π΅ΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΆΠ΅ сСканс, косСканс ΠΈ котангСнс. Π­Ρ‚ΠΈ ΡˆΠ΅ΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ sin, cos, tan, sec, csc ΠΈ cot.

Ѐункция синуса опрСдСляСтся ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ стороны, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡƒΠ³Π»Ρƒ, ΠΊ Π΄Π»ΠΈΠ½Π΅ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹. Ѐункция косинуса опрСдСляСтся ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ стороны, ΠΏΡ€ΠΈΠΌΡ‹ΠΊΠ°ΡŽΡ‰Π΅ΠΉ ΠΊ ΡƒΠ³Π»Ρƒ, ΠΊ Π΄Π»ΠΈΠ½Π΅ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹. ΠšΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ функция опрСдСляСтся ΠΊΠ°ΠΊ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ стороны, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡƒΠ³Π»Ρƒ, ΠΊ Π΄Π»ΠΈΠ½Π΅ стороны, ΠΏΡ€ΠΈΠ»Π΅Π³Π°ΡŽΡ‰Π΅ΠΉ ΠΊ ΡƒΠ³Π»Ρƒ.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ сСканс, косСканс ΠΈΠ»ΠΈ котангСнс, ΠΌΡ‹ Π±Π΅Ρ€Π΅ΠΌ ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ (ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ) Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ синуса, косинуса ΠΈΠ»ΠΈ тангСнса соотвСтствСнно. Π˜Ρ‚Π°ΠΊ, сСканс Ρ€Π°Π²Π΅Π½ 1/синус, косСканс Ρ€Π°Π²Π΅Π½ 1/косинус, Π° котангСнс Ρ€Π°Π²Π΅Π½ 1/тангСнс.

Π’ΠΎΡ‚ нСсколько ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ²:

Sin(30Β°)=0,5, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ 30-60-90 (особый Ρ‚ΠΈΠΏ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Π³Π΄Π΅ всС ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹ 60Β° ΠΈΠ»ΠΈ 90Β°) Π΄Π»ΠΈΠ½Π° стороны, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ 30Β° Β° составляСт ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρƒ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹ Cos(45Β°)=

Как ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ с тригономСтричСскими функциями

Π­Ρ‚ΠΎΡ‚ совСт ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, ΠΊΠ°ΠΊ Π΄ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ с тригономСтричСскими функциями, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π€ΠΎΡ€ΠΌΡƒΠ»Π° Π­ΠΉΠ»Π΅Ρ€Π° .

Как Π΄ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π² Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚ см. Π Π°Π±ΠΎΡ‚Π° с Microsoft Equation.

Π§Ρ‚ΠΎΠ±Ρ‹ Π²ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Π­ΠΉΠ»Π΅Ρ€Π° , Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚Π΅ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ дСйствия:

Π’ Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Π΅

Professional :

Β Β  1.Β Β  Π’ собствСнном ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ Π² Ρ€Π°Π·Π΄Π΅Π»Π΅ Π˜Π½ΡΡ‚Ρ€ΡƒΠΌΠ΅Π½Ρ‚Ρ‹ для Ρ„ΠΎΡ€ΠΌΡƒΠ» , Π½Π° Π²ΠΊΠ»Π°Π΄ΠΊΠ΅ ΠŸΡ€ΠΎΠ΅ΠΊΡ‚ Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠšΠΎΠ½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΠΈ Π½Π°ΠΆΠΌΠΈΡ‚Π΅ ΠΊΠ½ΠΎΠΏΠΊΡƒ Π‘ΠΊΡ€ΠΈΠΏΡ‚ :

Π’ спискС Script Π²Ρ‹Π±Π΅Ρ€ΠΈΡ‚Π΅ Π’Π΅Ρ€Ρ…Π½ΠΈΠΉ индСкс :

Β Β  2. Β Β  Π’ Π±Π°Π·ΠΎΠ²ΠΎΠ΅ ΠΏΠΎΠ»Π΅ сцСнария Π²Π²Π΅Π΄ΠΈΡ‚Π΅ e .

Β Β  3.Β Β  Π’ Π½ΠΈΠΆΠ½Π΅ΠΉ части скрипта Π²Π²Π΅Π΄ΠΈΡ‚Π΅ ix .

Β Β  4.Β Β  Π’Π²Π΅Π΄ΠΈΡ‚Π΅ = .

Β Β  5.Β Β  Π’ Ρ€Π°Π·Π΄Π΅Π»Π΅ Equation Tools Π½Π° Π²ΠΊΠ»Π°Π΄ΠΊΠ΅ Design , Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠšΠΎΠ½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΠΈ Π½Π°ΠΆΠΌΠΈΡ‚Π΅ ΠΊΠ½ΠΎΠΏΠΊΡƒ Ѐункция :

Π’ спискС Ѐункция Π²Ρ‹Π±Π΅Ρ€ΠΈΡ‚Π΅ Ѐункция косинуса :

Β Β  6.Β Β  Π’ Π±Π°Π·ΠΎΠ²ΠΎΠΌ Π±Π»ΠΎΠΊΠ΅ тригономСтричСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Π²Π΅Π΄ΠΈΡ‚Π΅ Ρ… .

Β Β  7.Β Β  Π’Π²Π΅Π΄ΠΈΡ‚Π΅ +i .

Β Β  8.Β Β  Π’ Ρ€Π°Π·Π΄Π΅Π»Π΅ Equation Tools Π½Π° Π²ΠΊΠ»Π°Π΄ΠΊΠ΅ Design , Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠšΠΎΠ½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΠΈ Π½Π°ΠΆΠΌΠΈΡ‚Π΅ ΠΊΠ½ΠΎΠΏΠΊΡƒ Ѐункция ΠΈ Π·Π°Ρ‚Π΅ΠΌ Π² спискС Ѐункция , Π²Ρ‹Π±Π΅Ρ€ΠΈΡ‚Π΅ Π‘ΠΈΠ½ΡƒΡΠΎΠΈΠ΄Π°Π»ΡŒΠ½Π°Ρ функция :

9(ix) ΠΈ Π·Π°Ρ‚Π΅ΠΌ Π½Π°ΠΆΠΌΠΈΡ‚Π΅ ΠΏΡ€ΠΎΠ±Π΅Π».

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *