1 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(30) | |
2 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(45) | |
3 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(30 Π³ΡΠ°Π΄. ) | |
4 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(60 Π³ΡΠ°Π΄. ) | |
5 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | tan(30 Π³ΡΠ°Π΄. ) | |
6 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | arcsin(-1) | |
7 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(pi/6) | |
8 | cos(pi/4) | ||
9 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(45 Π³ΡΠ°Π΄. ) | |
10 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(pi/3) | |
11 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | arctan(-1) | |
12 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos(45 Π³ΡΠ°Π΄. ) | |
13 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos(30 Π³ΡΠ°Π΄. ) | |
14 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | tan(60) | |
15 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | csc(45 Π³ΡΠ°Π΄. ) | |
16 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | tan(60 Π³ΡΠ°Π΄. ) | |
17 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sec(30 Π³ΡΠ°Π΄. ) | |
18 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos(60 Π³ΡΠ°Π΄. ) | |
19 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos(150) | |
20 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(60) | |
21 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos(pi/2) | |
22 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | tan(45 Π³ΡΠ°Π΄. ) | |
23 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | arctan(- ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· 3) | |
24 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | csc(60 Π³ΡΠ°Π΄. ) | |
25 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sec(45 Π³ΡΠ°Π΄. ) | |
26 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | csc(30 Π³ΡΠ°Π΄. ) | |
27 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(0) | |
28 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(120) | |
29 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos(90) | |
30 | ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΈΠ· ΡΠ°Π΄ΠΈΠ°Π½ΠΎΠ² Π² Π³ΡΠ°Π΄ΡΡΡ | pi/3 | |
31 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | tan(30) | |
32 | ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΈΠ· Π³ΡΠ°Π΄ΡΡΠΎΠ² Π² ΡΠ°Π΄ΠΈΠ°Π½Ρ | 45 | |
33 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos(45) | |
34 | Π£ΠΏΡΠΎΡΡΠΈΡΡ | sin(theta)^2+cos(theta)^2 | |
35 | ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΈΠ· ΡΠ°Π΄ΠΈΠ°Π½ΠΎΠ² Π² Π³ΡΠ°Π΄ΡΡΡ | pi/6 | |
36 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cot(30 Π³ΡΠ°Π΄. ) | |
37 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | arccos(-1) | |
38 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | arctan(0) | |
39 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cot(60 Π³ΡΠ°Π΄. ) | |
40 | ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΈΠ· Π³ΡΠ°Π΄ΡΡΠΎΠ² Π² ΡΠ°Π΄ΠΈΠ°Π½Ρ | 30 | |
41 | ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΈΠ· ΡΠ°Π΄ΠΈΠ°Π½ΠΎΠ² Π² Π³ΡΠ°Π΄ΡΡΡ | (2pi)/3 | |
42 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin((5pi)/3) | |
43 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin((3pi)/4) | |
44 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | tan(pi/2) | |
45 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(300) | |
46 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos(30) | |
47 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos(60) | |
48 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos(0) | |
49 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos(135) | |
50 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos((5pi)/3) | |
51 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos(210) | |
52 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sec(60 Π³ΡΠ°Π΄. ) | |
53 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(300 Π³ΡΠ°Π΄. ) | |
54 | ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΈΠ· Π³ΡΠ°Π΄ΡΡΠΎΠ² Π² ΡΠ°Π΄ΠΈΠ°Π½Ρ | 135 | |
55 | ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΈΠ· Π³ΡΠ°Π΄ΡΡΠΎΠ² Π² ΡΠ°Π΄ΠΈΠ°Π½Ρ | 150 | |
56 | ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΈΠ· ΡΠ°Π΄ΠΈΠ°Π½ΠΎΠ² Π² Π³ΡΠ°Π΄ΡΡΡ | (5pi)/6 | |
57 | ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΈΠ· ΡΠ°Π΄ΠΈΠ°Π½ΠΎΠ² Π² Π³ΡΠ°Π΄ΡΡΡ | (5pi)/3 | |
58 | ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΈΠ· Π³ΡΠ°Π΄ΡΡΠΎΠ² Π² ΡΠ°Π΄ΠΈΠ°Π½Ρ | 89 Π³ΡΠ°Π΄. | |
59 | ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΈΠ· Π³ΡΠ°Π΄ΡΡΠΎΠ² Π² ΡΠ°Π΄ΠΈΠ°Π½Ρ | 60 | |
60 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(135 Π³ΡΠ°Π΄. ) | |
61 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(150) | |
62 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(240 Π³ΡΠ°Π΄. ) | |
63 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cot(45 Π³ΡΠ°Π΄. ) | |
64 | ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΈΠ· ΡΠ°Π΄ΠΈΠ°Π½ΠΎΠ² Π² Π³ΡΠ°Π΄ΡΡΡ | (5pi)/4 | |
65 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(225) | |
66 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(240) | |
67 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos(150 Π³ΡΠ°Π΄. ) | |
68 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | tan(45) | |
69 | ΠΡΡΠΈΡΠ»ΠΈΡΡ | sin(30 Π³ΡΠ°Π΄. ) | |
70 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sec(0) | |
71 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos((5pi)/6) | |
72 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | csc(30) | |
73 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | arcsin(( ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· 2)/2) | |
74 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | tan((5pi)/3) | |
75 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | tan(0) | |
76 | ΠΡΡΠΈΡΠ»ΠΈΡΡ | sin(60 Π³ΡΠ°Π΄. ) | |
77 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | arctan(-( ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· 3)/3) | |
78 | ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΈΠ· ΡΠ°Π΄ΠΈΠ°Π½ΠΎΠ² Π² Π³ΡΠ°Π΄ΡΡΡ | (3pi)/4 | |
79 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin((7pi)/4) | |
80 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | arcsin(-1/2) | |
81 | sin((4pi)/3) | ||
82 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | csc(45) | |
83 | Π£ΠΏΡΠΎΡΡΠΈΡΡ | arctan( ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· 3) | |
84 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(135) | |
85 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(105) | |
86 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(150 Π³ΡΠ°Π΄. ) | |
87 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin((2pi)/3) | |
88 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | tan((2pi)/3) | |
89 | ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΈΠ· ΡΠ°Π΄ΠΈΠ°Π½ΠΎΠ² Π² Π³ΡΠ°Π΄ΡΡΡ | pi/4 | |
90 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(pi/2) | |
91 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sec(45) | |
92 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos((5pi)/4) | |
93 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos((7pi)/6) | |
94 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | arcsin(0) | |
95 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin(120 Π³ΡΠ°Π΄. ) | |
96 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | tan((7pi)/6) | |
97 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | cos(270) | |
98 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | sin((7pi)/6) | |
99 | ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ | arcsin(-( ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· 2)/2) | |
100 | ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΈΠ· Π³ΡΠ°Π΄ΡΡΠΎΠ² Π² ΡΠ°Π΄ΠΈΠ°Π½Ρ | 88 Π³ΡΠ°Π΄. |
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°: Π‘ΠΏΡΠ°Π². ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ°: Π‘ΠΏΡΠ°Π². ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ
ΠΠ³Π»Π°Π²Π»Π΅Π½ΠΈΠ΅Π‘ΠΠΠΠ Π Π£Π§ΠΠ©ΠΠΠ‘Π―ΠΠΠΠΠ I. Π§ΠΠ‘ΠΠ Β§ 1. ΠΠ°ΡΡΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π° 2. ΠΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π°Π΄ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΡΠΌΠΈ ΡΠΈΡΠ»Π°ΠΌΠΈ. 3. ΠΠ΅Π»Π΅Π½ΠΈΠ΅ Ρ ΠΎΡΡΠ°ΡΠΊΠΎΠΌ. 4. ΠΡΠΈΠ·Π½Π°ΠΊΠΈ Π΄Π΅Π»ΠΈΠΌΠΎΡΡΠΈ. 5. Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° Π½Π° ΠΏΡΠΎΡΡΡΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ. 6. ΠΠ°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΉ ΠΎΠ±ΡΠΈΠΉ Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΡΡ ΡΠΈΡΠ΅Π». 8. Π£ΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΠ΅ Π±ΡΠΊΠ² Π² Π°Π»Π³Π΅Π±ΡΠ΅. ΠΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅. Β§ 2. Π Π°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π° 10. Π Π°Π²Π΅Π½ΡΡΠ²ΠΎ Π΄ΡΠΎΠ±Π΅ΠΉ. ΠΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π΄ΡΠΎΠ±ΠΈ. Π‘ΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ. 11. ΠΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ. 12. ΠΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π°Π΄ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΠΌΠΈ Π΄ΡΠΎΠ±ΡΠΌΠΈ. 13. ΠΠ΅ΡΡΡΠΈΡΠ½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ. 14. ΠΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π°Π΄ Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠΌΠΈ Π΄ΡΠΎΠ±ΡΠΌΠΈ. 15. ΠΡΠΎΡΠ΅Π½ΡΡ. 16. ΠΠ±ΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π² Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΡΡ Π΄Π΅ΡΡΡΠΈΡΠ½ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΡΡ Π΄ΡΠΎΠ±Ρ. 17. ΠΠ±ΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ Π΄Π΅ΡΡΡΠΈΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π² ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Ρ. 18. ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½Π°Ρ ΠΏΡΡΠΌΠ°Ρ. 19. ΠΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ ΡΠΈΡΠ΅Π». Β§ 3. ΠΠ΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π° 21. ΠΠ΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°. Π§ΠΈΡΠ»ΠΎΠ²Π°Ρ ΠΏΡΡΠΌΠ°Ρ. 22 ΠΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΡΠΈΡΠ»ΠΎΠ²ΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ². 23. Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΠ΅Π». 25. Π§ΠΈΡΠ»ΠΎΠ²ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ. 26. ΠΠΎΠ΄ΡΠ»Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°. 27. Π€ΠΎΡΠΌΡΠ»Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ ΡΠΎΡΠΊΠ°ΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ. 28. ΠΡΠ°Π²ΠΈΠ»Π° Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ Π½Π°Π΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΠΈΡΠ»Π°ΠΌΠΈ. 29. Π‘Π²ΠΎΠΉΡΡΠ²Π° Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ Π½Π°Π΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΠΈΡΠ»Π°ΠΌΠΈ. 30. ΠΡΠΎΠΏΠΎΡΡΠΈΠΈ. 31. Π¦Π΅Π»Π°Ρ ΡΠ°ΡΡΡ ΡΠΈΡΠ»Π°. ΠΡΠΎΠ±Π½Π°Ρ ΡΠ°ΡΡΡ ΡΠΈΡΠ»Π°. 32. Π‘ΡΠ΅ΠΏΠ΅Π½Ρ Ρ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΡΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΌ. 33. Π‘ΡΠ΅ΠΏΠ΅Π½Ρ Ρ Π½ΡΠ»Π΅Π²ΡΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΌ. Π‘ΡΠ΅ΠΏΠ΅Π½Ρ Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ ΡΠ΅Π»ΡΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΌ. 34. Π‘ΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠΉ Π²ΠΈΠ΄ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°. 35. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ. 36. ΠΠΎΡΠ΅Π½Ρ Π½Π΅ΡΠ΅ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΈΠ· ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°. 37. Π‘ΡΠ΅ΠΏΠ΅Π½Ρ Ρ Π΄ΡΠΎΠ±Π½ΡΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΌ. 38. Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΡΠ΅ΠΏΠ΅Π½Π΅ΠΉ Ρ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠΌΠΈ. 39. ΠΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΈΡΠ΅Π». ΠΠ±ΡΠΎΠ»ΡΡΠ½Π°Ρ ΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΠΈ. 40. ΠΠ΅ΡΡΡΠΈΡΠ½ΡΠ΅ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΏΠΎ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΡ ΠΈ ΠΏΠΎ ΠΈΠ·Π±ΡΡΠΊΡ. 41. ΠΡΠ°Π²ΠΈΠ»ΠΎ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ ΠΈΠ· Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°. 42. ΠΠΎΠ½ΡΡΠΈΠ΅ ΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Ρ ΠΈΡΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΌ. 43. Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΡΠ΅ΠΏΠ΅Π½Π΅ΠΉ Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠΌΠΈ. Β§ 4. ΠΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π° 45. ΠΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ Π½Π°Π΄ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠΌΠΈ ΡΠΈΡΠ»Π°ΠΌΠΈ. 46. ΠΠ»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΎΡΠΌΠ° ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°. 47. ΠΡΡΡΠΊΠ°Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. ΠΠΠΠΠ II. ΠΠΠΠΠΠ ΠΠΠ§ΠΠ‘ΠΠΠ ΠΠ«Π ΠΠΠΠΠΠ― 49. ΠΠΎΠΏΡΡΡΠΈΠΌΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ . 50. ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ. Π’ΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ. Β§ 6. Π¦Π΅Π»ΡΠ΅ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ 52. ΠΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Ρ. ΠΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠ² ΠΊ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΌΡ Π²ΠΈΠ΄Ρ. 53. Π€ΠΎΡΠΌΡΠ»Ρ ΡΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ. 54. Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠ² Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ. 3. 112. ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x-m)+n 113. ΠΡΠ°ΡΠΈΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. 114. Π‘ΠΏΠΎΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ 115. ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = f(kx). 116. Π‘ΠΆΠ°ΡΠΈΠ΅ ΠΈ ΡΠ°ΡΡΡΠΆΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ. 117. ΠΡΠ°ΡΠΈΠΊ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΠΠΠΠ IV. Π’Π ΠΠΠ‘Π¦ΠΠΠΠΠΠ’ΠΠ«Π ΠΠ«Π ΠΠΠΠΠΠ― Β§ 12. ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ ΠΏΠΎΠ΄ Π·Π½Π°ΠΊΠΎΠΌ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ° 119. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΏΠΎ Π΄Π°Π½Π½ΠΎΠΌΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ. 120. Π‘Π²ΠΎΠΉΡΡΠ²Π° Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΎΠ². 121. ΠΠ΅ΡΠ΅Ρ ΠΎΠ΄ ΠΊ Π½ΠΎΠ²ΠΎΠΌΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ°. 122. ΠΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅. 123. ΠΠ΅ΡΡΡΠΈΡΠ½ΡΠΉ Π»ΠΎΠ³Π°ΡΠΈΡΠΌ. Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° ΠΈ ΠΌΠ°Π½ΡΠΈΡΡΠ° Π΄Π΅ΡΡΡΠΈΡΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ°. Β§ 13. Π€ΠΎΡΠΌΡΠ»Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ ΠΈ ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Π»Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ 125. Π€ΠΎΡΠΌΡΠ»Ρ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ². 126. Π€ΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ. 127. Π‘ΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ ΡΠΎΠ³ΠΎ ΠΆΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°. 128. Π€ΠΎΡΠΌΡΠ»Ρ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡΠ³Π»Π°. 129. Π€ΠΎΡΠΌΡΠ»Ρ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ. 130. ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠΌΠΌΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π² ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅. 131. ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π² ΡΡΠΌΠΌΡ. 132. ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ a cos t + b sin t ΠΊ Π²ΠΈΠ΄Ρ A sin (t + a). 133. ΠΡΠΈΠΌΠ΅ΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠΠΠΠ V. Π£Π ΠΠΠΠΠΠΠ― Π Π‘ΠΠ‘Π’ΠΠΠ« Π£Π ΠΠΠΠΠΠΠ Β§ 14. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ 135. Π Π°Π²Π½ΠΎΡΠΈΠ»ΡΠ½ΠΎΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. 136. ΠΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. 137. ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. 138. ΠΠ΅ΠΏΠΎΠ»Π½ΡΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. 139. Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΠΈΠ΅ΡΠ°. 140. Π‘ΠΈΡΡΠ΅ΠΌΡ ΠΈ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. 141. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ ΠΏΠΎΠ΄ Π·Π½Π°ΠΊΠΎΠΌ ΠΌΠΎΠ΄ΡΠ»Ρ. 142. ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠΎΡΡΠΎΡΠΎΠ½Π½ΠΈΠ΅ ΠΊΠΎΡΠ½ΠΈ. 143. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅. 144. ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. 145. Π Π°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. 146. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ p(x) = 0 ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ Π΅Π³ΠΎ Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ. 147. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ Π½ΠΎΠ²ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ. 148. ΠΠΈΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. 149. Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. 150. ΠΡΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. 151. ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. 152. ΠΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. 153. ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΠΎ-Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. 154. ΠΡΠΎΡΡΠ΅ΠΉΡΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. 155. ΠΠ΅ΡΠΎΠ΄Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. 156. Π£Π½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½Π°Ρ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠ° (Π΄Π»Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ). 157. ΠΠ΅ΡΠΎΠ΄ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° (Π΄Π»Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ). 158. ΠΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. 159. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠΌ. Β§ 15. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π΄Π²ΡΠΌΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ 161. ΠΡΠ°ΡΠΈΠΊ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π΄Π²ΡΠΌΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ. 162. ΠΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Ρ Π΄Π²ΡΠΌΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ ΠΈ Π΅Π³ΠΎ Π³ΡΠ°ΡΠΈΠΊ. Β§ 16. Π‘ΠΈΡΡΠ΅ΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ 164. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌ Π΄Π²ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ Π΄Π²ΡΠΌΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ. 165. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌ Π΄Π²ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ Π΄Π²ΡΠΌΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ. 167. ΠΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌ Π΄Π²ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ Π΄Π²ΡΠΌΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ. 168. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ Π΄Π²ΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ Π΄Π²ΡΠΌΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ. 169. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌ Π΄Π²ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ Π΄Π²ΡΠΌΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΡ. 170. Π‘ΠΈΡΡΠ΅ΠΌΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΡΡ ΠΈ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. 171. Π‘ΠΈΡΡΠ΅ΠΌΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ Π΄Π²ΡΠΌΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ. 172. Π‘ΠΈΡΡΠ΅ΠΌΡ ΡΡΠ΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ ΡΡΠ΅ΠΌΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ. 173. Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. ΠΠ»Π°Π²Π° VI. ΠΠΠ ΠΠΠΠΠ‘Π’ΠΠ Β§ 17. Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ 175. ΠΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² Ρ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ. 176. ΠΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π° Ρ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ. 177. Π‘ΠΈΡΡΠ΅ΠΌΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² Ρ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ. 178. Π‘ΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² Ρ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ. 179. ΠΡΠΎΠ±Π½ΠΎ-Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°. 180. ΠΠ΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π° Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ. 181. ΠΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ. 182. ΠΠ΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π° Ρ ΠΌΠΎΠ΄ΡΠ»ΡΠΌΠΈ. 183. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ². 184. ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°. 185. ΠΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°. 186. ΠΡΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°. 187. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ². 188. ΠΠ΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π° ΠΈ ΡΠΈΡΡΠ΅ΠΌΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² Ρ Π΄Π²ΡΠΌΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ. Β§ 18. ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² 190. Π‘ΠΈΠ½ΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²Π° Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ². 191. ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΎΡ ΠΏΡΠΎΡΠΈΠ²Π½ΠΎΠ³ΠΎ. 192. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ² ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. ΠΠΠΠΠ VII. ΠΠΠΠΠΠΠ’Π« ΠΠΠ’ΠΠΠΠ’ΠΠ§ΠΠ‘ΠΠΠΠ ΠΠΠΠΠΠΠ Β§ 19. Π§ΠΈΡΠ»ΠΎΠ²ΡΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ 194. Π‘ΠΏΠΎΡΠΎΠ±Ρ Π·Π°Π΄Π°Π½ΠΈΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ. 195. ΠΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ. 196. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ³ΡΠ΅ΡΡΠΈΠΈ. 197. Π‘Π²ΠΎΠΉΡΡΠ²Π° Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ³ΡΠ΅ΡΡΠΈΠΈ 198. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ³ΡΠ΅ΡΡΠΈΠΈ. 199. Π‘Π²ΠΎΠΉΡΡΠ²Π° Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ³ΡΠ΅ΡΡΠΈΠΈ. 200. ΠΠΎΠ½ΡΡΠΈΠ΅ ΠΎ ΠΏΡΠ΅Π΄Π΅Π»Π΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ. 201. ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄Π΅Π»ΠΎΠ² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠ΅ΠΉ. 202. Π‘ΡΠΌΠΌΠ° Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ³ΡΠ΅ΡΡΠΈΠΈ ΠΏΡΠΈ |q| Β§ 20. ΠΡΠ΅Π΄Π΅Π» ΡΡΠ½ΠΊΡΠΈΠΈ 204. ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄Π΅Π»ΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈ Ρ ->ΠΎΠΎ. 205. ΠΡΠ΅Π΄Π΅Π» ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅. ΠΠ΅ΠΏΡΠ΅ΡΡΠ²Π½ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ. 206. ΠΠ΅ΡΡΠΈΠΊΠ°Π»ΡΠ½Π°Ρ Π°ΡΠΈΠΌΠΏΡΠΎΡΠ°. 207. ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄Π΅Π»ΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ Π² ΡΠΎΡΠΊΠ΅. Β§ 21. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΈ Π΅Π΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ 209. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. 210. Π€ΠΎΡΠΌΡΠ»Ρ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ. Π’Π°Π±Π»ΠΈΡΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ . 211. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠΌΠΌΡ, ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ, ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ. 212. Π‘Π»ΠΎΠΆΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΈ Π΅Π΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅. 213. Π€ΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. 214. ΠΡΠΎΡΠ°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΈ Π΅Π΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ». 215. ΠΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ. 216. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π° ΠΌΠΎΠ½ΠΎΡΠΎΠ½Π½ΠΎΡΡΡ. 217. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ. 218. ΠΡΡΡΠΊΠ°Π½ΠΈΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π³ΠΎ ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅. 219. ΠΡΡΡΠΊΠ°Π½ΠΈΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π³ΠΎ ΠΈΠ»ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° Π½Π΅Π·Π°ΠΌΠΊΠ½ΡΡΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅. 220. ΠΠ°Π΄Π°ΡΠΈ Π½Π° ΠΎΡΡΡΠΊΠ°Π½ΠΈΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΡ ΠΈΠ»ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½. 221. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π΄Π»Ρ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²Π° ΡΠΎΠΆΠ΄Π΅ΡΡΠ². 222. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π΄Π»Ρ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²Π° Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ². 223. ΠΠ±ΡΠ°Ρ ΡΡ Π΅ΠΌΠ° ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ. Β§ 22. ΠΠ΅ΡΠ²ΠΎΠΎΠ±ΡΠ°Π·Π½Π°Ρ ΠΈ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» 225. Π’Π°Π±Π»ΠΈΡΠ° ΠΏΠ΅ΡΠ²ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΡ . 226. ΠΡΠ°Π²ΠΈΠ»Π° Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΡ . 227. ΠΠ½ΡΠ΅Π³ΡΠ°Π». 228. Π‘Π²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΠΎΠ² ΠΈ ΠΏΠ΅ΡΠ²ΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΠΉ (ΡΠΎΡΠΌΡΠ»Π° ΠΡΡΡΠΎΠ½Π°βΠΠ΅ΠΉΠ±Π½ΠΈΡΠ°). 229. ΠΡΠ°Π²ΠΈΠ»Π° Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΠΎΠ². 230. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΏΠ»ΠΎΡΠ°Π΄Π΅ΠΉ ΠΏΠ»ΠΎΡΠΊΠΈΡ ΡΠΈΠ³ΡΡ. ΠΠΠΠΠΠ’Π ΠΠ―. ΠΠΠΠΠ I. ΠΠΠΠΠΠ’Π ΠΠ§ΠΠ‘ΠΠΠ Π€ΠΠΠ£Π Π« ΠΠ ΠΠΠΠ‘ΠΠΠ‘Π’Π 2. Π’ΠΎΡΠΊΠ°. ΠΡΡΠΌΠ°Ρ. 3. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ. ΠΠΊΡΠΈΠΎΠΌΡ. Π’Π΅ΠΎΡΠ΅ΠΌΡ. Β§ 2. ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΈΠ³ΡΡ 5. ΠΡΡ. 6. ΠΠΊΡΡΠΆΠ½ΠΎΡΡΡ. ΠΡΡΠ³. 7. ΠΠΎΠ»ΡΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ. 8. Π£Π³ΠΎΠ». ΠΡΠ°Π΄ΡΡΠ½Π°Ρ ΠΌΠ΅ΡΠ° ΡΠ³Π»Π°. 9. Π‘ΠΌΠ΅ΠΆΠ½ΡΠ΅ ΠΈ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅ ΡΠ³Π»Ρ. 10. Π¦Π΅Π½ΡΡΠ°Π»ΡΠ½ΡΠ΅ ΠΈ Π²ΠΏΠΈΡΠ°Π½Π½ΡΠ΅ ΡΠ³Π»Ρ. 11. ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠ΅ ΠΏΡΡΠΌΡΠ΅. 12. ΠΡΠΈΠ·Π½Π°ΠΊΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΏΡΡΠΌΡΡ . 13. ΠΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΡΠ΅ ΠΏΡΡΠΌΡΠ΅. 14. ΠΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ. 15. Π’ΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ. 16. Π Π°Π²Π΅Π½ΡΡΠ²ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ². 17. Π Π°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ. 18. Π‘ΡΠΌΠΌΠ° ΡΠ³Π»ΠΎΠ² ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. 19. ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ. Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΠΈΡΠ°Π³ΠΎΡΠ°. 20. ΠΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, Π²ΠΏΠΈΡΠ°Π½Π½ΡΠ΅ Π² ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΈ ΠΎΠΏΠΈΡΠ°Π½Π½ΡΠ΅ ΠΎΠΊΠΎΠ»ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. Β§ 3. ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ 22. ΠΡΠΎΡΡΠ΅ΠΉΡΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ Π½Π° ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅. 23. ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΌΠ΅ΡΡΠΎ ΡΠΎΡΠ΅ΠΊ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ. Β§ 4. Π§Π΅ΡΡΡΠ΅Ρ ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ 25. ΠΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌ. 26. ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ. Π ΠΎΠΌΠ±. ΠΠ²Π°Π΄ΡΠ°Ρ. 27. Π’ΡΠ°ΠΏΠ΅ΡΠΈΡ. Β§ 5. ΠΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ 29. ΠΡΠΏΡΠΊΠ»ΡΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ. 30. ΠΡΠ°Π²ΠΈΠ»ΡΠ½ΡΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ. 31. ΠΠ»ΠΈΠ½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ. Β§ 6. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² 33. Π‘ΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠΎΡΠΎΠ½Π°ΠΌΠΈ ΠΈ ΡΠ³Π»Π°ΠΌΠΈ Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅. 34. Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ². Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΡΠΈΠ½ΡΡΠΎΠ². 35. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ². Β§ 7. ΠΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠ»ΠΎΡΠΊΠΈΡ ΡΠΈΠ³ΡΡ 37. ΠΠ»ΠΎΡΠ°Π΄ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ². 38. ΠΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ ΡΠΈΠ³ΡΡ. 39. ΠΠ»ΠΎΡΠ°Π΄Ρ ΠΊΡΡΠ³Π°. ΠΠΠΠΠ II. ΠΡΡΠΌΡΠ΅ ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ Β§ 9. ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΡΡΡ ΠΏΡΡΠΌΡΡ ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠ΅ΠΉ 42. ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΡΡΡ ΠΏΡΡΠΌΠΎΠΉ ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ. 43. ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠ΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ. Β§ 10. ΠΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΡΡΡ ΠΏΡΡΠΌΡΡ ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠ΅ΠΉ 45. ΠΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡ ΠΈ Π½Π°ΠΊΠ»ΠΎΠ½Π½Π°Ρ ΠΊ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ. 46. ΠΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΡΡΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠ΅ΠΉ. ΠΠΠΠΠ III. Π’ΠΠΠ Π ΠΠ ΠΠ‘Π’Π ΠΠΠ‘Π’ΠΠ Β§ 11. ΠΠ½ΠΎΠ³ΠΎΠ³ΡΠ°Π½Π½ΠΈΠΊΠΈ 48. ΠΠ½ΠΎΠ³ΠΎΠ³ΡΠ°Π½Π½ΡΠ΅ ΡΠ³Π»Ρ. ΠΠ½ΠΎΠ³ΠΎΠ³ΡΠ°Π½Π½ΠΈΠΊΠΈ. 49. ΠΡΠΈΠ·ΠΌΠ°. ΠΠ°ΡΠ°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄. ΠΡΠ±. 50. ΠΠΈΡΠ°ΠΏΡΠΈΠ΄Π°. 51. ΠΡΠ°Π²ΠΈΠ»ΡΠ½ΡΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΠ³ΡΠ°Π½Π½ΠΈΠΊΠΈ. Β§ 12. Π’Π΅Π»Π° Π²ΡΠ°ΡΠ΅Π½ΠΈΡ 53. ΠΠΎΠ½ΡΡ. 54. Π¨Π°Ρ. Β§ 13. ΠΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΡΡ ΡΠΈΠ³ΡΡ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ 56. ΠΡΡΠΎΠ³ΠΎΠ½Π°Π»ΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅. 57. ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΌΠ΅ΡΡΠΎ ΡΠΎΡΠ΅ΠΊ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅. Β§ 14. ΠΠ±ΡΠ΅ΠΌΡ ΡΠ΅Π» 59. ΠΠ±ΡΠ΅ΠΌ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°, ΠΏΡΠΈΠ·ΠΌΡ ΠΈ ΠΏΠΈΡΠ°ΠΌΠΈΠ΄Ρ. 60. ΠΠ±ΡΠ΅ΠΌ ΡΠΈΠ»ΠΈΠ½Π΄ΡΠ° ΠΈ ΠΊΠΎΠ½ΡΡΠ°. 61. ΠΠ±ΡΠ°Ρ ΡΠΎΡΠΌΡΠ»Π° ΠΎΠ±ΡΠ΅ΠΌΠΎΠ² ΡΠ΅Π» Π²ΡΠ°ΡΠ΅Π½ΠΈΡ. Β§ 15. ΠΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ΅ΠΉ ΡΠ΅Π» 63. ΠΠΎΠ½ΡΡΠΈΠ΅ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ. 64. ΠΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ΅ΠΉ ΡΠ΅Π» Π²ΡΠ°ΡΠ΅Π½ΠΈΡ. ΠΠΠΠΠ IV. ΠΠΠΠΠ Π’ΠΠΠ« ΠΠΠΠ ΠΠΠΠΠ’Π« Β§ 16. ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΠΈ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ 66. ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ ΠΎΡΡΠ΅Π·ΠΊΠ°. Β§ 17. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠΈΠ³ΡΡ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ 68. ΠΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΄Π²ΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠ΅ΠΉ. 69. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ. 70. ΠΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ ΠΈ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ. Β§ 18. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠΈΠ³ΡΡ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ 72. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΡΠ΅ΡΡ. 73. ΠΠ·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΡΠ΅ΡΡ ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ. 74. ΠΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΄Π²ΡΡ ΡΡΠ΅Ρ. ΠΠΠΠΠ V. Π ΠΠΠΠ ΠΠΠΠΠΠΠΠ― Π€ΠΠΠ£Π 76. ΠΠΎΠ½ΡΡΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. Β§ 20. ΠΠΎΠ΄ΠΎΠ±ΠΈΠ΅ ΡΠΈΠ³ΡΡ 78. ΠΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΡΠΈΠ³ΡΡΡ. ΠΠΠΠΠ VI. ΠΠΠΠ’ΠΠ Π« 80. ΠΠΎΠ½ΡΡΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ°. 81. ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΠΊΡΠΎΡΠ°. Β§ 22. ΠΠΏΠ΅ΡΠ°ΡΠΈΠΈ Π½Π°Π΄ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ 83. Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° Π½Π° ΡΠΈΡΠ»ΠΎ. ΠΠΎΠ»Π»ΠΈΠ½Π΅Π°ΡΠ½ΡΠ΅ Π²Π΅ΠΊΡΠΎΡΡ. 84. Π‘ΠΊΠ°Π»ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ². ΠΠ ΠΠΠΠΠΠΠΠ― ΠΠΠΠΠΠ’Π ΠΠ― |
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΎΡΠΌΡΠ» ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΡ
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΎΡΠΌΡΠ» ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΡ
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ β ΡΡΠΎ ΡΠ°Π·Π΄Π΅Π» ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ, ΠΈΠ·ΡΡΠ°ΡΡΠΈΠΉ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠΎΡΠΎΠ½Π°ΠΌΠΈ ΠΈ ΡΠ³Π»Π°ΠΌΠΈ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ². Π‘Π»ΠΎΠ²ΠΎ Β«ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΒ» ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΠΎΡ Π³ΡΠ΅ΡΠ΅ΡΠΊΠΈΡ ΡΠ»ΠΎΠ² Β«ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΒ» ΠΈ Β«ΠΌΠ΅ΡΠ°Β». Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ΅ΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΠ±ΡΡΠ½ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡΡΡ Π±ΡΠΊΠ²Π°ΠΌΠΈ ΡΠΈΠ½ΡΡ (sin), ΠΊΠΎΡΠΈΠ½ΡΡ (cos), ΡΠ°Π½Π³Π΅Π½Ρ (tan), ΠΊΠΎΡΠ΅ΠΊΠ°Π½Ρ (csc), ΡΠ΅ΠΊΠ°Π½Ρ (sec) ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ (cot). ΠΡΠΈ ΡΠ΅ΡΡΡ ΠΈΠ½Π²Π΅ΡΡΠΈΠΉ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ, ΡΠ³Π»Ρ ΠΈ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡ Π΄Π»Ρ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ ΠΏΡΠΈ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ. Π ΡΡΠΎΠΌ ΡΠΎΠΎΠ±ΡΠ΅Π½ΠΈΠΈ Π±Π»ΠΎΠ³Π° ΠΌΡ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠΈ ΡΠ΅ΠΌΡ Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡΠΌΠΈ, ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΠ°ΠΌΠΈ. 92 β 2bc cosA
Π‘ΠΏΠΈΡΠΎΠΊ ΡΠΎΡΠΌΡΠ» ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΡΡΠΎΡΠΎΠ½ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. Π’ΡΠ΅ΠΌΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ ΡΠΈΠ½ΡΡ (sin), ΠΊΠΎΡΠΈΠ½ΡΡ (cos) ΠΈ ΡΠ°Π½Π³Π΅Π½Ρ (tan). ΠΡΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠΌΠ΅ΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅, ΡΠΈΠ·ΠΈΠΊΠ΅, ΡΠ΅Ρ Π½ΠΈΠΊΠ΅ ΠΈ Π΄ΡΡΠ³ΠΈΡ Π½Π°ΡΠΊΠ°Ρ .
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΡΠ΄ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠΎΡΠΌΡΠ» ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π·Π°Π΄Π°Ρ. ΠΠΈΠΆΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ ΡΠΏΠΈΡΠΎΠΊ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ°ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΠΎΡΠΌΡΠ»: 92
Π€ΠΎΡΠΌΡΠ»Ρ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ³Π»ΠΎΠ²: sin(x+y) = sin(x)cos(y)+cos(x)sin(y) ΠΈ cos(x+y)= cos(x)cos(y)-sin( x)sin(y)
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ
Sin, cos ΠΈ tan ΡΠ²Π»ΡΡΡΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ. Π€ΡΠ½ΠΊΡΠΈΡ ΡΠΈΠ½ΡΡΠ°, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΠΌΠ°Ρ ΠΊΠ°ΠΊ sin(?), ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ³Π»Ρ ? Π½Π° Π΄Π»ΠΈΠ½Ρ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ. Π€ΡΠ½ΠΊΡΠΈΡ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΠΌΠ°Ρ ΠΊΠ°ΠΊ cos(?), ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΡΠΈΠ»Π΅Π³Π°ΡΡΠ΅ΠΉ ΠΊ ΡΠ³Π»Ρ ? Π½Π° Π΄Π»ΠΈΠ½Ρ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ. ΠΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΠΌΠ°Ρ tan(?), ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ³Π»Ρ ? ΠΊ ΡΠΎΡΠ΅Π΄Π½Π΅ΠΉ ΡΡΠΎΡΠΎΠ½Π΅.
ΠΠΈΠΆΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ:
1. sin2? + cos2? = 1 β¦β¦β¦β¦β¦β¦β¦β¦β¦.(ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ)
2. cosec2? = 1 + ΡΠ°Π½Π³Π΅Π½Ρ2? β¦β¦β¦β¦β¦β¦β¦β¦. (Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ)
3. ΡΠ΅ΠΊ2? = 1 + Π΄Π΅ΡΡΠΊΠ°Ρ ΠΊΡΠΎΠ²Π°ΡΠΊΠ°2? β¦β¦β¦β¦β¦β¦β¦β¦β¦ (Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ)
4. cosec ? = 1/Π³ΡΠ΅Ρ
? β¦β¦β¦β¦β¦β¦β¦β¦. (ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅)
5. ΡΠ΅ΠΊ ? = 1/cos ? β¦β¦β¦β¦β¦β¦β¦β¦.. (ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅)
6. Π·Π°Π³Π°Ρ ? = 1/Π΄Π΅ΡΡΠΊΠ°Ρ ΠΊΡΠΎΠ²Π°ΡΠΊΠ°? β¦β¦β¦β¦β¦β¦β¦β¦. (ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅)
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΠ΅ Π²Π·Π°ΠΈΠΌΠ½ΡΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΡΠΌΡΠ», Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΡ Π²Π·Π°ΠΈΠΌΠ½ΡΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°. ΠΡΠΎ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°. ΠΠΎΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ²:
1. ΠΠ±ΡΠ°ΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΡΠΈΠ½ΡΡΡ ΡΠ°Π²Π½Π° ΠΊΠΎΡΠ΅ΠΊΠ°Π½ΡΡ:
ΠΠ±ΡΠ°ΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΡΠ°Π²Π½Π° ΡΠ΅ΠΊΠ°Π½ΡΡ:
2. ΠΠ±ΡΠ°ΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠ°Π²Π½Π° ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΡ:
3. ΠΠ±ΡΠ°ΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΡΠ°Π²Π½Π° ΡΠΈΠ½ΡΡΡ:
ΠΊΠΎΡΠΈΠ½ΡΡ:
5. ΠΠ±ΡΠ°ΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΊΠΎΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠ°Π²Π½Π° ΡΠ°Π½Π³Π΅Π½ΡΡ:
ΠΡΠΈ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΠΎΠ±ΡΠ°ΡΠ½ΡΠΌΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π°ΠΌΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΏΠΎΠ»Π΅Π·Π½Ρ ΠΏΡΠΈ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ Π²Π°ΠΌ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ sin15Β°, Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠΎΡ ΡΠ°ΠΊΡ, ΡΡΠΎ sin15Β° = 1/2, Π° Π·Π°ΡΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ Π΄Π»Ρ ΡΠΈΠ½ΡΡΠ°, ΡΡΠΎΠ±Ρ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π΅Π³ΠΎ ΠΊΠ°ΠΊ 2sinx=1. ΠΠ°ΡΠ΅ΠΌ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π½Π°ΠΉΡΠΈ x, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ Π±Π°Π·ΠΎΠ²ΡΡ Π°Π»Π³Π΅Π±ΡΡ, ΠΈ Π½Π°ΠΉΡΠΈ, ΡΡΠΎ x = 30Β°.
Π’Π°Π±Π»ΠΈΡΠ° ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΡΡΠΎΡΠΎΠ½ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Π½Π΅ Π·Π°Π²ΠΈΡΡΡ ΠΎΡ ΡΠ°Π·ΠΌΠ΅ΡΠ° ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°:
Π‘ΠΈΠ½ΡΡ (sin) = ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π΅/Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π°
ΠΠΎΡΠΈΠ½ΡΡ (cos) = ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅Π΅/Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π°
Π’Π°Π½Π³Π΅Π½Ρ (tan) = ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ΅/ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅Π΅
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° (Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ ) )
1. sin(x+y) = sin x cos y + cos x sin y 92 Π³ΠΎΠ΄Π°
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΠΊΠΎΡΡΠ½ΠΊΡΠΈΠΉ (Π² Π³ΡΠ°Π΄ΡΡΠ°Ρ )
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΡΠΌΡΠ», Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΠΊΠΎΡΡΠ½ΠΊΡΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ Π²Π°ΠΆΠ½ΠΎ Π·Π½Π°ΡΡ ΠΏΡΠΈ ΡΠ°Π±ΠΎΡΠ΅ ΡΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΡΠΌΠΈ. Π Π½ΠΈΠΌ ΠΎΡΠ½ΠΎΡΡΡΡΡ:
β sin(90Β° β x) = cos(x)
β cos(90Β° β x) = sin(x)
β tan(90Β° β x) = cot(x)
ΠΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· ΡΡΠΈ ΡΠΎΡΠΌΡΠ»Ρ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ²Π΅ΡΡΠΈ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠΎΡΡΠ½ΠΊΡΠΈΠΈ: f(x) = 1/f(?/2 β x). ΠΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΡΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, Π»Π΅Π³ΠΊΠΎ ΡΠ²ΠΈΠ΄Π΅ΡΡ, ΠΊΠ°ΠΊ ΡΠ°Π±ΠΎΡΠ°ΡΡ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ Π²ΡΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ Π½Π° ΠΏΠ΅ΡΠ²ΡΡ ΡΠΎΡΠΌΡΠ»Ρ: sin(90Β° β x) = cos(x). ΠΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π½Π°ΡΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡ ΠΏΠΎΡΡΠ΄ΠΎΠΊ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ: cos(x) = 1/sin(?/2 β x). ΠΡΡΡΠ΄Π° ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ 90Β° Π½Π° ?/2 ΠΈ ΡΠΏΡΠΎΡΡΠΈΡΡ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΎΠΊΠΎΠ½ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ.
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΡΡΠΌΠΌΡ ΠΈ ΡΠ°Π·Π½ΠΎΡΡΠΈ
ΠΡΠΈ ΡΠ°Π±ΠΎΡΠ΅ Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π·Π½Π°ΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ². ΠΡΠΈ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°, Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΠ΅ ΡΡΠΌΠΌΡ ΠΈ ΡΠ°Π·Π½ΠΎΡΡΠΈ, ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΎΡΠ΅Π½Ρ ΠΏΠΎΠ»Π΅Π·Π½Ρ ΠΏΡΠΈ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
ΠΠΎΡ ΡΠ°ΠΌΡΠ΅ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΡΡΠΌΠΌΡ ΠΈ ΡΠ°Π·Π½ΠΎΡΡΠΈ:
sin(x + y) = sin(x)cos(y) + cos(x)sin(y)
cos(x + y) = cos(x) cos(y) β sin(x)sin(y)
tan(x + y) = tan(x) + tan(y)/[1 β tan(x)*tan(y)]
ΠΡΠΈ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΈΠ· Π±ΠΎΠ»Π΅Π΅ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ ΡΠΎΡΠΌΡΠ» ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ ΡΠΈΠ½ΡΡΠ° ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ°:
sin(x + y)= sin x cos y + cos x sin y
cos (x+y)= cos x cos y β sin x sin y
ΠΈ ΠΌΠΎΠΆΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΌΠ½ΠΎΠ³ΠΈΡ
Π΄ΡΡΠ³ΠΈΡ
ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΎΠΆΠ΄Π΅ΡΡΠ².
ΠΡΠΈ ΡΠΎΡΠΌΡΠ»Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π΄Π»Ρ ΡΠ³Π»ΠΎΠ², ΠΊΡΠ°ΡΠ½ΡΡ ΠΈΠ»ΠΈ Π΄ΠΎΠ»ΡΠ½ΡΡ Π΄ΡΡΠ³ΠΈΠΌ ΡΠ³Π»Π°ΠΌ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ sin60Β°, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ sin(2A), ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ sin120Β°.
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΠΈΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½ ΡΠ³Π»ΠΎΠ²
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ β ΡΡΠΎ ΡΠ°Π·Π΄Π΅Π» ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ, ΠΈΠ·ΡΡΠ°ΡΡΠΈΠΉ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ³Π»Π°ΠΌΠΈ ΠΈ ΡΡΠΎΡΠΎΠ½Π°ΠΌΠΈ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ². ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΠΌΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ ΡΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ ΠΈ ΡΠ°Π½Π³Π΅Π½Ρ. ΠΡΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠΌΠ΅ΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π² Π½Π°ΡΠΊΠ΅ ΠΈ ΡΠ΅Ρ Π½ΠΈΠΊΠ΅.
Π’ΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ Π½Π°Π±ΠΎΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ², Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΠΈΠ»ΠΈ ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρ ΡΠ³Π»Π°. ΠΡΠΈ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ.
ΠΠΎΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² ΡΠΎΠΆΠ΄Π΅ΡΡΠ² ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π°:
sin(?/2) = ?( (1 β cos(?)) / 2 )
cos(?/2) = ?( (1 + cos(?) )) / 2 )
tan(?/2) = 1 / ?( (1 β cos(?)) / (1 + cos(?)) )
ΠΡΠΈ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ Π²Ρ Ρ ΠΎΡΠΈΡΠ΅ Π½Π°ΠΉΡΠΈ ΡΠΈΠ½ΡΡ ΡΠ³Π»Π° ?, Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ sin(?) = 2sin(?/2)cos(?/2). ΠΡΠΎ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ, Π΅ΡΠ»ΠΈ Π²Ρ Π·Π½Π°Π΅ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ sin(?/2), Π½ΠΎ Π½Π΅ Π·Π½Π°Π΅ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ sin(?).
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ Ρ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°ΠΌΠΈ Π΄Π²ΠΎΠΉΠ½ΡΡ ΡΠ³Π»ΠΎΠ²
ΠΠ»Ρ Π½Π°ΡΠ°Π»Π° Π΄Π°Π²Π°ΠΉΡΠ΅ Π²ΡΠΏΠΎΠΌΠ½ΠΈΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΡΠ³ΠΎΠ» Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π²Ρ ΠΎΠ΄Π½ΡΡ Π΄Π°Π½Π½ΡΡ ΠΈ Π²ΠΎΠ·Π²ΡΠ°ΡΠ°Π΅Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΠΌΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ ΡΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ ΠΈ ΡΠ°Π½Π³Π΅Π½Ρ, Ρ ΠΎΡΡ ΠΈΡ Π³ΠΎΡΠ°Π·Π΄ΠΎ Π±ΠΎΠ»ΡΡΠ΅.
Π’Π΅ΠΏΠ΅ΡΡ Π΄Π°Π²Π°ΠΉΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΉΠ΄Π΅ΠΌ ΠΊ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π°ΠΌ Ρ Π΄Π²ΠΎΠΉΠ½ΡΠΌ ΡΠ³Π»ΠΎΠΌ. Π’ΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡΠ³Π»Π° β ΡΡΠΎ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ, Π²Π΅ΡΠ½ΠΎΠ΅ Π΄Π»Ρ Π²ΡΠ΅Ρ ΡΠ³Π»ΠΎΠ². ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ Π²ΡΠ΅Ρ ΡΠ³Π»ΠΎΠ² x Π²Π΅ΡΠ½ΠΎ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ: 92(x) = 1
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΠΈΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΡΡΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡΠ³Π»Π°
ΠΡΠΈ ΡΠ°Π±ΠΎΡΠ΅ Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ Π²Π°ΠΆΠ½ΠΎ ΠΏΠΎΠΌΠ½ΠΈΡΡ, ΡΡΠΎ ΠΎΠ½ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅. ΠΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΠΎΠ½ΠΈ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ ΡΠ½ΠΎΠ²Π° ΠΈ ΡΠ½ΠΎΠ²Π°. ΠΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ Π²ΡΠ΅ΠΌΡ, Π·Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΡΡΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΡΠ½ΠΊΡΠΈΡ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ 2pi ΡΠ°Π΄ΠΈΠ°Π½, ΡΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΠΎΠ½Π° Π±ΡΠ΄Π΅Ρ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ ΠΊΠ°ΠΆΠ΄ΡΠ΅ 2pi ΡΠ°Π΄ΠΈΠ°Π½ (ΠΈΠ»ΠΈ 360 Π³ΡΠ°Π΄ΡΡΠΎΠ²).
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΡΠ΄ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ² Ρ ΡΡΠΎΠΉΠ½ΡΠΌΠΈ ΡΠ³Π»Π°ΠΌΠΈ, ΠΎ ΠΊΠΎΡΠΎΡΡΡ Π²Π°ΠΌ ΡΠ»Π΅Π΄ΡΠ΅Ρ Π·Π½Π°ΡΡ ΠΏΡΠΈ ΡΠ°Π±ΠΎΡΠ΅ Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ. ΠΡΠΈ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ Π΄Π»Ρ ΠΏΠΎΠΌΠΎΡΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ. 93(?)
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ β ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΡΡΠΌΠΌΡ ΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ
Π ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° β ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΠΈΡΡΠΈΠ½Π½ΡΠ΅ Π΄Π»Ρ Π²ΡΠ΅Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π²ΡΡΡΠ΅ΡΠ°ΡΡΠΈΡ ΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ , ΠΊΠΎΠ³Π΄Π° ΠΎΠ±Π΅ ΡΠ°ΡΡΠΈ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ. Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π²Π°ΠΆΠ½Ρ ΠΏΡΠΈ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠΈ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ²Π»Π΅Π½ΠΈΠΉ, Π° ΡΠ°ΠΊΠΆΠ΅ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ Π΄ΡΡΠ³ΠΈΡ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡΡ .
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ², Π½ΠΎ Π΅ΡΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ ΠΏΠΎΠ»Π΅Π·Π½ΡΡ , Π²ΠΊΠ»ΡΡΠ°Ρ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΡΡΠΌΠΌΡ ΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ. Π ΡΡΠΎΠΌ ΡΠ°Π·Π΄Π΅Π»Π΅ ΠΌΡ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠΈ ΡΠ΄ΠΎΡΡΠΎΠ²Π΅ΡΠ΅Π½ΠΈΡ ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ.
Π’ΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ ΡΡΠΌΠΌΡ ΡΡΠ²Π΅ΡΠΆΠ΄Π°Π΅Ρ, ΡΡΠΎ Π΄Π»Ρ Π»ΡΠ±ΡΡ ΡΠ³Π»ΠΎΠ² A ΠΈ B Π²Π΅ΡΠ½ΠΎ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ: ΡΠ³Π»Ρ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ sin(30Β° + 45Β°). ΠΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ ΡΡΠΌΠΌΡ, ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠ΅ΡΠ΅ΠΏΠΈΡΠ°ΡΡ ΡΡΠΎ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
sin(30Β° + 45Β°) = sin30Β°cos45Β° + cos30Β°sin45Β°
= 0,5cos45Β° + 0,866sin45Β°
= 0,7378640776699029β¦
ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΡΠ²Π΅ΡΠΆΠ΄Π°Π΅Ρ, ΡΡΠΎ Π΄Π»Ρ Π»ΡΠ±ΡΡ ΡΠ³Π»ΠΎΠ² A ΠΈ B Π²Π΅ΡΠ½ΠΎ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
sinAcosB = 1/2[cos(A β B) β cos(A + B)]
ΠΡΠΎ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌ. Π Π½ΠΈΠΌ ΠΎΡΠ½ΠΎΡΡΡΡΡ ΡΠΈΠ½ΡΡ ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡ ΡΡΠΌΠΌΡ ΠΈΠ»ΠΈ ΡΠ°Π·Π½ΠΎΡΡΠΈ, ΡΠΎΡΠΌΡΠ»Ρ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡΠ³Π»Π° ΠΈ ΡΠΎΡΠΌΡΠ»Π° ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π°.
Π‘ΠΈΠ½ΡΡ ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡ ΡΡΠΌΠΌΡ ΠΈΠ»ΠΈ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΠΎ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΡΠΎΡΠΌΡΠ»Π°ΠΌ:
sin(A+B) = sinAcosB + cosAsinB 92 A)/cos A) // Π·Π½Π°ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ, Π΅ΡΠ»ΠΈ A Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² ΠΊΠ²Π°Π΄ΡΠ°Π½ΡΠ΅ I ΠΈΠ»ΠΈ IV,
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΡΡΠΌΠΌΡ Π² ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΎΡΠΌΡΠ» ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΠΈ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΡΡΠΌΠΌΡ Π² ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ. ΠΡΠΈ ΡΠΎΡΠΌΡΠ»Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ, ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ ΡΠ³Π»ΠΎΠ² ΠΈΠ»ΠΈ ΡΡΠΎΡΠΎΠ½ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ³ΠΎ Π΄ΡΡΠ³ΠΎΠ³ΠΎ. ΠΠΈΠΆΠ΅ ΠΏΠ΅ΡΠ΅ΡΠΈΡΠ»Π΅Π½Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ°ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΡΠΌΡΠ», Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΡ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π° ΡΡΠΌΠΌΡ ΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ:
— Π’ΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ ΡΡΠΌΠΌΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π΄Π»Ρ Sin: sin(A + B) = sinAcosB + cosAsinB
— Π‘ΡΠΌΠΌΠ° ΠΈΠ΄Π΅Π½ΡΠΈΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΠ° Π΄Π»Ρ Cos: cos(A + B) = cosAcosB β sinAsinB
— Π€ΠΎΡΠΌΡΠ»Π° ΡΠ°Π·Π½ΠΎΡΡΠΈ Π΄Π»Ρ Sin: sin(A β B) = sinAcosB β cosAsinB
— Π€ΠΎΡΠΌΡΠ»Π° ΡΠ°Π·Π½ΠΎΡΡΠΈ Π΄Π»Ρ Cos: cos(A β B) = cosAcosB + sinAsinB
— Π€ΠΎΡΠΌΡΠ»Π° Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡΠ³Π»Π° Π΄Π»Ρ Sin: sin2A = 2sinAcosA
— Π€ΠΎΡΠΌΡΠ»Π° Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡΠ³Π»Π° Π΄Π»Ρ Cos: cos2A = cos2A β sin2A
ΠΠ±ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ
ΠΠ±ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ, ΡΠ²ΡΠ·Π°Π½Π½ΡΡ Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ³Π»ΠΎΠ² Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ ΠΈΠ»ΠΈ Π³ΡΠ°Π΄ΡΡΠ°Ρ . ΠΡΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠ³Π»Π°, Π½Π΅ Π·Π½Π°Ρ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΠΌΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΡΠΌΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ:
β Π°ΡΠΊΠΊΠΎΡΠΈΠ½ΡΡ (acos)
β Π°ΡΠΊΡΠΈΠ½ΡΡ (asin)
β Π°ΡΠΊΡΠ°Π½Π³Π΅Π½Ρ (atan)
β ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ (cot)
β ΡΠ΅ΠΊΠ°Π½Ρ (sec)
β ΡΠΈΠ½ΡΡ (sin)
β ΡΠ°Π½Π³Π΅Π½Ρ (tan)
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΠ΅ ΡΠΈΠ½ΡΡ ΠΈ ΠΠ°ΠΊΠΎΠ½Ρ ΠΊΠΎΡΠΈΠ½ΡΡΠ°
ΠΠ°ΠΊΠΎΠ½Ρ ΡΠΈΠ½ΡΡΠ° ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ° β ΡΡΠΎ Π΄Π²Π΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π½Π°ΠΌ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΈ ΡΠ³Π»Ρ Π² ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅. ΠΡΠΈ Π·Π°ΠΊΠΎΠ½Ρ Π²Π°ΠΆΠ½Ρ Π΄Π»Ρ Π²ΡΠ΅Ρ , ΠΊΡΠΎ ΠΈΠ·ΡΡΠ°Π΅Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΎΠ½ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π²ΡΡΠΈΡΠ»ΡΡΡ Π²ΡΠ΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ².
ΠΠ°ΠΊΠΎΠ½ ΡΠΈΠ½ΡΡΠΎΠ² Π³Π»Π°ΡΠΈΡ:
sin(A)/a = sin(B)/b = sin(C)/c
Π³Π΄Π΅ A, B ΠΈ C β ΡΠ³Π»Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, Π° a, b , c β Π΄Π»ΠΈΠ½Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ ΡΡΠΎΡΠΎΠ½. ΠΡΠ°ΠΊ, Π΅ΡΠ»ΠΈ ΠΌΡ Π·Π½Π°Π΅ΠΌ Π΄Π²Π° ΡΠ³Π»Π° ΠΈ Π΄Π»ΠΈΠ½Ρ ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ Π² ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅, ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π·Π°ΠΊΠΎΠ½ ΡΠΈΠ½ΡΡΠΎΠ² Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄Π»ΠΈΠ½ Π΄Π²ΡΡ Π΄ΡΡΠ³ΠΈΡ ΡΡΠΎΡΠΎΠ½. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ ΠΌΡ Π·Π½Π°Π΅ΠΌ, ΡΡΠΎ ΡΠ³ΠΎΠ» A ΡΠ°Π²Π΅Π½ 60 Π³ΡΠ°Π΄ΡΡΠ°ΠΌ, ΡΠ³ΠΎΠ» B ΡΠ°Π²Π΅Π½ 30 Π³ΡΠ°Π΄ΡΡΠ°ΠΌ, Π° Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ a ΡΠ°Π²Π½Π° 10 Π΅Π΄ΠΈΠ½ΠΈΡΠ°ΠΌ, ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡΠΈ ΡΡΠΎΡΠΎΠ½Ρ b ΠΈ ΡΡΠΎΡΠΎΠ½Ρ c, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:0003
sin(60)/10 = sin(30)/b ~~> b = 5 Π΅Π΄ΠΈΠ½ΠΈΡ
sin(60)/10 = sin(C)/c ~~> c = 10/sin(60) ~~> c = 16,97 Π΅Π΄ΠΈΠ½ΠΈΡ
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ?
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ, ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠ°Ρ ΡΠ³ΠΎΠ» Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΡΡ ΡΡΠΎΡΠΎΠ½ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΠΌΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ ΡΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ ΠΈ ΡΠ°Π½Π³Π΅Π½Ρ.
Π‘ΠΈΠ½ΡΡ ΡΠ³Π»Π° β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ³Π»Ρ, ΠΊ Π΄Π»ΠΈΠ½Π΅ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ. ΠΠΎΡΠΈΠ½ΡΡΠΎΠΌ ΡΠ³Π»Π° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅ΠΉ ΠΊ ΡΠ³Π»Ρ, ΠΊ Π΄Π»ΠΈΠ½Π΅ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ. Π’Π°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅ΠΉ ΡΠ³Π»Ρ, ΠΊ Π΄Π»ΠΈΠ½Π΅ ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅ΠΉ ΠΊ ΡΠ³Π»Ρ.
ΠΡΠΈ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ, ΡΠ²ΡΠ·Π°Π½Π½ΡΡ Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°ΠΌΠΈ, ΡΠ°ΠΊΠΈΡ ΠΊΠ°ΠΊ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ Π΄Π»ΠΈΠ½ ΠΈΠ»ΠΈ ΡΠ³Π»ΠΎΠ². Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ°ΡΡ Π² Π²ΠΈΠ΄Π΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ², ΠΈ ΡΡΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ, ΡΠ²ΡΠ·Π°Π½Π½ΡΡ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ.
Π Π°Π·Π»ΠΈΡΠ½ΡΠ΅ ΡΠΈΠΏΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
Π‘ΡΡΠ΅ΡΡΠ²ΡΡΡ ΡΡΠΈ ΠΎΠ±ΡΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ: ΡΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ ΠΈ ΡΠ°Π½Π³Π΅Π½Ρ. ΠΠ°ΠΆΠ΄Π°Ρ ΠΈΠ· ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΡΠΎΡΠΌΡΠ»Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠ²ΠΎΠΉΡΡΠ² ΡΠ³Π»ΠΎΠ².
Π‘ΠΈΠ½ΡΡ (sin): Π‘ΠΈΠ½ΡΡ ΡΠ³Π»Π° β ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ ΠΊ Π΄Π»ΠΈΠ½Π΅ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ.
ΠΠΎΡΠΈΠ½ΡΡ (cos): ΠΠΎΡΠΈΠ½ΡΡΠΎΠΌ ΡΠ³Π»Π° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ° ΠΊ Π΄Π»ΠΈΠ½Π΅ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ.
Π’Π°Π½Π³Π΅Π½Ρ (tan): Π’Π°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ ΠΊ Π΄Π»ΠΈΠ½Π΅ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅ΠΉ ΡΡΠΎΡΠΎΠ½Ρ.
Π€ΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΠΎΠ³Π΄Π° ΠΌΡ Π³ΠΎΠ²ΠΎΡΠΈΠΌ ΠΎ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΡΡ , ΠΌΡ ΠΈΠΌΠ΅Π΅ΠΌ Π² Π²ΠΈΠ΄Ρ Π³ΡΡΠΏΠΏΡ ΡΡΠ½ΠΊΡΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠΌΠΎΠ³Π°ΡΡ Π½Π°ΠΌ ΠΏΠΎΠ½ΡΡΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ³Π»Π°ΠΌΠΈ ΠΈ ΡΡΠΎΡΠΎΠ½Π°ΠΌΠΈ Π² ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°Ρ . ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΠΌΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ ΡΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ ΠΈ ΡΠ°Π½Π³Π΅Π½Ρ, Ρ ΠΎΡΡ Π΅ΡΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ (ΡΠ°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ ΠΊΠΎΡΠ΅ΠΊΠ°Π½Ρ, ΡΠ΅ΠΊΠ°Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ). ΠΡΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΡ ΡΠΎΡΠΌΡΠ»:
Π‘ΠΈΠ½ΡΡ (sin): sin(?) = ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΉ / Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π°
ΠΠΎΡΠΈΠ½ΡΡ (cos): cos(?) = ΡΠΌΠ΅ΠΆΠ½ΡΠΉ / Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π°
Π’Π°Π½Π³Π΅Π½Ρ (tan): tan(?) = ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΉ / ΡΠΌΠ΅ΠΆΠ½ΡΠΉ
ΠΡΠΈ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π½Π°ΠΌ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ³Π»Π°. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ ΠΌΡ Π·Π½Π°Π΅ΠΌ, ΡΡΠΎ ΡΠ³ΠΎΠ» ? ΡΠ°Π²Π΅Π½ 30Β°, ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π² ΠΊΠ°ΠΆΠ΄ΡΡ ΠΈΠ· Π²ΡΡΠ΅ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΡ ΡΠΎΡΠΌΡΠ», ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ:
sin(30Β°) = ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΡΡΡ / Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π°
=> sin(30Β°) = 0,5 / 1
=> sin(30Β°) = 0,5
cos(30Β°) = ΡΠΌΠ΅ΠΆΠ½ΡΠΉ / Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π°
=> cos(30Β°) = ?3/2 / 1
=> cos(30Β°) = ?3/2
tan(30Β°) = ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΉ / ΡΠΌΠ΅ΠΆΠ½ΡΠΉ
=> tan(30Β°) = 0,5/?3 / 1
=> tan(
ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΡΠ΅Π½Ρ Π²Π°ΠΆΠ½Ρ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΠΈ ΠΈΠΌΠ΅ΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π² ΡΠΈΠ·ΠΈΠΊΠ΅ ΠΈ ΡΠ΅Ρ Π½ΠΈΠΊΠ΅. Π ΡΡΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΠΌΡ ΠΊΡΠ°ΡΠΊΠΎ ΠΈΠ·Π»ΠΎΠΆΠΈΠ»ΠΈ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΈΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΈ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ.ΠΡ Π½Π°Π΄Π΅Π΅ΠΌΡΡ, ΡΡΠΎ ΡΡΠ° ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΎΠΊΠ°Π·Π°Π»Π°ΡΡ Π΄Π»Ρ Π²Π°Ρ ΠΏΠΎΠ»Π΅Π·Π½ΠΎΠΉ ΠΈ Π²Ρ Π±ΡΠ΄Π΅ΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΅Π΅ Π΄Π»Ρ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π³ΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ ΡΡΠΈΡ Π²Π°ΠΆΠ½ΡΡ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΠΉ.
ΠΡΠΈΠΌΠ΅ΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ, ΠΊΠ°ΠΆΠ΄Π°Ρ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π²ΡΡ ΡΡΠΎΡΠΎΠ½ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΠΌΠΈ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ ΡΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ ΠΈ ΡΠ°Π½Π³Π΅Π½Ρ, Π½ΠΎ Π΅ΡΡΡ ΡΠ°ΠΊΠΆΠ΅ ΡΠ΅ΠΊΠ°Π½Ρ, ΠΊΠΎΡΠ΅ΠΊΠ°Π½Ρ ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ. ΠΡΠΈ ΡΠ΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡΡΡ ΠΊΠ°ΠΊ sin, cos, tan, sec, csc ΠΈ cot.
Π€ΡΠ½ΠΊΡΠΈΡ ΡΠΈΠ½ΡΡΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ³Π»Ρ, ΠΊ Π΄Π»ΠΈΠ½Π΅ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ. Π€ΡΠ½ΠΊΡΠΈΡ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΡΠΈΠΌΡΠΊΠ°ΡΡΠ΅ΠΉ ΠΊ ΡΠ³Π»Ρ, ΠΊ Π΄Π»ΠΈΠ½Π΅ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ. ΠΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ³Π»Ρ, ΠΊ Π΄Π»ΠΈΠ½Π΅ ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΡΠΈΠ»Π΅Π³Π°ΡΡΠ΅ΠΉ ΠΊ ΡΠ³Π»Ρ.
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΠ΅ΠΊΠ°Π½Ρ, ΠΊΠΎΡΠ΅ΠΊΠ°Π½Ρ ΠΈΠ»ΠΈ ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ, ΠΌΡ Π±Π΅ΡΠ΅ΠΌ ΠΎΠ±ΡΠ°ΡΠ½ΡΡ (ΠΎΠ±ΡΠ°ΡΠ½ΡΡ) Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΠΈΠ»ΠΈ ΡΠ°Π½Π³Π΅Π½ΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. ΠΡΠ°ΠΊ, ΡΠ΅ΠΊΠ°Π½Ρ ΡΠ°Π²Π΅Π½ 1/ΡΠΈΠ½ΡΡ, ΠΊΠΎΡΠ΅ΠΊΠ°Π½Ρ ΡΠ°Π²Π΅Π½ 1/ΠΊΠΎΡΠΈΠ½ΡΡ, Π° ΠΊΠΎΡΠ°Π½Π³Π΅Π½Ρ ΡΠ°Π²Π΅Π½ 1/ΡΠ°Π½Π³Π΅Π½Ρ.
ΠΠΎΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ²:
Sin(30Β°)=0,5, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ 30-60-90 (ΠΎΡΠΎΠ±ΡΠΉ ΡΠΈΠΏ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, Π³Π΄Π΅ Π²ΡΠ΅ ΡΠ³Π»Ρ ΡΠ°Π²Π½Ρ 60Β° ΠΈΠ»ΠΈ 90Β°) Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ 30Β° Β° ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ Cos(45Β°)=
ΠΠ°ΠΊ ΡΠΎΡΡΠ°Π²ΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ
ΠΡΠΎΡ ΡΠΎΠ²Π΅Ρ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΠΊΠ°ΠΊ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π€ΠΎΡΠΌΡΠ»Π° ΠΠΉΠ»Π΅ΡΠ° .
ΠΠ°ΠΊ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π² Π΄ΠΎΠΊΡΠΌΠ΅Π½Ρ ΡΠΌ. Π Π°Π±ΠΎΡΠ° Ρ Microsoft Equation.
Π§ΡΠΎΠ±Ρ Π²ΡΡΠ°Π²ΠΈΡΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠΎΡΠΌΡΠ»Ρ ΠΠΉΠ»Π΅ΡΠ° , Π²ΡΠΏΠΎΠ»Π½ΠΈΡΠ΅ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ:
Π ΡΠΎΡΠΌΠ°ΡΠ΅
Professional :Β Β 1.Β Β Π ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Π² ΡΠ°Π·Π΄Π΅Π»Π΅ ΠΠ½ΡΡΡΡΠΌΠ΅Π½ΡΡ Π΄Π»Ρ ΡΠΎΡΠΌΡΠ» , Π½Π° Π²ΠΊΠ»Π°Π΄ΠΊΠ΅ ΠΡΠΎΠ΅ΠΊΡ Π² Π³ΡΡΠΏΠΏΠ΅ ΠΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ Π½Π°ΠΆΠΌΠΈΡΠ΅ ΠΊΠ½ΠΎΠΏΠΊΡ Π‘ΠΊΡΠΈΠΏΡ :
Π ΡΠΏΠΈΡΠΊΠ΅ Script Π²ΡΠ±Π΅ΡΠΈΡΠ΅ ΠΠ΅ΡΡ Π½ΠΈΠΉ ΠΈΠ½Π΄Π΅ΠΊΡ :
Β Β 2. Β Β Π Π±Π°Π·ΠΎΠ²ΠΎΠ΅ ΠΏΠΎΠ»Π΅ ΡΡΠ΅Π½Π°ΡΠΈΡ Π²Π²Π΅Π΄ΠΈΡΠ΅ e .
Β Β 3.Β Β Π Π½ΠΈΠΆΠ½Π΅ΠΉ ΡΠ°ΡΡΠΈ ΡΠΊΡΠΈΠΏΡΠ° Π²Π²Π΅Π΄ΠΈΡΠ΅ ix .
Β Β 4.Β Β ΠΠ²Π΅Π΄ΠΈΡΠ΅ = .
Β Β 5.Β Β Π ΡΠ°Π·Π΄Π΅Π»Π΅ Equation Tools Π½Π° Π²ΠΊΠ»Π°Π΄ΠΊΠ΅ Design , Π² Π³ΡΡΠΏΠΏΠ΅ ΠΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ Π½Π°ΠΆΠΌΠΈΡΠ΅ ΠΊΠ½ΠΎΠΏΠΊΡ Π€ΡΠ½ΠΊΡΠΈΡ :
Π ΡΠΏΠΈΡΠΊΠ΅ Π€ΡΠ½ΠΊΡΠΈΡ Π²ΡΠ±Π΅ΡΠΈΡΠ΅ Π€ΡΠ½ΠΊΡΠΈΡ ΠΊΠΎΡΠΈΠ½ΡΡΠ° :
Β Β 6.Β Β Π Π±Π°Π·ΠΎΠ²ΠΎΠΌ Π±Π»ΠΎΠΊΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π²Π²Π΅Π΄ΠΈΡΠ΅ Ρ .
Β Β 7.Β Β ΠΠ²Π΅Π΄ΠΈΡΠ΅ +i .
Β Β 8.Β Β Π ΡΠ°Π·Π΄Π΅Π»Π΅ Equation Tools Π½Π° Π²ΠΊΠ»Π°Π΄ΠΊΠ΅ Design , Π² Π³ΡΡΠΏΠΏΠ΅ ΠΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ Π½Π°ΠΆΠΌΠΈΡΠ΅ ΠΊΠ½ΠΎΠΏΠΊΡ Π€ΡΠ½ΠΊΡΠΈΡ ΠΈ Π·Π°ΡΠ΅ΠΌ Π² ΡΠΏΠΈΡΠΊΠ΅ Π€ΡΠ½ΠΊΡΠΈΡ , Π²ΡΠ±Π΅ΡΠΈΡΠ΅ Π‘ΠΈΠ½ΡΡΠΎΠΈΠ΄Π°Π»ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ :
9(ix) ΠΈ Π·Π°ΡΠ΅ΠΌ Π½Π°ΠΆΠΌΠΈΡΠ΅ ΠΏΡΠΎΠ±Π΅Π».