Как комплексное число представить в тригонометрической форме: Представьте комплексное чтсло в тригонометрической форме z=2i

Математический анализ. (Виленкин)

Математический анализ. (Виленкин)
  

Виленкин Н.Я., Шварцбурд С.И. Математический анализ. Учебное пособие для IX—X классов средних школ с математической специализацией. M., Просвещение, 1969 г.

Учебное пособие для школ с математической специализацией, снабженное большим количеством задач и упражнений. Как и вышедшая ранее (1968 г.) книга «Алгебра» того же авторского коллектива, может быть использована преподавателями и учащимися общеобразовательной школы.



Оглавление

ПРЕДИСЛОВИЕ ДЛЯ УЧИТЕЛЯ
ВВЕДЕНИЕ
2. Числовые множества.
3. Пустое множество.
4. Подмножество.
5. Пересечение множеств.
6. Сложение множеств.
7. Разбиение множеств.

8. Вычитание множеств.
9. Отображение множеств.
10. Краткие исторические сведения.
Глава I. МНОГОЧЛЕНЫ ОТ ОДНОГО ПЕРЕМЕННОГО
§ 1. Тождественные преобразования многочленов
2. Целые рациональные выражения и функции.
3. Степень с натуральным показателем и ее свойства.
4. Многочлены.
5. Умножение многочленов.
6. Числовые кольца и поля.
7. Кольцо многочленов над данным числовым полем.
8. Бином Ньютона.
§ 2. Деление многочленов. Корни многочленов
2. Теорема Безу. Схема Горнера.
3. Корни многочлена.
4. Интерполяционные формулы.
5. Кратные корни.
6. Многочлены второй степени.
7. Многочлены с целыми коэффициентами.
8. Краткие исторические сведения.
Глава II. АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА
§ 1. Общая теория уравнений
2. Область допустимых значений.
3. Уравнения.
4. Совокупности уравнений.
5. Преобразования уравнений.
6. Теоремы о равносильности уравнений.
§ 2. Уравнения с одним неизвестным
2. Метод разложения на множители.
3. Метод введения нового неизвестного.
4. Биквадратные уравнения.
5. Возвратные уравнения 3-й и 4-й степеней.
§ 3. Функциональные неравенства
2. Равносильные неравенства.
3. Доказательство неравенств.
4. Линейные неравенства.
5. Решение неравенств второй степени.
6. Решение алгебраических неравенств высших степеней.
7. Краткие исторические сведения.
Глава III. ОБОБЩЕНИЕ ПОНЯТИЯ СТЕПЕНИ. ИРРАЦИОНАЛЬНЫЕ ВЫРАЖЕНИЯ
§ 1. Степени с целым показателем
2. Степень с нулевым показателем.
3. Степень с целым отрицательным показателем.
§ 2. Корни. Степени с рациональными показателями
2. Степени с рациональными показателями.
3. Свойства степеней с рациональными показателями.
§ 3. Иррациональные алгебраические выражения
2. Одночленные иррациональные выражения.
3. Сокращение показателей и приведение корней к общему показателю.
4. Извлечение корня из произведения и степени.
5. Вынесение алгебраических выражений из-под корня и внесение их под корень.
6. Возведение корня в степень.
7. Извлечение корня из корня.
8. Подобные корни.
9. Сложение и вычитание корней.
10. Уничтожение иррациональности в знаменателе или в числителе алгебраической дроби.
11. Преобразование выражений вида …
12. Смешанные задачи на преобразование иррациональных выражений.
§ 4. Иррациональные уравнения и неравенства
2. Сведение иррациональных уравнений к рациональным.
3. Уединение радикала.
4. Введение нового неизвестного.
5. Особые случаи решения иррациональных уравнений.
6. Иррациональные неравенства.
7. Краткие историчесие сведения.
Глава IV. МНОГОЧЛЕНЫ ОТ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. СИСТЕМЫ УРАВНЕНИЙ И НЕРАВЕНСТВ
§ 1. Системы алгебраических уравнений
2. Системы уравнений.
3. Геометрический смысл решений уравнений и систем уравнений с двумя неизвестными.
4. Совокупность уравнений.
5. Равносильные системы уравнений.
6. Метод подстановки.
7. Метод алгебраического сложения уравнений.
8. Метод введения новых неизвестных.
9. Системы однородных уравнений.
10. Геометрическая интерпретация решения систем двух уравнений с двумя неизвестными.
§ 2. Системы линейных уравнений
2. Теоремы о равносильности систем линейных уравнений.
3. Пример решения системы линейных уравнений методом Гаусса.
4. Метод Гаусса (приведение системы к обобщенно-треугольному виду).
5. Решение обобщенно-треугольной системы линейных уравнений.
6. Системы однородных линейных уравнений.
§ 3. Симметрические многочлены и их приложения к решению систем уравнений
2. Выражение степенных сумм
3. Основная теорема о симметрических многочленах от двух переменных.
4. Системы симметрических алгебраических уравнений.
5. Применение симметрических многочленов к решению иррациональных уравнений.
§ 4. Неравенства с многими переменными
2. Среднее арифметическое и среднее геометрическое трех чисел.
3. Неравенство Коши (двумерный вариант).
4. Задачи на наибольшие и наименьшие значения.
§ 5. Решение неравенств
2. Неравенства с двумя переменными.
3. Задание областей неравенствами и системами неравенств.
4. Понятие о линейном программировании.
5. Краткие исторические сведения.
Глава V. КОМПЛЕКСНЫЕ ЧИСЛА
§ 1. Комплексные числа в алгебраической форме
2. Комплексные числа.
3. Сложение комплексных чисел; умножение на действительные числа.
4. Умножение комплексных чисел.
5. Квадратные уравнения с действительными коэффициентами.
6. Деление комплексных чисел.
7. Сопряженные комплексные числа.
8. Извлечение квадратных корней из комплексных чисел.
§ 2. Тригонометрическая форма комплексных чисел
2. Полярная система координат.
3. Тригонометрическая форма комплексного числа.
4. Умножение и деление комплексных чисел в тригонометрической форме.
5. Возведение комплексных чисел в степень. Формула Муавра.
6. Извлечение корня из комплексного числа.
7. Функции комплексного переменного и преобразования комплексной плоскости.
§ 3. Некоторые виды алгебраических уравнений
2. Двучленные уравнения.
3. Корни из единицы и построение правильных многоугольников.
4. Трехчленные уравнения.
§ 4. Основная теорема алгебры многочленов и ее следствия
2. Многочлены с действительными коэффициентами.
3. Разложение на множители многочленов с действительными коэффициентами.
4. Краткие исторические сведения.
Глава VI. ЦЕПНЫЕ ДРОБИ
§ 1. Конечные цепные дроби
2. Пример цепной дроби.
3. Определение цепной дроби.
4. Представление рациональных чисел в виде конечной цепной дроби.
5. Подходящие дроби.
6. Свойства подходящих дробей.
8. Подходящие дроби и календарь.
9. Приближение цепной дроби подходящими дробями.
§ 2. Бесконечные цепные дроби
2. Подходящие дроби и наилучшие приближения иррациональных чисел рациональными.
3. Цепные дроби как вычислительный инструмент.
4. Краткие исторические сведения.
Глава VII. КОМБИНАТОРИКА
§ 1. Комбинаторные задачи
§ 2. Комбинаторные задачи. Продолжение
§ 3. Определения и формулы
§ 4. Соединения с повторениями
§ 5. Комбинаторные задачи. Окончание
§ 6. Бином Ньютона и его обобщения
§ 7. Краткие исторические сведения
Глава VIII. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ
§ 2. Сложные вероятности. Теоремы сложения и умножения. Условные вероятности
§ 3. Примеры вычисления вероятностей
§ 4. Полная вероятность. Формула Байеса
§ 5. Повторение испытаний
§ 6. Примеры вычисления вероятностей. Окончание
§ 7. Краткие исторические сведения

Комплексные числа в тригонометрической форме и действия над ними

Комплексные числа в
тригонометрической форме и
действия над ними
Геометрическое изображение комплексных чисел
Всякое комплексное число z=x+iy можно изобразить точкой M(x;y)
плоскости xOy такой, что х = Re z, у = Im z. И, наоборот, каждую точку
M(x;y) координатной плоскости можно рассматривать как образ
комплексного числа z=x+iy (рисунок 1).
y
y
M(x; y)
0
x
x
Рисунок 1
Плоскость, на которой изображаются комплексные числа, называется
комплексной плоскостью.
Ось абсцисс называется действительной осью, так как на ней лежат
действительные числа z=x+0i=x .
Ось ординат называется мнимой осью, на ней лежат мнимые
комплексные числа z=0+yi=yi.
r
OM ,
Часто вместо точек на плоскости берут их радиус-векторы
т.е. векторы, началом которых служит точка O(0;0), концом M(x;y) .
Длина вектора r , изображающего комплексное число z, называется
модулем этого числа и обозначается | z| или r.
Величина
угла между положительным направлением действительной оси
и вектором r , изображающим комплексное число, называется аргументом
этого комплексного числа, обозначается Arg z или φ.
Аргумент комплексного числа z=0 не определен.
Аргумент комплексного числа z≠0 — величина многозначная
определяется с точностью до слагаемого 2πk (k=0,-1,1,-2,2,..) :
и
Arg z=arg z+2 πk,
где arg z — главное значение аргумента, заключенное в промежутке
(- π, π].
Формы записи комплексных чисел
Запись числа в виде z=x+iy называют
комплексного числа.
алгебраической формой
Из рисунка 1 видно, что x=rcosφ, y=rsinφ, следовательно, комплексное
z=x+iy число можно записать в виде:
z x iy r cos ir sin r (cos i sin ).
Такая форма записи называется тригонометрической
записи комплексного числа.
Модуль r=|z| однозначно определяется по формуле
r x2 y2 .
Аргумент φ определяется из формул
x
y
y
cos ; sin ; tg .
r
r
x
формой
При переходе от алгебраической формы комплексного числа к
тригонометрической
достаточно определить лишь главное значение
аргумента комплексного числа, т.е. считать φ=arg z.
y
Так как arg z , то из формулы tg
получаем, что
x
y
— для внутренних точек I, IV четвертей;
arg z arctg
x
y
arg z arctg — для внутренних точек II четверти;
x
y
arg z arctg — для внутренних точек III четверти.
x
1
3
Пример 1. Представить комплексные числа z1 1 i и z 2 i
2
2
тригонометрической форме.
в
Решение.
Комплексное число z=x+iy в тригонометрической форме
y
x y , arctg .
x
1) z1=1+i (число z1 принадлежит I четверти), x=1, y=1.
1
2
2
arctg
arctg
1
.
r 1 1 2,
1
4
Таким образом, z1 2 cos i sin .
4
4
1
3
1
3
2) z 2
i (число z2 принадлежит II четверти) x , y
.
2
2
2
2
имеет вид z=r(cosφ +isinφ), где r
2
1 3
r
1,
2 2
2
2
2
arctg 3 .
Так как z2 II ч., то Arg z 2
3
3
2
.
3
2
2
Следовательно, z 2 cos
i sin
.
3
3
2
2
i sin
.
Ответ: z1 2 cos i sin , z 2 cos
4
4
3
3
Действия
над
комплексными
тригонометрической форме
числами,
Рассмотрим два комплексных числа
тригонометрической форме
z1
заданными
и z2 , заданных в
z1 r (cos i sin ), z 2 (cos i sin ).
а) Произведение комплексных чисел
Выполняя умножение чисел z1 и z2 , получаем
z1 z 2 r cos i sin cos i sin
r cos cos i cos sin i sin cos sin sin
r cos cos sin sin i cos sin sin cos ,
z1 z 2 r cos i sin
в
б) Частное двух комплексных чисел
Пусть заданы комплексные числа
z1 и z2 ≠ 0.
z1
, имеем
Рассмотрим частное
z2
z1 r (cos i sin )
r (cos i sin ) cos i sin
z 2 (cos i sin ) cos i sin cos i sin
r cos cos sin sin i sin cos cos sin
,
2
2
cos sin
z1 r
cos i sin
z2
Пример 5. Даны два комплексных числа z1
2 cos i sin ,
4
4
z2
2
2
z
z
,
.
Найдите
z 2 2 cos
i sin
.
1
2
z1
3
3
Решение.
1) Используя формулу
получаем
z1 z2 r1r2 cos 1 2 i sin 1 2 ,
2
2
z1 z2 2 2 cos
i sin
.
4
3
4
3
11
11
z
z
2
2
cos
i
sin
.
Следовательно,
1
2
12
12
z1 r1
2) Используя формулу
cos 1 2 i sin 1 2 ,
z 2 r2
получаем
z2
2 2
2
i sin
.
cos
z1
2 3 4
3 4
z1
5
5
2 cos
i sin
.
Следовательно,
z2
12
12
.
4
4 z1
5
5
z
2
cos
i
sin
,
2
cos
i
sin
Ответ:
.
3
3 z2
12
12
.
в)
Возведение
комплексного
числа,
тригонометрической форме в n-ю степень
заданного
в
Из операции умножения комплексных чисел следует, что
z 2 zz r 2 (cos 2 i sin 2 ).
В общем случае получим:
r (cos i sin ) n r n (cosn i sin n )
(2)
где n– целое положительное число.
Следовательно, при возведении комплексного числа в степень модуль
возводится в ту же степень, а аргумент умножается на показатель
степени.
Выражение (2) называется формулой Муавра.
Абрахам де Муавр (1667 – 1754) – английский математик
французского происхождения.
Заслуги Муавра:
• открыл (1707) формулу Муавра для возведения в степень (и извлечения
корней) комплексных чисел, заданных в тригонометрической форме;
• первый стал использовать возведение в степень бесконечных рядов;
• большой вклад в теорию вероятностей: доказал частный случаи теоремы
Лапласа, провёл вероятностное исследование азартных игр и ряда
статистических данных по народонаселению.
Формулу
Муавра
можно
использовать
для
тригонометрических функций двойного, тройного и т.д. углов.
нахождения
содержание
г) Извлечение корня п-ой степени из комплексного числа
Корнем п-ой степени из комплексного числа z называется
n
комплексное число w, удовлетворяющее равенству wn=z, т.е. z w, если
wn=z.
Если положить z r (cos i sin ), а w (cos i sin ),
определению корня и формуле Муавра, получаем
z wn (cos i sin ) r cos i sin .
n
Отсюда имеем
n 2 k , k Z .
2 k
n
.
То есть r ,
n
n
r,
Поэтому равенство
n
z w принимает вид
n z n r cos 2 k i sin 2 k
n
где k 0, n 1 (т.е. от 0 до n-1).
n
то, по
Таким образом, извлечение корня n-ой степени из комплексного числа
z всегда возможно и дает n различных значений. Все значения корня n-ой
степени расположены на окружности радиуса
n z с центром в нуле и
делят эту окружность на n равных частей.
Пример 7. Найти все значения 3 1 i 3 .
Решение.
Вначале представим число
z 1 i 3 в тригонометрической форме.
x=1, y 3, таким образом, r 1 3 4 2,
3
arctg
arctg 3 .
1
3
Следовательно, z 2 cos i sin .
3
3
2 k
2 k
n r cos i sin n r cos
i
sin
,
Используя формулу
n
n
где k=0,1,2,…,(n-1), имеем:
В данном случае
2
k
2
k
3
3
3
3
, k 0, 1, 2.
z 2 cos
i sin
3
3
Запишем все значения
3
z:
при k 0, z 0 2 cos i sin ;
9
9
3
7
7
при k 1, z1 2 cos
i sin
;
9
9
3
при k 2, z 2 3 2 cos
13
13
i sin
.
9
9
7
7
i sin ; z1 3 2 cos
i sin
;
9
9
9
9
13
13
3
z 2 2 cos
i sin
.
9
9
Ответ: z 0 3 2 cos

15. Вопросы для самоконтроля

1. Сформулируйте определение комплексного числа.
2. Какое комплексное число называется чисто мнимым?
3. Какие два комплексных числа называются сопряженными?
4. Объясните, что значит сложить комплексные числа, заданные в
алгебраической форме; умножить комплексное число на действительное.
5.
Объясните
принцип
деления
комплексных
чисел,
заданных
в
алгебраической форме.
6.
Запишите в общем виде целые степени мнимой единицы.
7. Что означает возведение комплексного числа, заданного алгебраической
формой в степень ( n- натуральное число)?
8.
Расскажите как изображаются комплексные числа на плоскости.
9.
Какая форма записи называется тригонометрической формой
комплексных чисел?
10. Сформулируйте определение модуля и аргумента комплексного
числа.
11. Сформулируйте правило умножения комплексных чисел, записанных
в тригонометрической форме.
12. Сформулируйте правило нахождения частного двух комплексных
чисел, заданных в тригонометрической форме.
13. Сформулируйте правило возведения в степени комплексных чисел,
заданных в тригонометрической форме.
14. Сформулируйте правило извлечения корня n-ой степени из
комплексного числа, заданного в тригонометрической форме.
15.
Расскажите о значении корня n-ой степени из единицы и о сфере
его применения.

Тригнет

 
На плоскости комплексных чисел стандарт Форма уравнения:

z = a +bi

Горизонтальная ось называется действительной осью , а вертикаль называется мнимой осью . То есть это то, что обычно является осью x, а другое, что обычно является осью Y, соответственно. Найти точка на плоскости, которую представляет комплексное число, вы используете точку (а, б). 92)

рт(9 + 4)
рт(13)

Это график z = 3 + 2i


Тригонометрическая форма комплексного числа
Чтобы найти тригонометрическую форму z = a + bi, вы используете следующее формула: 92) и Танкс = б ÷ а.
Словарь:
Здесь r — это модуль z, а x — аргумент . из з.


Чтобы найти триггерную форму комплексного числа z = 3 + 2i, вы бы использовали r, который, как мы теперь знаем, равен rt(13), а затем узнать значение х.

танкс = а ÷ б
tanx = 3 ÷ 2
x =~ 56,31°

В некоторых задачах может потребоваться изменить угол, в зависимости от того, в каком квадранте находится комплексное число дюймов. В этом случае нам не нужно менять угол, так как 56,31° находится в том же квадранте, что и в примере. И Итак…

z = rt(13)(cos56,31° + isin56,31°)

… является тригонометрической формой этого комплексного числа.


Умножение и деление комплексного числа

Необходимые условия: Формулы суммы и разности

Умножение и деление комплексных чисел в тригонометрии форма:

Где г = г (cosx + изинкс) и г = г (cosx + изинкс) комплексные числа…

Продукт:
з з = rr[cos(x + х) + isin(x + x)]

Частное:
г ÷ г = (р ÷ r)[cos(x + х) + isin(x + х)]
г 0


Вот пример задачи на умножение:

г = 3 (поскольку ( ÷ 3) + isin( ÷ 3))
г = 4 (поскольку ( ÷ 6) + isin( ÷ 6))

Начните с использования формулы.

(3*4)(поскольку(( ÷ 3) + ( ÷ 6)) + isin(( ÷ 4) + ( ÷ 6))

Найдите общий знаменатель дробей.

12(поскольку((2 ÷ 6) + ( ÷ 6)) + isin((3 ÷ 12) + (2 ÷ 12))

Объедините похожие термины.

12(пос(3) ÷ 6) + isin(5 ÷ 12)
12(поскольку( ÷ 2) + isin(5 ÷ 12)

Упростить косинус и синус.

12(0 + i(.9659))
г г =~ 11.59i

Полномочия Комплексные номера

Помимо использования формула умножения для решения степеней, вы можете использовать 912

Начните с нахождения значения r:

r = rt(1² + (-1)²)
r = rt(2)

Итак, теперь мы должны найти значение x.

танкс = 1 ÷ -1
Танкс = -1
х = ÷ 4

Но так как это комплексное число лежит в квадранте 4, и x находится в квадранте 1, мы изменим его на — ÷ 4. Теперь воспользуемся теоремой Де Муавра. 912(-1 + i0)
64(-1 + 0i)
z = -64

Комплексные числа: углы и полярные координаты

Комплексные числа: углы и полярные координаты Этот раздел предполагает знание тригонометрии. Для получения информации о тригонометрии см. Краткий курс Дейва по триггерам на
 http://www.clarku.edu/~djoyce/trig/ 

Полярные координаты помогут нам понять комплексные числа геометрически. С одной стороны, обычные прямоугольные координаты x и y определяют комплексное число z  =  x  +  yi , указав расстояние x вправо и расстояние y вверх. С другой стороны, полярные координаты определяют ту же самую точку z , говоря, как far r от начала координат 0 и угол для линии от начала координат до точки. Мы уже назвали расстояние r абсолютной величиной | из | z, и мы увидели, как Теорема Пифагора установила связь между ним и х и и :

Далее нам нужно разобраться с углом . Мы будем следовать стандартному соглашению для указания угла . Согласно этому соглашению положительная ось x (наша реальная ось) проходит под углом 0°, т.е. положительная ось y (наша воображаемая ось) под углом 90°, отрицательная ось x под углом 180° и отрицательная y — ось под углом 270°. Кроме того, 360° можно добавить или вычесть из любого угла, и направление не изменится. Так, 0°, 360°, 720° и 360° относятся к положительному x — ось. Аналогично, 270° и 90° оба относятся к отрицательной оси y . Угол 45° проходит вдоль линии y  =  x вверх вправо. И так далее.

Точка z может быть задана любой парой, парой прямоугольных координат x и y или парой полярных координат. координаты, r, что | z | и , который является arg ( z ). Поскольку любая пара определяет точку, каждая пара должна определять другую пару. Должно быть четыре уравнения, связывающих их, и так есть. Пифагорейский тождество было упомянуто выше, но остальные требуют тригонометрии. Из того же треугольника мы используемые для теоремы Пифагора, мы находим следующие три соотношения:

tan = y/x ,    x = r cos , и г = г грех .

Теперь, если мы применим эти отношения к нашему комплексному числу z  =  x  +  yi, , то мы получим альтернативное описание для z

с = x  +  iy
= r cos + i r sin
= r (cos + i sin )
= | из | (cos + i sin )

Обратите внимание, что комплексное число cos +  i  sin  имеет абсолютное значение 1, поскольку cos 2  + sin 2 равно 1 для любого угла . Таким образом, каждое комплексное число z является произведение действительного числа | из | и комплексное число cos +  i  sin .

Мы почти подошли к тому моменту, когда можем доказать последнее недоказанное утверждение предыдущего раздела об умножении, а именно, что arg( zw ) = arg( z ) + arg( w ). Как и выше, мы принимаем arg( z ) как , и теперь пусть arg( w ) будет . Затем,

z  = | из | (кос + я грех)
и
w  = | с | (кос + я грех)

Нам нужно показать, что arg( zw ) равно  + . Другими словами

zw  = | ZW | (cos ( + ) + i sin ( + ))

Если мы воспользуемся формулами сложения для косинуса и синуса в одном важном моменте, мы его получим. Напомним из тригонометрии эти сложения формулы:

потому что ( + ) = потому что cos   sin  sin 

sin ( + ) = cos  sin  + sin  cos .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *