Как переводить градусы в радианы: Онлайн калькулятор: Перевод градусов в радианы

Содержание

Сколько радиан в пи. Радианы в градусы, градусы в радианы! Как работает функция индекс в Excel

Необходимость в измерении углов появилась у людей с тех пор, как цивилизация достигла минимального технического уровня. Всем известна феноменальная точность соблюдения наклона и ориентации по странам света, обеспеченная строителями египетских пирамид. Современную градусную меру углов, как сейчас считается, изобрели древние аккадцы.

Что такое градусы?

Градус — общепринятая единица измерения углов. В полной окружности 360 градусов. Причина выбора именно этого числа неизвестна. Вероятно, аккадцы разделили окружность на сектора, используя угол равностороннего треугольника, а затем полученные сегменты снова разделили на 60 частей согласно своей системе счисления. Градус тоже делится на 60 минут, а минуты — на 60 секунд. Общепринятыми обозначениями являются:

° — угловые градусы

’ — минуты,

’’ — секунды.

За тысячелетия градусная мера углов прочно вошла во многие сферы человеческой деятельности. Она и сейчас незаменима во всех областях науки и техники — от картографии до расчета орбит искусственных спутников Земли.

Что такое радианы?

Архимеду приписывается открытие постоянства соотношения длины окружности и ее диаметра. Мы называем его числом π. Оно иррационально, то есть не может быть выражено в виде обычной или периодической дроби. Чаще всего используется значение числа π с точностью до двух знаков после запятой — 3,14. Длина окружности L с радиусом R легко вычисляется по формуле: L=2πR.

Окружность радиуса R=1 имеет длину 2π. Это соотношение используется в геометрии как формулировка радианной меры угла.

По определению, радиан — угол с вершиной в центре окружности, опирающийся на дугу с длиной, равной радиусу окружности. Международное обозначение радиана — rad, отечественное — рад. Размерности он не имеет.

Дуга окружности с радиусом R с угловой величиной α радиан, имеет длину α * R.

Зачем понадобилось вводить новую единицу измерения угла?

Развитие науки и техники привело к появлению тригонометрии и математического анализа, необходимых для точных расчетов механических и оптических устройств. Одной из его задач является измерение длины кривой линии. Самый распространенный случай — определение длины дуги окружности. Использование для этой цели градусной меры углов крайне неудобно. Идея сопоставить длину дуги с радиусом окружности возникала у многих математиков, но сам термин «радиан» был введен в научный обиход только во второй половине XIX века. Сейчас все тригонометрические функции в математическом анализе по умолчанию используют радианную меру угла.

Как переводить градусы в радианы

Из формулы длины окружности вытекает, что в нее укладывается 2π радиусов. Отсюда вытекает, что: 1⁰=2π/360= π/180 рад.

И простая формула перевода из радианов в градусы: 1 рад = 180/π.

Пусть мы имеем угол в N градусов. Тогда формула для перевода из градусов в радианы будет такой: α(радиан) = N/(180/π) = N*π/180.

Остались вопросы?

Ответы на них можно найти , где подробно разъяснены понятия длины окружности, радианной меры углов и на конкретных примерах показан перевод градусов в радианы. Знания упомянутого крайне важны для понимания математики, без которой невозможно существование современной цивилизации.

Градусы в радианы. Друзья, данный пост короткий, но для многих полезный. Как вы знаете, школьный курс математики знакомит нас с двумя основными мерами углов: градусной и радианной. С использованием этих мер решаются практически все задачи, как в математике, так и в физике.

Понимать как они взаимосвязаны между собой — крайне необходимо. Хорошо если вы легко оперируете вычислениями с использованием любой из этих мер. Но с лёгкостью это могут делать далеко не все.

Для осуществления расчётов (различных преобразований) с использованием радианной меры необходима хорошая практика. Например, хорошего навыка требует выделение периода из дроби при решении тригонометрических выражений. Для кого-то будет проще и понятнее решать задачи используя градусную меру. Для половины учащихся проблемы перевода градусов в радианы (или наоборот) не существует. Если же вам необходимо это повторить, то этот материал для вас.

Таблица соответствия угловых мер


Итак, базовая информация, которая необходима. Это соответствие нужно уяснить и запомнить раз и навсегда!


Примеры перевода радиан в градусы:

Если угол задан в радианной мере, и в его выражении имеется число Пи, то подставляем его градусный эквивалент, то есть 180 градусов и вычисляем:

Если же радианы даны в виде целого числа, дроби либо целого числа с дробной частью, то решаем через пропорцию. Про неё я писал в о задачах на проценты. Например, определим, сколько в градусной мере составляют 2 радиана и 5 радиан. Составляем пропорцию:


Примеры перевода градусной меры в радианную.

Переведём в радианы 510 градусов. Для данной операции необходимо составить пропорцию. Для этого установим соответствие. Известно, что 180 градусам соответствует Пи радиан. А 510 градусов обозначаем как х радиан (так как нам необходимо определить радианы), значит:

Переведём в радианы 340, 220, 1210 градусов:


Успеха Вам!

С уважением, Александр Крутицких

P. S: Буду вам благодарен, если расскажете о сайте в социальных сетях.

Люди в математической науке довольно часто сталкиваются с такой задачей, как перевод градусов в радианы или наоборот. Выполнить данную задачу довольно просто и для этого не нужно иметь глубокие познания в различных прикладных науках или математике. Итак, для начала необходимо разобраться с этими величинами измерения. Градус и радиан – это основные единицы, которыми измеряются плоские углы в математике и физике. Ещё данные единицы используют в картографии для определения координат в любой точке земного шара.

Эти величины измерения обозначаются следующим образом:

  • рад – радиан
  • градус — º

Как перевести градусы в радианы

Для начала, чтобы стала понятной формула перевода градусов в радианы, нужно научиться переводить угол в радианы и радианы в угол:

  • 1 рад = (180/π)ºπ 57,295779513, где известно, что π = 3,14
  • 1° = (π/180) рад π 0,017453293 рад

По вышеизложенным формулам сразу же становиться ясно, что π рад = 180°, именно из них и берут своё начало понятные всем и простые формулы для перевода величин измерения.

Сейчас рассмотрим основные формулы, которые используются при переводе:

1. Градусы в радианы

Zº=Z рад × (180/π), где Zº — угол в градусах, а Z рад – угол в радианах, π = 3,14

2. Радианы в градусы

Z рад = Z° × (π/180)

Теперь рассмотрим пример, чтобы стало понятней, как пользоваться вышеприведёнными формулами на практике. Для этого возьмём два угла 20º и 100º:

1. Перевод градусов в радианы

  • 20º = 20 рад × (π/180) π 0,35 рад
  • 100º = 100 рад × (180/π) π 1, 7453 рад

2. Перевод радиан в градусы

  • 20 рад = 20º × (180/π) π 1146,15, где π = 3,14
  • 100 рад = 100° × (180/π) π 5729, 577, где π = 3,14

Рассмотрев формулы для перевода величин измерения, становиться понятно, что справиться с поставленой задачей довольно просто. Для тех людей, которые самостоятельно не хотят проводить расчеты, в интернете существует множество сайтов, на которых с помощью он-лайн калькуляторов можно перевести градусы в радианы или наоборот, их использование значительно облегчит вам выполнение различных задач по тригонометрии.

Градусная мера угла. Радианная мера угла. Перевод градусов в радианы и обратно.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень…»
И для тех, кто «очень даже…»)

В предыдущем уроке мы освоили отсчёт углов на тригонометрическом круге. Узнали, как отсчитывать положительные и отрицательные углы. Осознали, как нарисовать угол больше 360 градусов. Пришла пора разобраться с измерением углов. Особенно с числом «Пи», которое так и норовит запутать нас в хитрых заданиях, да…

Стандартные задания по тригонометрии с числом «Пи» решаются неплохо. Зрительная память выручает. А вот любое отклонение от шаблона — валит наповал! Чтобы не свалиться — понимать надо. Что мы с успехом сейчас и сделаем. В смысле — всё поймём!

Итак, в чём считаются углы? В школьном курсе тригонометрии используются две меры: градусная мера угла и радианная мера угла . Разберём эти меры. Без этого в тригонометрии — никуда.

Градусная мера угла.

К градусам мы как-то привыкли. Геометрию худо-бедно проходили… Да и в жизни частенько встречаемся с фразой «повернул на 180 градусов», например. Градус, короче, штука простая…

Да? Ответьте мне тогда, что такое градус? Что, не получается с ходу? То-то…

Градусы придумали в Древнем Вавилоне. Давненько это было… Веков 40 назад… И придумали просто. Взяли и разбили окружность на 360 равных частей. 1 градус — это 1/360 часть окружности. И всё. Могли разбить на 100 частей. Или на 1000. Но разбили на 360. Кстати, почему именно на 360? Чем 360 лучше 100? 100, вроде, как-то ровнее… Попробуйте ответить на этот вопрос. Или слабо против Древнего Вавилона?

Где-то в то же время, в Древнем Египте мучились другим вопросом. Во сколько раз длина окружности больше длины её диаметра? И так измеряли, и этак… Всё получалось немного больше трёх. Но как-то лохмато получалось, неровно… Но они, египтяне не виноваты. После них ещё веков 35 мучились. Пока окончательно не доказали, что как бы мелко не нарезать окружность на равные кусочки, из таких кусочков составить ровно длину диаметра нельзя… В принципе нельзя. Ну, во сколько раз окружность больше диаметра установили, конечно. Примерно. В 3,1415926… раз.

Это и есть число «Пи». Вот уж лохматое, так лохматое. После запятой — бесконечное число цифр без всякого порядка… Такие числа называются иррациональными. Это, кстати, и означает, что из равных кусочков окружности диаметр ровно не сложить. Никогда.

Для практического применения принято запоминать всего две цифры после запятой. Запоминаем:

Раз уж мы поняли, что длина окружности больше диаметра в «Пи» раз, имеет смысл запомнить формулу длины окружности:

Где L — длина окружности, а d — её диаметр.

В геометрии пригодится.

Для общего образования добавлю, что число «Пи» сидит не только в геометрии… В самых различных разделах математики, а особенно в теории вероятности, это число возникает постоянно! Само по себе. Вне наших желаний. Вот так.

Но вернёмся к градусам. Вы сообразили, почему в Древнем Вавилоне круг разбили на 360 равных частей? А не на 100, к примеру? Нет? Ну ладно. Выскажу версию. У древних вавилонян не спросишь… Для строительства, или, скажем, астрономии, круг удобно делить на равные части. А теперь прикиньте, на какие числа делится нацело 100, и на какие — 360? И в каком варианте этих делителей нацело — больше? Людям такое деление очень удобно. Но…

Как выяснилось много позже Древнего Вавилона, не всем нравятся градусы. Высшей математике они не нравятся… Высшая математика — дама серьёзная, по законам природы устроена. И эта дама заявляет: «Вы сегодня на 360 частей круг разбили, завтра на 100 разобьёте, послезавтра на 245… И что мне делать? Нет уж…» Пришлось послушаться. Природу не обманешь…

Пришлось ввести меру угла, не зависящую от человеческих придумок. Знакомьтесь — радиан!

Радианная мера угла.

Что такое радиан? В основе определения радиана — всё равно окружность. Угол в 1 радиан, это угол, который вырезает из окружности дугу, длина которой (L ) равна длине радиуса (R ). Смотрим картинки.

Маленький такой угол, почти и нет его… Наводим курсор на картинку (или коснёмся картинки на планшете) и видим примерно один радиан . L = R

Чувствуете разницу?

Один радиан много больше одного градуса. А во сколько раз?

Смотрим следующую картинку. На которой я нарисовал полукруг. Развёрнутый угол размером, естественно, в 180°.

А теперь я нарежу этот полукруг радианами! Наводим курсор на картинку и видим, что в 180° укладывается 3 с хвостиком радиана.

Кто угадает, чему равен этот хвостик!?

Да! Этот хвостик — 0,1415926…. Здравствуй, число «Пи», мы тебя ещё не забыли!

Действительно, в 180° градусах укладывается 3,1415926… радиан. Как вы сами понимаете, всё время писать 3,1415926… неудобно. Поэтому вместо этого бесконечного числа всегда пишут просто:

А вот в Интернете число

писать неудобно. .. Поэтому я в тексте пишу его по имени — «Пи». Не запутаетесь, поди?…

Вот теперь совершенно осмысленно можно записать приближённое равенство:

Или точное равенство:

Определим, сколько градусов в одном радиане. Как? Легко! Если в 3,14 радианах 180° градусов, то в 1 радиане в 3,14 раз меньше! То есть, мы делим первое уравнение (формула — это тоже уравнение!) на 3,14:

Это соотношение полезно запомнить В одном радиане примерно 60°. В тригонометрии очень часто приходится прикидывать, оценивать ситуацию. Вот тут это знание очень помогает.

Но главное умение этой темы — перевод градусов в радианы и обратно.

Если угол задан в радианах с числом «Пи», всё очень просто. Мы знаем, что «Пи» радиан = 180°. Вот и подставляем вместо «Пи» радиан — 180°. Получаем угол в градусах. Сокращаем, что сокращается, и ответ готов. Например, нам нужно выяснить, сколько градусов в угле «Пи»/2 радиан ? Вот и пишем:

Или, более экзотическое выражение:

Легко, верно?

Обратный перевод чуть сложнее. Но не сильно. Если угол дан в градусах, мы должны сообразить, чему равен один градус в радианах, и умножить это число на количество градусов. Чему равен 1° в радианах?

Смотрим на формулу и соображаем, что если 180° = «Пи» радиан, то 1° в 180 раз меньше. Или, другими словами, делим уравнение (формула — это тоже уравнение!) на 180. Представлять «Пи» как 3,14 никакой нужды нет, его всё равно всегда буквой пишут. Получаем, что один градус равен:

Вот и всё. Умножаем число градусов на это значение и получаем угол в радианах. Например:

Или, аналогично:

Как видите, в неспешной беседе с лирическими отступлениями выяснилось, что радианы — это очень просто. Да и перевод без проблем… И «Пи» — вполне терпимая штука… Так откуда путаница!?

Вскрою тайну. Дело в том, что в тригонометрических функциях значок градусов — пишется. Всегда. Например, sin35°. Это синус 35 градусов . А значок радианов (рад ) — не пишется! Он подразумевается. То ли лень математиков обуяла, то ли ещё что… Но решили не писать. Если внутри синуса — котангенса нет никаких значков, то угол — в радианах ! Например, cos3 — это косинус трёх радианов .

Это и приводит к непоняткам… Человек видит «Пи» и считает, что это 180°. Всегда и везде. Это, кстати, срабатывает. До поры до времени, пока примеры — стандартные. Но «Пи» — это число! Число 3,14, а никакие не градусы! Это «Пи» радиан = 180°!

Ещё раз: «Пи» — это число! 3,14. Иррациональное, но число. Такое же, как 5 или 8. Можно, к примеру, сделать примерно «Пи» шагов. Три шага и ещё маленько. Или купить «Пи» килограммов конфет. Если продавец образованный попадётся…

«Пи» — это число! Что, достал я вас этой фразой? Вы уже всё давно поняли? Ну ладно. Проверим. Скажите-ка, какое число больше?

Или, что меньше?

Это из серии слегка нестандартных вопросов, которые могут и в ступор вогнать…

Если вы тоже в ступор впали, вспоминаем заклинание: «Пи» — это число! 3,14. В самом первом синусе четко указано, что угол — в градусах ! Стало быть, заменять «Пи» на 180° — нельзя! «Пи» градусов — это примерно 3,14°. Следовательно, можно записать:

Во втором синусе обозначений никаких нет. Значит, там — радианы ! Вот здесь замена «Пи» на 180° вполне прокатит. Переводим радианы в градусы, как написано выше, получаем:

Осталось сравнить эти два синуса. Что. забыли, как? С помощью тригонометрического круга, конечно! Рисуем круг, рисуем примерные углы в 60° и 1,05°. Смотрим, какие синусы у этих углов. Короче, всё, как в конце темы про тригонометрический круг расписано. На круге (даже самом кривом!) будет чётко видно, что sin60° существенно больше, чем sin1,05° .

Совершенно аналогично поступим и с косинусами. На круге нарисуем углы примерно 4 градуса и 4 радиана (не забыли, чему примерно равен 1 радиан?). Круг всё и скажет! Конечно, cos4 меньше cos4°.

Потренируемся в обращении с мерами угла.

Переведите эти углы из градусной меры в радианную:

360°; 30°; 90°; 270°; 45°; 0°; 180°; 60°

У вас должны получиться такие значения в радианах (в другом порядке!)

Я, между прочим, специально выделил ответы в две строчки. Ну-ка, сообразим, что за углы в первой строчке? Хоть в градусах, хоть в радианах?

Да! Это оси системы координат! Если смотреть по тригонометрическому кругу, то подвижная сторона угла при этих значениях точно попадает на оси . Эти значения нужно знать железно. И угол 0 градусов (0 радиан) я отметил не зря. А то некоторые этот угол никак на круге найти не могут… И, соответственно, в тригонометрических функциях нуля путаются… Другое дело, что положение подвижной стороны в нуле градусов совпадает с положением в 360°, так совпадения на круге — сплошь и рядом.

Во второй строчке — тоже углы специальные… Это 30°, 45° и 60°. И что в них такого специального? Особо — ничего. Единственное отличие этих углов от всех остальных — именно про эти углы вы должны знать всё . И где они располагаются, и какие у этих углов тригонометрические функции. Скажем, значение sin100° вы знать не обязаны. А sin45° — уж будьте любезны! Это обязательные знания, без которых в тригонометрии делать нечего… Но об этом подробнее — в следующем уроке.

А пока продолжим тренировку. Переведите эти углы из радианной меры в градусную:

У вас должны получиться такие результаты (в беспорядке):

210°; 150°; 135°; 120°; 330°; 315°; 300°; 240°; 225°.

Получилось? Тогда можно считать, что перевод градусов в радианы и обратно — уже не ваша проблема.) Но перевод углов — это первый шаг к постижению тригонометрии. Там же ещё с синусами-косинусами работать надо. Да и с тангенсами, котангенсами тоже…

Второй мощный шаг — это умение определять положение любого угла на тригонометрическом круге. И в градусах, и в радианах. Про это самое умение я буду вам во всей тригонометрии занудно намекать, да…) Если вы всё знаете (или думаете, что всё знаете) про тригонометрический круг, и отсчёт углов на тригонометрическом круге, можете провериться. Решите эти несложные задания:

1. В какую четверть попадают углы:

45°, 175°, 355°, 91°, 355° ?

Легко? Продолжаем:

2. В какую четверть попадают углы:

402°, 535°, 3000°, -45°, -325°, -3000°?

Тоже без проблем? Ну, смотрите…)

3. Сможете разместить по четвертям углы:

Смогли? Ну вы даёте..)

4. На какие оси попадёт уголок:

и уголок:

Тоже легко? Хм…)

5. В какую четверть попадают углы:

И это получилось!? Ну, тогда я прям не знаю…)

6. Определить, в какую четверть попадают углы:

1, 2, 3 и 20 радианов.

Ответ дам только на последний вопрос (он слегка хитрый) последнего задания. Угол в 20 радианов попадёт в первую четверть.

Остальные ответы не дам не из жадности.) Просто, если вы не решили чего-то, сомневаетесь в результате, или на задание №4 потратили больше 10 секунд, вы слабо ориентируетесь в круге. Это будет вашей проблемой во всей тригонометрии. Лучше от неё (проблемы, а не тригонометрии!)) избавиться сразу. Это можно сделать в теме: Практическая работа с тригонометрическим кругом в разделе 555.

Там рассказано, как просто и правильно решать такие задания. Ну и эти задания решены, разумеется. И четвёртое задание решено за 10 секунд. Да так решено, что любой сможет!

Если же вы абсолютно уверены в своих ответах и вас не интересуют простые и безотказные способы работы с радианами — можете не посещать 555. Не настаиваю.)

Хорошее понимание — достаточно веская причина, чтобы двигаться дальше!)

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

Примечание . В данной таблице значений тригонометрических функций используется знак √ для обозначения квадратного корня. Для обозначения дроби — символ «/».

См. также полезные материалы:

Для определения значения тригонометрической функции , найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов — ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой «30 градусов», на их пересечении считываем результат — одна вторая. Аналогично находим

косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других «популярных» углов.

Синус пи, косинус пи, тангенс пи и других углов в радианах

Приведенная ниже таблица косинусов, синусов и тангенсов также подходит для нахождения значения тригонометрических функций, аргумент которых задан в радианах . Для этого воспользуйтесь второй колонкой значений угла. Благодаря этому можно перевести значение популярных углов из градусов в радианы. Например, найдем угол 60 градусов в первой строке и под ним прочитаем его значение в радианах. 60 градусов равно π/3 радиан.

Число пи однозначно выражает зависимость длины окружности от градусной меры угла. Таким образом, пи радиан равны 180 градусам.

Любое число, выраженное через пи (радиан) можно легко перевести в градусную меру, заменив число пи (π) на 180

.

Примеры :
1. Синус пи .
sin π = sin 180 = 0
таким образом, синус пи — это тоже самое, что синус 180 градусов и он равен нулю.

2. Косинус пи .
cos π = cos 180 = -1
таким образом, косинус пи — это тоже самое, что косинус 180 градусов и он равен минус единице.

3. Тангенс пи
tg π = tg 180 = 0
таким образом, тангенс пи — это тоже самое, что тангенс 180 градусов и он равен нулю.

Таблица значений синуса, косинуса, тангенса для углов 0 — 360 градусов (часто встречающиеся значения)


значение угла α
(градусов)

значение угла α
в радианах

(через число пи)

sin
(синус)
cos
(косинус)
tg
(тангенс)
ctg
(котангенс)
sec
(секанс)
cosec
(косеканс)
0 0 0 1 0 1
15 π/12 2 — √3 2 + √3
30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
45 π/4 √2/2 √2/2 1 1 √2 √2
60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
75 5π/12 2 + √3 2 — √3
90 π/2 1 0 0 1
105 7π/12
— 2 — √3 √3 — 2
120 2π/3 √3/2 -1/2 -√3 -√3/3
135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
150 5π/6 1/2 -√3/2 -√3/3 -√3
180 π 0 -1 0 -1
210 7π/6 -1/2 -√3/2 √3/3 √3
240 4π/3 -√3/2 -1/2 √3 √3/3
270 3π/2 -1 0 0 -1
360 0 1 0 1

Если в таблице значений тригонометрических функций вместо значения функции указан прочерк (тангенс (tg) 90 градусов, котангенс (ctg) 180 градусов) значит при данном значении градусной меры угла функция не имеет определенного значения. Если же прочерка нет — клетка пуста, значит мы еще не внесли нужное значение. Мы интересуемся, по каким запросам к нам приходят пользователи и дополняем таблицу новыми значениями, несмотря на то, что текущих данных о значениях косинусов, синусов и тангенсов самых часто встречающихся значений углов вполне достаточно для решения большинства задач.

Таблица значений тригонометрических функций sin, cos, tg для наиболее популярных углов


0, 15, 30, 45, 60, 90 … 360 градусов
(цифровые значения «как по таблицам Брадиса»)
значение угла α (градусов) значение угла α в радианах sin (синус) cos (косинус) tg (тангенс) ctg (котангенс)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18

1 рад сколько градусов

Вы искали 1 рад сколько градусов? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и 30 градусов сколько радиан, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «1 рад сколько градусов».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как 1 рад сколько градусов,30 градусов сколько радиан,30 радиан сколько градусов,5 градусов в радианах,90 градусов в радианах,rad перевести в градусы,в пи сколько градусов,в радианах градусы,градус в радиан,градус радиан,градусы в пи,градусы в радианы,градусы в радианы минуты секунды,градусы и радианы,градусы из радианов в градусы,градусы перевести,градусы радианы,из градусов в радианы,из градусы в радианы,из радиан в градусы,из радиан в градусы онлайн,из радиан перевести в градусы,из радианов в градусы,из радианы в градусы,как градусы перевести,как градусы перевести в,как градусы перевести в пи,как из градусов перевести в радианы,как из градусов переводить в радианы,как из радиан перевести в градусы,как перевести в градусы,как перевести в градусы пи,как перевести в радианы число,как перевести в угол в градусы,как перевести градусы в пи,как перевести из градусов в радианы,как перевести из градусов в радианы формула,как перевести из радиан в градусы,как перевести пи в градусы,как перевести радианы в градусы,как перевести радианы в углы,как перевести радианы в угол,как перевести радианы в число,как перевести углы в радианы,как перевести угол из градусов в радианы,как переводить в радианы,как переводить в радианы из градусов,как переводить из градусов в радианы,как переводить из радианов в градусы,как переводить радианы в градусы,как переводить радианы в градусы формула,как пи перевести в градусы,как радианы перевести в градусы онлайн,как радианы перевести в углы,как радианы перевести в число,как число перевести в радианы,калькулятор онлайн радианы в градусы,метры перевести в радианы в,онлайн перевод радианов в градусы,онлайн перевод радианы в градусы,п в градусах,п сколько это градусов,п это сколько градусов,перевести rad в градусы,перевести в градусы,перевести в градусы из радиан,перевести градусы в,перевести градусы в радианы,перевести градусы в радианы формула,перевести из градусов в радианы,перевести из радиан в градусы,перевести метры в радианы в,перевести радианы в градусы,перевести радианы в градусы онлайн,перевести радианы в градусы формула,перевести радианы в угол,перевести угол в радианы,перевод в градусы,перевод в градусы из радиан,перевод в градусы из радиан онлайн,перевод в градусы из радиан формула,перевод в радианов в градусы,перевод градусов в радианы,перевод градусов в радианы формула,перевод градусы в радианы,перевод из градусов в радианы,перевод из радиан в градусы,перевод из радиан в градусы онлайн,перевод из радианов в градусы,перевод радиан в градусы онлайн,перевод радианов в градусы,перевод угла в радианы,перевод углов в радианы,пи в градусах,пи в градусы,пи угол,рад в градусы,рад в градусы онлайн,радиан в градус,радиан в градусы,радиан градус,радианах в градусы,радианы в градусы,радианы в градусы онлайн,радианы в градусы онлайн калькулятор,радианы в градусы перевод онлайн,радианы в градусы формула,радианы в метры перевести в,радианы в углы,радианы в угол,радианы градусы,радианы и градусы,радианы перевести в градусы,радианы перевести в градусы онлайн,радианы перевести в градусы формула,радианы перевести в метры в,радианы перевести в угол,сколько градусов 1 радиане градусов,сколько градусов в 1 радиане,сколько градусов в радиане,сколько радиан в 360 градусах,угол в радианы перевести,угол перевести в радианы,угол пи,формула из градусов в радианы,формула перевести радианы в градусы,формула перевода радиан в градусы. На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и 1 рад сколько градусов. Просто введите задачу в окошко и нажмите «решить» здесь (например, 30 радиан сколько градусов).

Решить задачу 1 рад сколько градусов вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

Программа Python

для преобразования градусов в радианы

Подписывайся Ленин Мишра в питон —

Пример Python для преобразования градусов в радианы и наоборот.

Пример Python для преобразования градусов в радианы и наоборот

Цель

Написать программу Python до перевести градусы в радианы .

Что такое радиан?

Что такое радиан?

Радиан — это мера центрального угла окружности, длина дуги которой равна радиусу окружности.

1 радиан равен 57,3 градуса .

Метод 1

Код

 пи = 22/7
градусов = 5
радианы = градусы * пи / 180
печать (радианы) 

Вывод

 0.0873015873015873 

Метод 2 — Запрос пользовательского ввода

Код

 pi = 22/7
градусы = float(input("Введите градусы ==> "))
радианы = градусы * пи / 180
печать (радианы) 

Вывод

 Ввод градусов ==> 23
0. 40158730158730155 

Способ 3. Использование математического модуля

Вы также можете использовать функции градусов и радиана из модуля math .

  1. Используйте функцию градусов для преобразования радианов в градусы.
  2. Используйте функцию радиан для преобразования градусов в радианы.

Преобразование градусов в радианы

Код/Вывод

 импорт математических
# 0 радиан == 0 градусов
математика.градусы(0)
>>> 0,0
#pi/2 радиана составляет 90 градусов.
math.степени(math.pi/2)
>>> 90,0
#пи радиан это 180 градусов
math.степени(math.pi)
>>> 180,0
#pi+pi/2 радиана составляет 270 градусов.
math.степени(math.pi+(math.pi/2))
>>> 270,0
#2*пи радиан это 360 градусов
math.степени(math.pi+math.pi)
>>> 360,0 

Преобразование радианов в градусы

Код/Вывод

 # Преобразование радианов в градусы
импортировать математику
#0 градусов == 0 радиан
мат.  радианы (0)
>>> 0,0
#90 градусов - это пи/2 радиана
мат. радианы(90)
>>> 1.5707963267948966
#180 градусов это пи радианы
мат.радианы(180)
>>> 3.141592653589793
#270 градусов - это пи+(пи/2) радиан
мат. радианы (270)
>>> 4.71238898038469
#360 градусов это 2*пи радиан
мат. радианы (360)
>>> 6.283185307179586 

Подписаться на пиленина

Не пропустите последние выпуски. Зарегистрируйтесь сейчас, чтобы получить доступ к библиотеке выпусков только для членов.

[email protected]

Подписаться

Пыленин © 2022

Работает на Призраке

Что такое радианы?

Если вы новичок в тригонометрии, возможно, вы впервые слышите термин радиан. И если вы вышли из класса, все еще задаваясь вопросом: «Итак, что такое радиан?», не волнуйтесь: мы вас обеспечим. Хотя поначалу этот термин может показаться запутанным, мы здесь, чтобы помочь понять, что такое радианы, и как они могут помочь вам с легкостью измерять углы.

Что такое радиан?

Проще говоря, радианы — это еще один способ измерения угла вместо использования градусов. Вы просто переключаете единицу измерения. Это как измерять свой рост в сантиметрах, а не в дюймах.

Это простое введение объяснит, что такое радианы и как их вычислить. Мы не используем радианы в повседневной жизни, но вам не нужно бояться этой единицы измерения.

Начнем с основных частей круга:

Дуга может относиться к полному кругу, части круга или даже длиннее круга. В этом примере наша дуга нарисована как полный круг. Окружность — это длина этого круга.

Радиус (сокращенно просто « r ») представляет собой прямую линию от центра круга к его краю. Будьте осторожны, чтобы не спутать «радиус» с нашим похожим по звучанию «радианом».

Как правило, радиус окружности можно использовать для вычисления длины окружности. Формула для вычисления длины окружности:

2πr = длина окружности

Запомните эту формулу, потому что она вернется, когда мы начнем вычислять радианы.

Единицы измерения: Градусы

Градусы (сокращенно ° ) — это еще одна единица измерения, каждая из которых считается 1 из 360 равных частей круга. Полный круг будет равен 360°.

Почему круги разделены на 360 частей? 360 используется по историческим, а не математическим причинам. Древние египтяне исторически измеряли круги как сумму 360 единиц, потому что их система измерения была основана на единицах 60.

Несмотря на математический произвол, степени нам знакомы. Мы используем язык степеней повсюду в повседневной жизни. Такие идиомы, как «изменение на 180°», описывают движение в совершенно противоположном направлении. Получение «360-градусного обзора» чего-либо относится к тщательному взгляду и пониманию. Или в новостях могут сообщить о панорамных камерах НАСА на 360°.

Напротив, радиан довольно специфичны для математики более высокого уровня. Но пусть вас не смущает новинка. Радиан — это просто еще один способ измерения того же угла. Например, вы можете измерить окружность как 360° или примерно как 6,28 радиана.

Как вы измеряете радианы?

Радиан Единица измерения основана на радиусе (поэтому их названия похожи). Возьмите длину радиуса и измерьте дугу. Представьте себе другую линию, соединяющую центр круга с концом этой дуги. Внутренний угол, созданный этими двумя линиями, равен 1 радиусу.

Если вы помните, длина окружности = 2πr . Угол полного круга = 2π радиан.

Как вычислить радианы из градусов?

Угол полного круга можно измерить как 360°. Мы только что узнали, что его также можно измерить как 2π радиан. Таким образом, мы можем записать это как:

360° = 2πрадиан

Упрощение этого уравнения дает нам

180° = πрадиан

Мы можем изменить эту формулу, чтобы вычислить необходимое нам измерение.

180°/π = 1 радиан

или иначе:

1° = π/180 радиан

Иногда вы можете увидеть единичные круги, помеченные следующим образом:

Там слишком много формул, которые нужно запомнить, и запоминание их всех не поможет вам лучше вычислять радианы. градусы и радианы для всей единичной окружности.

Заключительные мысли

Вот и все! Теперь, когда вы понимаете основы работы с радианами, вы готовы приступить к измерению углов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *