Как сложить обыкновенные дроби: Сложение обыкновенных дробей. Онлайн калькулятор

Содержание

Сложение и вычитание обыкновенных дробей

Давайте разберемся, как складывать и вычитать обыкновенные дроби. Данный навык необходим для решения множества задач как и в школьном курсе, так и при сдаче ОГЭ или ЕГЭ по математике. Итак, перейдем к рассмотрению различных примеров.


Сложение и вычитание дробей с одинаковыми знаменателями


Начнем с рассмотрения самого простого примера – сложения и вычитания дробей с одинаковыми знаменателями. В данном случае необходимо просто произвести действия с числителями – сложить их или вычесть.

При сложении и вычитании дробей с одинаковыми знаменателями знаменатель не изменяется!

Главное не производить никакие операции сложения и вычитания в знаменателе, но некоторые школьники забывают об этом. Чтобы лучше понять это правило, прибегнем к принципу визуализации, или говоря простыми словами, рассмотрим жизненный пример:

У Вас есть половина яблока – это ½ от всего яблока. Вам дают еще одну половину, то есть еще ½. Очевидно, что теперь у Вас целое яблоко (не считая, что оно разрезано 🙂 ). Поэтому ½ + ½ = 1, а не что-то другое, как, например, 2/4. Или же у Вас забирают эту половину:  ½ – ½ = 0. В случае вычитания с одинаковыми знаменателями получается вообще особый случай – при вычитании одинаковых знаменателей, мы получим 0, а на 0 делить нельзя, и данная дробь не будет иметь смысла.

Приведем напоследок пример:


Сложение и вычитание дробей с разными знаменателями


Что же делать, если знаменатели разные? Для этого нам необходимо вначале привести дроби к одному знаменателю, а затем действовать как я указал выше.

Приводить дробь к общему знаменателю можно двумя способами. Во всех способах используется одно правило – при умножении числителя и знаменателя на одно и то же число дробь не изменяется.

Существует два способа. Первый – самый простой – так называемый “крест-накрест”.

Он заключается в том, что первую дробь мы умножаем на знаменатель второй дроби (и числитель и знаменатель), а вторую дробь умножаем на знаменатель первой (аналогично и числитель и знаменатель). После этого действуем как в случае с одинаковыми знаменателями – теперь они действительно одинаковые!

Пример:

Предыдущий способ универсален, однако в большинстве случаев у дробей знаменателей можно найти наименьшее общее кратное – число, на которое делится и первый знаменатель и второй, причем самое маленькое. В данном методе нужно уметь видеть такие НОКи, потому что специальный поиск их достаточно ёмкий и уступает по скорости методу “крест-накрест”. Но в большинстве случаев НОКи довольно хороши видны, если набить глаз и достаточно тренироваться.

Пример:

Надеюсь, что теперь Вы в совершенстве владеете методами сложения и вычитания дробей!

Даниил Романович | Просмотров: 2.5k

Обыкновенные дроби.

Конспект — Kid-mama

Из этой статьи вы узнаете:

  1. Что такое обыкновенные дроби.
  2. Виды обыкновенных дробей
  3. Преобразования дробей
  4. Сравнение дробей
  5. Основное свойство дроби. Сокращение дробей. Понятие о НОД.
  6. Как приводить дроби к одному знаменателю. НОК
  7. Сложение и вычитание дробей.
  8. Умножение и деление дробей. Взаимно обратные числа и дроби.

 Что такое обыкновенные дроби. Виды дробей.

Дробь всегда означает какую то часть целого. Дело в том, что не всегда количество можно передать натуральными числами, то есть пересчитать: 1,2,3 и т.д.  Как, например, обозначить половину арбуза или четверть часа? Вот для этого и появились дробные числа, или дроби.

Для начала нужно сказать, что вообще дробей бывает два вида: обыкновенные дроби и десятичные дроби. Обыкновенные дроби записываются так:
Десятичные дроби записываются по другому:


Обыкновенные дроби состоят из двух частей: вверху — числитель, внизу — знаменатель.  Числитель и знаменатель разделяет дробная черта. Итак, запомните:

Любая дробь — это часть целого. За целое обычно принимают  1 (единицу). Знаменатель дроби показывает, на сколько частей разделили целое (1), а числитель — сколько частей взяли. Если мы разрезали торт на 6 одинаковых частей ( в математике говорят долей ), то каждая часть торта будет равна 1/6. Если Вася съел 4 куска, то значит, он съел 4/6 .

С другой стороны, дробная черта — это не что иное, как знак деления. Поэтому дробь — это частное двух чисел — числителя и знаменателя. В тексте задач или в рецептах блюд  дроби записываются обычно так: 2/3,  1/2  и т.д. Некоторые дроби получили собственное название, например, 1/2 — «половина», 1/3 — «треть», 1/4 — «четверть»
А теперь разберемся, какие бывают виды обыкновенных дробей.

 Виды обыкновенных дробей

Обыкновенные дроби бывают трех видов: правильные, неправильные и смешанные:

Правильная дробь

Если числитель меньше, чем знаменатель, то такую дробь называют правильной, например:  Правильная дробь всегда меньше 1.

Неправильная дробь

Если числитель больше, чем знаменатель или равен знаменателю, такая дробь называется неправильной, например:

Неправильная дробь больше единицы(если числитель больше знаменателя) или равна единице (если числитель равен знаменателю)

Смешанная дробь

Если дробь состоит из целого числа (целая часть) и правильной дроби (дробная часть), то такая дробь называется смешанной, например:

Смешанная дробь всегда больше единицы.

 

 Преобразования дробей

В математике обыкновенные дроби часто приходится преобразовывать, то есть смешанную дробь превращать в неправильную и наоборот. Это необходимо для выполнения некоторых действий, например, умножения и деления.

Итак, любую смешанную дробь можно перевести в неправильную. Для этого целую часть умножают на знаменатель и прибавляют числитель дробной части. Полученную сумму берут числителем, а знаменатель оставляют тот же, например:

Любую неправильную дробь можно превратить в смешанную. Для этого делят числитель на знаменатель (с остатком). Полученное число будет целой частью, а остаток — числителем дробной части, например:

При этом говорят: «Мы выделили целую часть из неправильной дроби».

Необходимо запомнить еще одно правило: Любое целое число можно представить в виде обыкновенной дроби со знаменателем 1, например:

Поговорим о том, как сравнивать дроби.

 Сравнение дробей

При сравнении дробей может быть несколько вариантов: Легко сравнивать дроби с одинаковыми знаменателями, гораздо сложнее — если знаменатели разные. А есть еще и сравнение смешанных дробей. Но не волнуйтесь, сейчас мы подробно рассмотрим каждый вариант и научимся сравнивать дроби.

Сравнение дробей с одинаковыми знаменателями

Из двух дробей с одинаковыми знаменателями, но разными числителями больше та дробь, у которой числитель больше, например:

Сравнение дробей с одинаковыми числителями

Из двух дробей с одинаковыми числителями, но разными знаменателями больше та дробь, у которой знаменатель меньше, например:

Сравнение смешанных и неправильных дробей с правильными дробями

Неправильная или смешанная дробь всегда больше правильной дроби, например:

Сравнение двух смешанных дробей

При сравнении двух смешанных дробей больше та дробь, у которой целая часть больше, например:

Если целые части у смешанных дробей одинаковые, больше та дробь, у которой дробная часть больше, например:

Сравнение дробей с разными числителями и знаменателями

Сравнивать дроби с разными числителями и знаменателями без их преобразования нельзя. Сначала дроби нужно привести к одному знаменателю, а затем  сравнить их числители. Больше та дробь, у которой числитель будет больше. А вот как приводить дроби к одинаковому знаменателю, мы рассмотрим в следующих двух разделах статьи статьи. Сначала мы рассмотрим основное свойство дроби и сокращение дробей, а затем непосредственно приведение дробей к одному знаменателю.

Основное свойство дроби. Сокращение дробей. Понятие о НОД.

Запомните: складывать и вычитать, а также сравнивать можно только дроби, у которых одинаковые знаменатели. Если знаменатели разные, то сначала нужно привести дроби к одному знаменателю, то есть так преобразовать одну из дробей, чтобы ее знаменатель стал таким же, как у второй дроби.

У дробей есть одно важное свойство, называемое также основным свойством дроби:

Если и числитель, и знаменатель дроби умножить или разделить на одно и то же число, то величина дроби при этом  не изменится:

Благодаря этому свойству мы можем сокращать дроби:

Сократить дробь — значит разделить и числитель, и знаменатель на одно и то же число(смотрите пример чуть выше). Когда мы сокращаем дробь, то можно расписать наши действия так:

Чаще же в тетради сокращают дробь так:

Но запомните: сокращать можно только множители. Если в числителе или знаменателе сумма или разность, сокращать слагаемые нельзя. Пример:

Нужно сначала преобразовать сумму в множитель:

Иногда, при работе с большими числами,  для того, чтобы сократить дробь, удобно найти наибольший общий делитель числителя и знаменателя (НОД)

Наибольший общий делитель (НОД) нескольких чисел — это наибольшее натуральное число, на которое эти числа делятся без остатка.

Для того, чтобы найти НОД двух чисел (например, числителя и знаменателя дроби), нужно разложить оба числа на простые множители, отметить одинаковые множители в обоих разложениях, и перемножить эти множители. Полученное произведение и будет НОД. Например, нам нужно сократить дробь:

Найдем НОД чисел 96 и 36:

НОД нам показывает, что и в числителе, и в знаменателе есть множитель12, и мы легко сокращаем дробь.

Иногда, чтобы привести дроби к одному знаменателю, достаточно сократить одну из дробей. Но чаще бывает необходимо подбирать дополнительные множители для обеих дробей .Сейчас мы рассмотрим, как это делается. Итак:

 Как приводить дроби к одному знаменателю. Наименьшее общее кратное (НОК).

Когда мы приводим дроби к одинаковому знаменателю, мы подбираем для знаменателя такое число, которое бы делилось и на первый, и на второй знаменатель (то есть было бы кратным обоим знаменателям, выражаясь математическим языком). И желательно, чтобы  число это было как можно меньшим, так удобнее считать. Таким образом, мы должны найти НОК обоих знаменателей.

Наименьшее общее кратное двух чисел (НОК) — это наименьшее натуральное число, которое делится на оба эти числа без остатка. Иногда НОК можно подобрать устно, но чаще, особенно при работе с большими числами, приходится находить НОК письменно, с помощью следующего алгоритма:

Для того, чтобы найти НОК нескольких чисел, нужно:

  1. Разложить эти числа на простые множители
  2. Взять самое большое разложение, и записать эти числа в виде произведения
  3. Выделить в других разложениях числа, которые не встречаются в самом большом разложении (или встречаются в нем меньшее число раз), и добавить их к произведению.
  4. Перемножить все числа в произведении, это и будет НОК.

Например, найдем НОК чисел 28 и 21:

Однако вернемся к нашим дробям. После того, как мы подобрали или письменно вычислили НОК  обоих знаменателей, мы должны умножить числители этих дробей на дополнительные множители. Найти их можно, разделив НОК на знаменатель соответствующей дроби, например:

 

Таким образом мы привели наши дроби к одному знаменателю — 15.

Сложение и вычитание дробей

Сложение и вычитание дробей с одинаковыми знаменателями

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же, например:

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тот же, например:

Сложение и вычитание смешанных дробей с одинаковыми знаменателями

Чтобы сложить смешанные дроби, надо отдельно сложить их целые части, а затем сложить их дробные части, и записать результат смешанной дробью:

Пример 1:

Пример 2:

Если при сложении дробных частей получилась неправильная дробь, выделяем из нее целую часть и прибавляем ее к целой части, например:

Вычитание проводится аналогично: целая часть вычитается из целой, а дробная — из дробной части:

Если дробная часть вычитаемого больше, чем дробная часть уменьшаемого, «занимаем» единицу из целой части, превращая уменьшаемое в неправильную дробь, а дальше действуем как обычно:

Аналогично вычитаем из целого числа дробь:

Как сложить целое число и дробь

Для того, чтобы сложить целое число и дробь, нужно просто добавить это число перед дробью, при этом получится смешанная дробь, например:

Если мы складываем целое число и смешанную дробь, мы прибавляем это число к целой части дроби, например:

Сложение и вычитание дробей  с разными знаменателями.

Для того, чтобы сложить или вычесть дроби с разными знаменателями, нужно сначала привести их к одному знаменателю, а дальше действовать, как при сложении дробей с одинаковыми знаменателями (сложить числители):

При вычитании действуем аналогично:

Если работаем со смешанными дробями, приводим к одинаковому знаменателю их дробные части и далее вычитаем как обычно: целую часть из целой, а дробную — из дробной части:

 Умножение и деление дробей.

Умножать и делить обыкновенные дроби гораздо проще, чем складывать и вычитать, так как не нужно приводить их к одному знаменателю. Запомните простые правила умножения и деления дробей:

Чтобы умножить дробь на натуральное число, нужно числитель умножить на это число, а знаменатель оставить без изменений  

Например:

Чтобы умножить дробь на дробь, нужно числитель умножить на числитель, а знаменатель — на знаменатель:

Например:

При умножении смешанных дробей нужно сначала записать эти дроби в виде неправильных дробей, а затем умножать как обычно: числитель умножить на числитель, а знаменатель на знаменатель:

Перед тем, как перемножать числа в числителе и знаменателе желательно сократить дробь, то есть избавиться от одинаковых множителей в числителе и знаменателе, как в нашем примере.

Чтобы  разделить дробь на натуральное число, нужно знаменатель умножить на это число, а числитель оставить без изменений:

Например:

Деление дроби на дробь

Чтобы разделить одну дробь на другую, нужно делимое умножить на число, обратное делителю (обратную дробь).Что же это за обратная дробь?

Взаимно обратные числа и дроби.

Если мы перевернем дробь, то есть поменяем местами числитель и знаменатель, то получим обратную дробь. Произведение дроби и обратной ей дроби дает единицу. В математике такие числа называют взаимно обратными числами:

Например, числа — взаимно обратные, так как 

Таким образом, вернемся к делению дроби на дробь:

Чтобы разделить одну дробь на другую, нужно делимое умножить на дробь, обратную делителю:

Например:

При делении смешанных дробей нужно так же, как и при умножении, сначала перевести их в неправильные дроби:

При умножении и делении дробей на целые натуральные числа, можно представлять эти числа так же в виде дробей со знаменателем 1.

И при делении целого числа на дробь  представляем это число в виде дроби со знаменателем 1:

 

Сложение и вычитание смешанных дробей

Смешанная дробь представляет собой
целое число и дробь вместе:


1 3 4
(одна и три четверти)

Чтобы их было проще складывать и вычитать, сначала преобразуйте их в неправильные дроби:

Неправильная дробь имеет
верхнее число больше или равное
нижнее число:


7 4
(семь четвертей или семь четвертей)

Видите ли вы, что 1 3 4 совпадает с

7 4 ?

Другими словами, «одна и три четверти» — это то же самое, что и «семь четвертей».

(Возможно, вы захотите прочитать, как конвертировать из или в смешанные дроби)

Добавление смешанных фракций

Для добавления смешанных фракций:

  • преобразовать их в неправильные дроби
  • затем добавьте их (используя сложение дробей)
  • , затем конвертируйте обратно в смешанные дроби
Например:

Пример: Что такое  2

3 4 + 3 1 2 ?

Преобразование в неправильные дроби:

2 3 4 «=» 11 4

3 1 2 «=» 7 2

Общий знаменатель 4:

11 4 остается как 11 4

7 2 становится 14 4
(путем умножения верхнего и нижнего на 2)

Теперь добавьте:

11 4 + 14 4 «=» 25 4

Преобразование обратно в смешанные дроби:

25 4 =  6 1 4

Когда вы получите больше опыта, вы сможете делать это быстрее, как в этом примере:

Пример: что такое 3

5 8 + 1 3 4

Преобразовать их в неправильные дроби:

3 5 8 «=» 29 8
1 3 4 «=» 7 4

Сделать тот же знаменатель: 7 4 становится 14 8 (умножив верх и низ на 2)

И добавить:

29 8 + 14 8 «=»

43 8 =  5 3 8

 

Вычитание смешанных дробей

Просто следуйте тому же методу, но вместо прибавления вычитайте:

Пример: что такое 15

3 4 − 8 5 6 ?

Преобразование в неправильные дроби:

15 3 4 «=» 63 4

8 5 6 «=» 53 6

Общий знаменатель 12:

63 4 становится 189 12

53

6 становится 106 12

Теперь вычесть:

189 12 106 12 «=» 83 12

Преобразование обратно в смешанные дроби:

83 12 =  6 11 12

 

935, 1414, 1415, 1416, 936, 1417, 3585, 3586, 3587

Добавление дробей | Сложение дробей с разными знаменателями

Сложение дробей немного отличается от обычного сложения чисел, поскольку дробь имеет числитель и знаменатель, разделенные чертой. сложение дробей можно легко сделать, если знаменатели равны. В то время как одинаковые дроби имеют общие знаменатели, разные дроби преобразуются в одинаковые дроби, чтобы упростить сложение. Давайте узнаем больше о

добавлении дробей и о том, как добавить две дроби в этой статье.

1. Как складывать дроби?
2. Сложение дробей с одинаковыми знаменателями
3. Сложение дробей с разными знаменателями
4. Сложение дробей с целыми числами
5. Добавление дробей с переменными
6. Часто задаваемые вопросы о сложении дробей

Как складывать дроби?

Дроби являются частью целого. Прежде чем перейти к сложению дробей, давайте быстро повторим, что такое дроби. Дроби состоят из двух частей, числителя и знаменателя. Общее представление дроби — это a/b, где «a» — числитель, «b» — знаменатель, а «b» не может быть нулевым. Например, 2/3, 14/5, 6/7, 28/9.и 21/43. Как и с другими числами, мы можем выполнять арифметические операции сложения, вычитания, умножения и деления дробей. Сложение дробей означает нахождение суммы двух или более дробей. Теперь давайте изучим основные шага сложения дробей с помощью следующего примера.

Пример: Сложить 1/4 + 2/4

Решение: Сложим эти дроби, выполнив следующие действия.

  • Шаг 1: Проверьте, совпадают ли знаменатели. (Здесь знаменатели совпадают, поэтому переходим к следующему шагу)
  • Шаг 2: Сложите числители и поместите сумму над общим знаменателем. Это означает, что (1 + 2)/4 = 3/4
  • Шаг 3: При необходимости упростите дробь до наименьшей формы. Здесь он не нужен. Итак, сумма данных дробей равна 1/4 + 2/4 = 3/4
  • .

В математике есть разные типы дробей. При добавлении дробей нам нужно проверить, похожи ли они на дроби или не похожи на дроби. Однородные дроби — это группа дробей с общим знаменателем, а разные дроби — это группа дробей с разными знаменателями. Изучая сложение дробей, мы можем столкнуться со следующими сценариями.

  • Сложение дробей с одинаковыми знаменателями: 3/4 + 1/4
  • Сложение дробей с разными знаменателями: 3/5 + 1/2
  • Сложение дробей с целыми числами: 1/2 + 2
  • Сложение дробей с переменными: 3/5 лет + 1/4 года

Теперь давайте более подробно узнаем о вышеупомянутых случаях.

Сложение дробей с одинаковыми знаменателями

Сложение дробей с одинаковыми знаменателями осуществляется путем записи суммы числителей над общим знаменателем. Давайте разберемся, как складывать дроби с одинаковым знаменателем на примере.

Пример: Сложите дроби 2/4 + 1/4

Решение: Мы видим, что знаменатели данных дробей совпадают. Эти дроби называются подобными дробям.

Сложение одинаковых дробей можно произвести, сложив числители данных дробей и сохранив общий знаменатель. В этом случае мы сохраняем знаменатель равным 4 и добавляем числители. Это можно выразить как 2/4 + 1/4 = (2 + 1)/4 = 3/4. Это дает сумму как 3/4.

Сложение дробей с разными знаменателями

Мы только что научились складывать дроби с одинаковыми знаменателями. Теперь давайте разберемся, как складывать дроби с разными или непохожими знаменателями. Когда знаменатели различны, дроби называются неодинаковыми. В таких дробях первым делом нужно преобразовать их в подобные дроби, чтобы знаменатели стали общими. Это делается путем нахождения наименьшего общего кратного (НОК) знаменателей. Давайте разберемся в этом с помощью следующего примера.

Пример: Сложите дроби 1/3 и 3/5.

Решение: Мы будем использовать следующие шаги, чтобы сложить эти дроби.

  • Шаг 1: Поскольку знаменатели в данных дробях разные, мы находим НОК 3 и 5, чтобы сделать их одинаковыми. НОК 3 и 5 = 15,
  • Шаг 2: Теперь умножьте 1/3 на 5/5, (1/3) × (5/5) = 5/15 и 3/5 на 3/3, (3/5) × (3 /3) = 9/15, что преобразует их в одинаковые дроби с одинаковыми знаменателями.
  • Шаг 3: Теперь знаменатели совпадают, поэтому мы просто складываем числители и записываем сумму над общим знаменателем. Новые дроби с общими знаменателями — 5/15 и 9/15. Итак, 5/15 + 9/15 = (5 + 9)/15 = 14/15.

Сложение дробей с целыми числами

Простой способ сложить целое число и правильную дробь состоит в том, чтобы объединить их и представить в виде смешанной дроби. Например, 5 + 1/2 можно объединить и выразить как 5½ = 11/2. Точно так же 3 + 1/7 = \(3\frac{1}{7} \) = 22/7. Однако есть и другой способ сложения дробей с целыми числами. Давайте поймем это с помощью следующего примера.

Пример: Сложить 3 + 4/5

Решение: Сложим эти числа, используя следующие шаги:

  • Шаг 1: запись 1 в качестве его знаменателя. Здесь 3 — это целое число, и его можно записать как 3/1
  • .
  • Шаг 2: Теперь к 4/5 можно добавить 3/1, то есть 3/1 + 4/5. Мы добавим их, сделав знаменатели одинаковыми, потому что они не похожи на дроби. Отсюда следует, что (3/1) + (4/5) = (3/1) × (5/5) + (4/5) × (1/1) = 15/5 + 4/5 = 19./ 5 = \ (3 \ гидроразрыва {4} {5} \)

Сложение дробей с переменными

Теперь, когда мы увидели сложение дробей с одинаковыми и непохожими дробями, мы можем расширить ту же концепцию для сложения дробей с переменными. Давайте разберемся в этом с помощью следующего примера.

Пример: Добавьте y/5 + 2y/5, где ‘y’ — переменная.

Решение: Складываем эти дроби, используя следующие шаги:

  • Шаг 1: Данные дроби y/5 + 2y/5 подобны дробям, поскольку у них один и тот же знаменатель, и мы видим, что ‘y’ является общим.
  • Шаг 2: Мы можем убрать общий множитель и переписать его как: y/5 + 2y/5 = (1/5 + 2/5)y = 3y/5
  • Шаг 3: Следовательно, сумма y/5 + 2y/5 = 3y/5

Теперь давайте научимся складывать разные дроби на следующем примере.

Пример: Добавить у/2 + у/3

Решение: Давайте сложим дроби, используя следующие шаги.

  • Шаг 1: Поскольку данные дроби y/2 + y/3 не похожи друг на друга, мы возьмем НОК знаменателей и преобразуем их в подобные дроби.
  • Шаг 4: Далее нам нужно взять общую переменную и переписать ее следующим образом: LCM (2, 3) = 6; y/2 = (y/2) × (3/3) = 3y/6 и y/3 = (y/3 × (2/2) = 2y/6
  • Шаг 5: Мы получили две дроби с общими знаменателями, (3y/6) + (2y/6) = (3y + 2y)/6 = 5y/6. Следовательно, сумма y/2 + y/3 = 5y/6

Следует отметить, что в некоторых случаях, когда у нас есть разные переменные, такие как «x» и «y», они рассматриваются как разные термины и не могут быть дополнительно упрощены, например, x/2 + y/3

Советы и рекомендации по сложению дробей

При работе со сложением дробей полезно помнить следующие моменты:

  • В отличие от дробей, мы не складываем числители и знаменатели напрямую. 1/5 + 2/3 ≠ 3/8
  • Чтобы сложить разные дроби, сначала преобразуйте данные дроби в одинаковые дроби, взяв НОК знаменателей.
  • Сложите числители и сохраните общий знаменатель, чтобы получить сумму дробей.

☛ Похожие темы

  • Вычитание дробей
  • Умножение дробей
  • Деление дробей
  • Подобные дроби и отличные дроби
  • Добавление калькулятора дробей

 

Сложение дробей Примеры

  1. Пример 1: Сложите следующие дроби: 1/7 и 3/7

    Решение:

    Данные дроби подобны дробям. Для сложения одинаковых дробей складываем числители и сохраняем общий знаменатель. Это означает, что 1/7 + 3/7 = (1 + 3)/7 = 4/7

  2. Пример 2: Добавьте следующие дроби: 2/5 и 2/3

    Решение:

    Данные дроби не похожи друг на друга. Для сложения дробей с разными знаменателями необходимо найти НОК знаменателей и преобразовать 2/5 и 2/3 в дроби с общим знаменателем. LCM 3 и 5 равно 15.
    2/5 + 2/3 = (2/5 × 3/3) + (2/3 × 5/5)

    = 6/15 + 10/15

    = (6 + 10)/15

    = 16/15

    = \(1 \dfrac{1}{15}\)

    Следовательно, сумма равна \(1 \dfrac{1}{15}\)

  3. Пример 3: Как сложить целое число и дробь: 3 + 1/3?

    Решение:

    Этот вопрос основан на сложении дробей с целыми числами. Целое число 3 можно записать в виде дроби как 3/1. Теперь

    3 + 1/3 = 3/1 + 1/3

    = (3/1 × 3/3) + 1/3

    = 9/3 + 1/3

    = (9 + 1 )/3

    = 10/3

    = \(3 \frac{1}{3} \)

    Следовательно, сумма равна \(3\frac{1}{3}\)

перейти к слайдуперейти к слайдуперейти к слайду

Есть вопросы по основным математическим понятиям?

Станьте чемпионом по решению проблем, используя логику, а не правила. Узнайте, почему математика стоит за нашими сертифицированными экспертами

Запишитесь на бесплатный пробный урок

Практические вопросы по сложению дробей

 

перейти к слайдуперейти к слайду

Часто задаваемые вопросы о сложении дробей

Как складывать дроби?

Процесс сложения дробей немного отличается от обычного сложения целых чисел. Первым шагом при сложении дробей является проверка, совпадают ли знаменатели данных дробей. Затем мы используем следующую процедуру, чтобы добавить их.

  • Если дроби имеют общие знаменатели, то мы можем легко сложить числители и сохранить тот же знаменатель, чтобы получить сумму. Например, 2/4 + 1/4 = (2 + 1)/4 = 3/4
  • Если знаменатели разные, мы делаем знаменатели равными, переводя их в эквивалентные дроби, находя НОК знаменателей. После этого можно делать прибавку. Например, 1/2 + 2/3 = (1/2 × 3/3) + (2/3 × 2/2) = 3/6 + 4/6 = (3 + 4)/6 = 7/6. = \(1 \dfrac{1}{6}\)

Каково правило сложения дробей?

Основное правило сложения дробей – знаменатели дробей должны быть одинаковыми. Если дроби имеют одинаковый знаменатель, мы можем просто сложить числители, сохраняя тот же знаменатель. Однако, если знаменатели разные, нам нужно преобразовать их в одинаковые дроби с одинаковыми знаменателями. Это делается путем записи их эквивалентных дробей с использованием НОК знаменателей. Как только они преобразуются в одинаковые дроби, дроби можно легко складывать, потому что нам просто нужно работать с числителями, сохраняя при этом тот же знаменатель.

Как складывать дроби с целыми числами?

Чтобы сложить дробь с целым числом, мы сначала преобразуем целое число в дробь. Например, если нам нужно сложить 3 и 1/2, целое число 3 можно легко преобразовать в дробь, например 3/1, и прибавить к другой дроби. Давайте посмотрим, как это работает. (3/1) + (1/2) = (3/1) × (2/2) + (1/2) = 6/2 + 1/2 = 7/2 = 3½. Другой способ складывать дроби и целые числа — просто комбинировать и представлять их в виде смешанных дробей. Например, 6 + 1/2 можно объединить и записать как \(6 \dfrac{1}{2}\)

Как складывать дроби с разными знаменателями?

Дроби с разными знаменателями можно сложить, сделав знаменатели общими. Это делается путем умножения числителя и знаменателя каждой из дробей на подходящее число так, чтобы все дроби стали как дроби. Чтобы сложить дроби 3/5 + 4/3, нам нужно обе дроби умножить на число, при котором знаменатели равны. Для этого нам понадобится НОК знаменателей, который в данном случае равен 15. Числитель и знаменатель первой дроби 3/5 нужно умножить на 3, а числитель и знаменатель второй дроби 4/3 умножить на 5. Следовательно, мы имеем (3/5 × 3/3) + (4/3 × 5/5) = (9/15) + (20/15) = (9 + 20)/15 = 29/15 = \(1 \dfrac{14}{15}\)

Как сложить 3 дроби с разными знаменателями?

Сложение трех дробей аналогично сложению двух дробей с разными знаменателями. Прежде всего, нам нужны НОК всех трех знаменателей. Соответственно, знаменатели всех трех дробей становятся общими путем умножения числителя и знаменателя каждой из дробей на подходящее число, чтобы они были преобразованы в одинаковые дроби. Теперь, когда знаменатели являются общими, добавляются числители, чтобы получить сумму дроби. Давайте поймем это с помощью этой задачи на сложение: 2/3 + 4/5 + 1/6. НОК 3, 5 и 6 равен 30. Теперь мы умножим каждую дробь на подходящее число, чтобы их знаменатели были общими: (2/3 × 10/10) + (4/5 × 6/6) + ( 1/6 × 5/5) = (20/30) + (24/30) + (5/30) = (20 + 24 + 5)/30 = 49/30 = \(1 \dfrac{19}{30}\)

Что такое элемент идентичности для сложения дробей?

Идентификационным элементом для сложения является 0, что означает, что для любого действительного числа «а» а + 0 = а. Точно так же для сложения дробей элемент идентичности равен 0. Для дроби вида a/b имеем a/b + 0 = 0 + a/b = a/b. Использование элемента идентичности для сложения не меняет значения дроби.

Что такое вычитание и сложение дробей?

При вычитании и сложении дробей, во-первых, следует приравнять знаменатели дробей. Если знаменатели совпадают, мы можем легко складывать или вычитать дроби. Однако, если дроби имеют разные знаменатели, то процесс начинается с LCM (наименьшего общего кратного) знаменателей. Затем дроби умножаются на подходящее число, в результате чего все знаменатели становятся равными. Наконец, числители добавляются или вычитаются в соответствии с вопросом, а новый знаменатель остается прежним.

Как складывать дроби с одинаковыми знаменателями?

Чтобы складывать дроби с одинаковыми знаменателями, мы можем просто сложить числители и оставить знаменатель прежним. Например, сложим 3/7 + 2/7. Так как дроби имеют одинаковые знаменатели, нам просто нужно сложить числители. Итак, это будет 3/7 + 2/7 = (3 + 2)/7 = 5/7

Как складывать неправильные дроби?

Для сложения неправильных дробей используем те же правила сложения дробей. Например, сложим 8/3 + 7/3. Так как дроби имеют одинаковые знаменатели, нам просто нужно сложить числители. Таким образом, это будет 8/3 + 7/3 = (8 + 7)/3 = 15/3 = 5·9.0008

Как шаг за шагом складывать смешанные дроби?

Сложение смешанных чисел осуществляется по тем же правилам сложения дробей. Единственный дополнительный шаг — преобразовать смешанные дроби в неправильные дроби. Давайте разберемся в этом на примере. Давайте добавим \(6 \dfrac{1}{2}\) + \(3 \dfrac{3}{4}\), используя следующие шаги.

  • Шаг 1: Чтобы сложить \(6 \dfrac{1}{2}\) + \(3 \dfrac{3}{4}\), преобразуем эти смешанные дроби в неправильные дроби. Это будет 13/2 + 15/4
  • Шаг 2: Теперь воспользуемся основными правилами сложения. Здесь знаменатели разные, поэтому мы преобразуем их в эквивалентные дроби, чтобы их знаменатели стали одинаковыми.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *