Логарифм десятичный 5: Калькулятор десятичный логарифм

Логарифм 1000 по основанию 0 5. Что такое логарифм

ОПРЕДЕЛЕНИЕ

Десятичным логарифмом называется логарифм по основанию 10:

Title=»Rendered by QuickLaTeX.com»>

Этот логарифм является решением показательного уравнения . Иногда (особенно в зарубежной литературе) десятичный логарифм обозначается еще как , хотя первые два обозначения присущи и натуральному логарифму.

Первые таблицы десятичных логарифмов были опубликованы английским математиком Генри Бригсом (1561-1630) в 1617 г. (поэтому иностранные ученые часто называют десятичные логарифмы еще бригсовыми), но эти таблицы содержали ошибки. На основе таблиц (1783 г.) словенского и австрийского математики Георга Барталомея Веги (Юрий Веха или Веховец, 1754-1802) в 1857 г. немецкий астроном и геодезист Карл Бремикер (1804-1877) опубликовал первое безошибочное издание. При участии русского математика и педагога Леонтия Филипповича Магницкого (Телятин или Теляшин, 1669-1739) в 1703 г. в России были изданы первые таблицы логарифмов.

Десятичные логарифмы широко применялись для вычислений.

Свойства десятичных логарифмов

Этот логарифм обладает всеми свойствами, присущими логарифму по произвольному основанию:

1. Основное логарифмическое тождество:

5. .

7. Переход к новому основанию:

Функция десятичного логарифма — это функция . График этой кривой часто называют логарифмикой .

Свойства функции y=lg x

1) Область определения: .

2) Множество значений: .

3) Функция общего вида.

4) Функция непериодическая.

5) График функции пересекается с осью абсцисс в точке .

6) Промежутки знакопостоянства: title=»Rendered by QuickLaTeX.com»> для та для .

Нередко берут цифру десять. Логарифмы чисел по основанию десять именуют десятичными . При проведении вычислений с десятичным логарифмом общепринято оперировать знаком lg , а не log ; при этом число десять, определяющие основание, не указывают. Так, заменяем log 10 105 на упрощенное lg105

; а log 10 2 на lg2 .

Для десятичных логарифмов типичны те же особенности, которые есть у логарифмов при основании, большем единицы. А именно, десятичные логарифмы характеризуются исключительно для положительных чисел. Десятичные логарифмы чисел, больших единицы, положительны, а чисел, меньших единицы, отрицательны; из двух не отрицательных чисел большему эквивалентен и больший десятичный логарифм и т. д. Дополнительно, десятичные логарифмы имеют отличительные черты и своеобразные признаки, которыми и поясняется, зачем в качестве основания логарифмов комфортно предпочитать именно цифру десять.

Перед тем как разобрать эти свойства, ознакомимся с нижеследующими формулировками.

Целая часть десятичного логарифма числа а именуется характеристикой , а дробная — мантиссой этого логарифма.

Характеристика десятичного логарифма числа

а указывается как , а мантисса как {lg а }.

Возьмем, скажем, lg 2 ≈ 0,3010.Соответственно = 0, {lg 2} ≈ 0,3010.

Подобно и для lg 543,1 ≈2,7349. Соответственно, = 2, {lg 543,1}≈ 0,7349.

Достаточно повсеместно употребляется вычисление десятичных логарифмов положительных чисел по таблицам.

Характерные признаки десятичных логарифмов.

Первый признак десятичного логарифма. целого не отрицательного числа, представленного единицей со следующими нулями, есть целое положительное число, равное численности нулей в записи выбранного числа.

Возьмем, lg 100 = 2, lg 1 00000 = 5.

Обобщенно, если

То а = 10 n , из чего получаем

lg a = lg 10 n = n lg 10 = п .

Второй признак. Десятичный логарифм положительной десятичной дроби , показанный единицей с предыдущими нулями, равен —

п , где п — численность нулей в представлении этого числа, учитывая и нуль целых.

Рассмотрим, lg 0,001 = — 3, lg 0,000001 =-6.

Обобщенно, если

,

То a = 10 -n и получается

lga= lg 10 n =-n lg 10 =-п

Третий признак. Характеристика десятичного логарифма не отрицательного числа, большего единицы, равна численности цифр в целой части этого числа исключая одну.

Разберем данный признак 1) Характеристика логарифма lg 75,631 приравнена к 1.

И правда, 10

lg 10

1 .

Отсюда следует,

lg 75,631 = 1 +б,

Смещение запятой в десятичной дроби вправо или влево равнозначно операции перемножения этой дроби на степень числа десять с целым показателем п (положительным или отрицательным). И следовательно, при смещении запятой в положительной десятичной дроби влево или вправо мантисса десятичного логарифма этой дроби не меняется.

Так, {lg 0,0053} = {lg 0,53} = {lg 0,0000053}.

Итак, перед нами степени двойки. Если взять число из нижней строчки, то можно легко найти степень, в которую придется возвести двойку, чтобы получилось это число. Например, чтобы получить 16, надо два возвести в четвертую степень. А чтобы получить 64, надо два возвести в шестую степень. Это видно из таблицы.

А теперь — собственно, определение логарифма:

Логарифм по основанию a от аргумента x — это степень, в которую надо возвести число a , чтобы получить число x .

Обозначение: log a x = b , где a — основание, x — аргумент, b — собственно, чему равен логарифм.

Например, 2 3 = 8 ⇒ log 2 8 = 3 (логарифм по основанию 2 от числа 8 равен трем, поскольку 2 3 = 8). С тем же успехом log 2 64 = 6, поскольку 2 6 = 64.

Операцию нахождения логарифма числа по заданному основанию называют логарифмированием. Итак, дополним нашу таблицу новой строкой:

2 12 22 32 42 52 6
248163264
log 2 2 = 1log 2 4 = 2log 2 8 = 3log 2 16 = 4log 2 32 = 5log 2 64 = 6

К сожалению, далеко не все логарифмы считаются так легко. Например, попробуйте найти log 2 5. Числа 5 нет в таблице, но логика подсказывает, что логарифм будет лежать где-то на отрезке . Потому что 2 2

Такие числа называются иррациональными: цифры после запятой можно писать до бесконечности, и они никогда не повторяются. Если логарифм получается иррациональным, его лучше так и оставить: log 2 5, log 3 8, log 5 100.

Важно понимать, что логарифм — это выражение с двумя переменными (основание и аргумент). Многие на первых порах путают, где находится основание, а где — аргумент. Чтобы избежать досадных недоразумений, просто взгляните на картинку:

[Подпись к рисунку]

Перед нами — не что иное как определение логарифма. Вспомните: логарифм — это степень , в которую надо возвести основание, чтобы получить аргумент. Именно основание возводится в степень — на картинке оно выделено красным. Получается, что основание всегда находится внизу! Это замечательное правило я рассказываю своим ученикам на первом же занятии — и никакой путаницы не возникает.

С определением разобрались — осталось научиться считать логарифмы, т.е. избавляться от знака «log». Для начала отметим, что из определения следует два важных факта:

  1. Аргумент и основание всегда должны быть больше нуля. Это следует из определения степени рациональным показателем, к которому сводится определение логарифма.
  2. Основание должно быть отличным от единицы, поскольку единица в любой степени все равно остается единицей. Из-за этого вопрос «в какую степень надо возвести единицу, чтобы получить двойку» лишен смысла. Нет такой степени!

Такие ограничения называются областью допустимых значений (ОДЗ). Получается, что ОДЗ логарифма выглядит так: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Заметьте, что никаких ограничений на число b (значение логарифма) не накладывается. Например, логарифм вполне может быть отрицательным: log 2 0,5 = −1, т.к. 0,5 = 2 −1 .

Впрочем, сейчас мы рассматриваем лишь числовые выражения, где знать ОДЗ логарифма не требуется.

Все ограничения уже учтены составителями задач. Но когда пойдут логарифмические уравнения и неравенства, требования ОДЗ станут обязательными. Ведь в основании и аргументе могут стоять весьма неслабые конструкции, которые совсем необязательно соответствуют приведенным выше ограничениям.

Теперь рассмотрим общую схему вычисления логарифмов. Она состоит из трех шагов:

  1. Представить основание a и аргумент x в виде степени с минимально возможным основанием, большим единицы. Попутно лучше избавиться от десятичных дробей;
  2. Решить относительно переменной b уравнение: x = a b ;
  3. Полученное число b будет ответом.

Вот и все! Если логарифм окажется иррациональным, это будет видно уже на первом шаге. Требование, чтобы основание было больше единицы, весьма актуально: это снижает вероятность ошибки и значительно упрощает выкладки. Аналогично с десятичными дробями: если сразу перевести их в обычные, ошибок будет в разы меньше.

Посмотрим, как работает эта схема на конкретных примерах:

Задача. Вычислите логарифм: log 5 25

  1. Представим основание и аргумент как степень пятерки: 5 = 5 1 ; 25 = 5 2 ;
  2. Составим и решим уравнение:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2;
  3. Получили ответ: 2.

Задача. Вычислите логарифм:

[Подпись к рисунку]

Задача. Вычислите логарифм: log 4 64

  1. Представим основание и аргумент как степень двойки: 4 = 2 2 ; 64 = 2 6 ;
  2. Составим и решим уравнение:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3;
  3. Получили ответ: 3.

Задача. Вычислите логарифм: log 16 1

  1. Представим основание и аргумент как степень двойки: 16 = 2 4 ; 1 = 2 0 ;
  2. Составим и решим уравнение:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0;
  3. Получили ответ: 0.

Задача. Вычислите логарифм: log 7 14

  1. Представим основание и аргумент как степень семерки: 7 = 7 1 ; 14 в виде степени семерки не представляется, поскольку 7 1
  2. Из предыдущего пункта следует, что логарифм не считается;
  3. Ответ — без изменений: log 7 14.

Небольшое замечание к последнему примеру. Как убедиться, что число не является точной степенью другого числа? Очень просто — достаточно разложить его на простые множители. И если такие множители нельзя собрать в степени с одинаковыми показателями, то и исходное число не является точной степенью.

Задача. Выясните, являются ли точными степенями числа: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 — точная степень, т.к. множитель всего один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 — не является точной степенью, поскольку есть два множителя: 3 и 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 — точная степень;
35 = 7 · 5 — снова не является точной степенью;
14 = 7 · 2 — опять не точная степень;

Заметим также, что сами простые числа всегда являются точными степенями самих себя.

Десятичный логарифм

Некоторые логарифмы встречаются настолько часто, что имеют специальное название и обозначение.

Десятичный логарифм от аргумента x — это логарифм по основанию 10, т. е. степень, в которую надо возвести число 10, чтобы получить число x . Обозначение: lg x .

Например, lg 10 = 1; lg 100 = 2; lg 1000 = 3 — и т.д.

Отныне, когда в учебнике встречается фраза типа «Найдите lg 0,01», знайте: это не опечатка. Это десятичный логарифм. Впрочем, если вам непривычно такое обозначение, его всегда можно переписать:
lg x = log 10 x

Все, что верно для обычных логарифмов, верно и для десятичных.

Натуральный логарифм

Существует еще один логарифм, который имеет собственное обозначение. В некотором смысле, он даже более важен, чем десятичный. Речь идет о натуральном логарифме.

Натуральный логарифм от аргумента x — это логарифм по основанию e , т.е. степень, в которую надо возвести число e , чтобы получить число x . Обозначение: ln x .

Многие спросят: что еще за число e ? Это иррациональное число, его точное значение найти и записать невозможно. Приведу лишь первые его цифры:
e = 2,718281828459. {x}=b.}

Вещественный десятичный логарифм числа b{\displaystyle b} существует, если b>0{\displaystyle b>0} (комплексный десятичный логарифм существует для всех b≠0{\displaystyle b\neq 0}). Международный стандарт ISO 31-11 обозначает его lgb{\displaystyle \lg \,b}. Примеры:

lg1=0;lg10=1;lg100=2{\displaystyle \lg \,1=0;\,\lg \,10=1;\,\lg \,100=2}
lg1000000=6;lg0,1=−1;lg0,001=−3{\displaystyle \lg \,1000000=6;\,\lg \,0{,}1=-1;\,\lg \,0{,}001=-3}

В зарубежной литературе, а также на клавиатуре калькуляторов встречаются и другие обозначения десятичного логарифма: log,Log,Log10{\displaystyle \operatorname {log} ,\operatorname {Log} ,\operatorname {Log10} }, причём следует иметь в виду, что первые 2 варианта могут относиться и к натуральному логарифму.

Содержание

  • 1 Алгебраические свойства
  • 2 Функция десятичного логарифма
  • 3 Применение
  • 4 История
  • 5 Литература
  • 6 Ссылки
  • 7 Примечания

Алгебраические свойства[ | ]

В нижеследующей таблице предполагается, что все значения положительны[1]:

ФормулаПример
Произведениеlg⁡(xy)=lg⁡(x)+lg⁡(y){\displaystyle \lg(xy)=\lg(x)+\lg(y)}lg⁡(10000)=lg⁡(100⋅100)=lg⁡(100)+lg⁡(100)=2+2=4{\displaystyle \lg(10000)=\lg(100\cdot 100)=\lg(100)+\lg(100)=2+2=4}
Частное от деленияlg(xy)=lg⁡(x)−lg⁡(y){\displaystyle \lg \!\left({\frac {x}{y}}\right)=\lg(x)-\lg(y)}lg⁡(11000)=lg⁡(1)−lg⁡(1000)=0−3=−3{\displaystyle \lg \left({\frac {1}{1000}}\right)=\lg(1)-\lg(1000)=0-3=-3}
Степеньlg⁡(xp)=plg⁡(x){\displaystyle \lg(x^{p})=p\lg(x)}lg⁡(10000000)=lg⁡(107)=7lg⁡(10)=7{\displaystyle \lg(10000000)=\lg(10^{7})=7\lg(10)=7}
Кореньlg⁡xp=lg⁡(x)p{\displaystyle \lg {\sqrt[{p}]{x}}={\frac {\lg(x)}{p}}}lg⁡1000=12lg⁡1000=32=1,5{\displaystyle \lg {\sqrt {1000}}={\frac {1}{2}}\lg 1000={\frac {3}{2}}=1{,}5}

Существует очевидное обобщение приведённых формул на случай, когда допускаются отрицательные переменные, например:

lg⁡|xy|=lg⁡(|x|)+lg⁡(|y|),{\displaystyle \lg |xy|=\lg(|x|)+\lg(|y|),}
lg|xy|=lg⁡(|x|)−lg⁡(|y|),{\displaystyle \lg \!\left|{\frac {x}{y}}\right|=\lg(|x|)-\lg(|y|),}

Формула для логарифма произведения без труда обобщается на произвольное количество сомножителей:

lg⁡(x1x2…xn)=lg⁡(x1)+lg⁡(x2)+⋯+lg⁡(xn){\displaystyle \lg(x_{1}x_{2}\dots x_{n})=\lg(x_{1})+\lg(x_{2})+\dots +\lg(x_{n})}

Вышеописанные свойства объясняют, почему применение логарифмов (до изобретения калькуляторов) существенно облегчало вычисления. Например, умножение многозначных чисел x,y{\displaystyle x,y} с помощью логарифмических таблиц[⇨] производилось по следующему алгоритму:

  1. Найти в таблицах логарифмы чисел x,y{\displaystyle x,y}.
  2. Сложить эти логарифмы, получая (согласно первому свойству) логарифм произведения x⋅y{\displaystyle x\cdot y}.
  3. По логарифму произведения найти в таблицах само произведение.

Деление, которое без помощи логарифмов намного более трудоёмко, чем умножение, выполнялось по тому же алгоритму, лишь с заменой сложения логарифмов на вычитание. Аналогично производились возведение в степень и извлечение корня.

Связь десятичного и натурального логарифмов[2]:

ln⁡x≈2,30259 lg⁡x;lg⁡x≈0,43429 ln⁡x{\displaystyle \ln x\approx 2{,}30259\ \lg x;\quad \lg x\approx 0{,}43429\ \ln x}

Знак логарифма зависит от логарифмируемого числа: если оно больше 1, логарифм положителен, если оно между 0 и 1, то отрицателен. Пример:

lg0,012=lg(10−2×1,2)=−2+lg1,2≈−2+0,079181=−1,920819{\displaystyle \lg \,0{,}012=\lg \,(10^{-2}\times 1{,}2)=-2+\lg \,1{,}2\approx -2+0{,}079181=-1{,}920819}

Чтобы унифицировать действия с положительными и отрицательными логарифмами, у последних целая часть (характеристика) надчёркивалась сверху:

lg0,012≈−2+0,079181=2¯,079181{\displaystyle \lg \,0{,}012\approx -2+0{,}079181={\bar {2}}{,}079181}

Мантисса логарифма, выбираемая из таблиц, при таком подходе всегда положительна.

Функция десятичного логарифма[ | ]

Если рассматривать логарифмируемое число как переменную, мы получим функцию десятичного логарифма: y=lgx.{\displaystyle y=\lg \,x.} Она определена при всех x>0.{\displaystyle x>0.} Область значений: E(y)=(−∞;+∞){\displaystyle E(y)=(-\infty ;+\infty )}. График этой кривой часто называется логарифмикой[3].

Функция монотонно возрастает, непрерывна и дифференцируема всюду, где она определена. Производная для неё даётся формулой:

ddxlgx=lgex{\displaystyle {\frac {d}{dx}}\lg \,x={\frac {\lg \,e}{x}}}

Ось ординат (x=0){\displaystyle (x=0)} является вертикальной асимптотой, поскольку:

limx→0+0lgx=−∞{\displaystyle \lim _{x\to 0+0}\lg \,x=-\infty }

Применение[ | ]

Логарифмы по основанию 10 до изобретения в 1970-е годы компактных электронных калькуляторов широко применялись для вычислений. Как и любые другие логарифмы, они позволяли многократно упростить и облегчить трудоёмкие расчёты, заменяя умножение на сложение, а деление на вычитание; аналогично упрощались возведение в степень и извлечение корня. Но десятичные логарифмы обладали преимуществом перед логарифмами с иным основанием: целую часть логарифма числа x{\displaystyle x} (характеристику логарифма) [lg⁡x]{\displaystyle [\lg x]} легко определить.

  • Если x⩾1{\displaystyle x\geqslant 1}, то [lg⁡x]{\displaystyle [\lg x]} на 1 меньше числа цифр в целой части числа x{\displaystyle x}. Например, сразу очевидно, что lg⁡345{\displaystyle \lg 345} находится в промежутке (2,3){\displaystyle (2,3)}.
  • Если 0<x<1{\displaystyle 0<x<1}, то ближайшее к lg⁡x{\displaystyle \lg x} целое в меньшую сторону равно общему числу нулей в x{\displaystyle x} перед первой ненулевой цифрой (включая ноль перед запятой), взятому со знаком минус. Например, lg⁡0,0014{\displaystyle \lg 0{,}0014} находится в интервале (−3,−2){\displaystyle (-3,-2)}.

Кроме того, при переносе десятичной запятой в числе на n{\displaystyle n} разрядов значение десятичного логарифма этого числа изменяется на n.{\displaystyle n.} Например:

lg⁡8314,63=lg⁡8,31463+3{\displaystyle \lg 8314{,}63=\lg 8{,}31463+3}

Отсюда следует, что для вычисления десятичных логарифмов достаточно составить таблицу логарифмов для чисел в диапазоне от 1{\displaystyle 1} до 10{\displaystyle 10}[4]. Такие таблицы, начиная с XVII века, выпускались большим тиражом и служили незаменимым расчётным инструментом учёных и инженеров.

Поскольку применение логарифмов для расчётов с появлением вычислительной техники почти прекратилось, в наши дни десятичный логарифм в значительной степени вытеснен натуральным[5]. Он сохраняется в основном в тех математических моделях, где исторически укоренился — например, при построении логарифмических шкал.

Десятичные логарифмы для чисел вида 5 × 10C
ЧислоЛогарифмХарактеристикаМантиссаЗапись
nlg(n)CM = lg(n) − C
5 000 0006.698 970…60.698 970…6.698 970…
501.698 970…10.698 970…1. {C}\right)=\lg(x)+C},

где 1<x<10{\displaystyle 1<x<10} — значащая часть числа n{\displaystyle n}.

Десятичная логарифмическая шкала на логарифмической линейке

История[ | ]

Основная статья: История логарифмов

Первые таблицы десятичных логарифмов опубликовал в 1617 году оксфордский профессор математики Генри Бригс для чисел от 1 до 1000, с восемью (позже — с четырнадцатью) знаками. Поэтому за рубежом десятичные логарифмы часто называют бригсовыми. Но в этих и в последующих изданиях таблиц обнаружились ошибки. Первое безошибочное издание на основе таблиц Георга Веги (1783) появилось только в 1852 году в Берлине (таблицы Бремикера)[6].

В России первые таблицы логарифмов были изданы в 1703 году при участии Л. Ф. Магницкого[7]. В СССР выпускались несколько сборников таблиц логарифмов[8]:

  1. Брадис В. М. Четырехзначные математические таблицы. М.: Дрофа, 2010, ISBN 978-5-358-07433-0. Таблицы Брадиса, издаваемые с 1921 года, использовались в учебных заведениях и в инженерных расчётах, не требующих большой точности. Они содержали мантиссы десятичных логарифмов чисел и тригонометрических функций, натуральные логарифмы и некоторые другие полезные расчётные инструменты.
  2. Вега Г. Таблицы семизначных логарифмов, 4-е издание, М.: Недра, 1971. Профессиональный сборник для точных вычислений.

Литература[ | ]

Теория логарифмов
  • Выгодский М. Я. Справочник по элементарной математике. — изд. 25-е. — М.: Наука, 1978. — ISBN 5-17-009554-6.
  • Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с.
  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — изд. 6-е. — М.: Наука, 1966. — 680 с.
История логарифмов
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
  • Клейн Ф. Элементарная математика с точки зрения высшей. — М.: Наука, 1987. — Т. I. Арифметика. Алгебра. Анализ. — 432 с.
  • Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II.
  • Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
  • Успенский Я. В. Очерк истории логарифмов. — Петроград: Научное книгоиздательство, 1923. — 78 с.

Ссылки[ | ]

  • Десятичные (бригсовы) логарифмы. (англ.)

Примечания[ | ]

  1. ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 187..
  2. ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 189..
  3. ↑ Логарифмическая функция. // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3.
  4. ↑ Элементарная математика, 1976, с. 94—100.
  5. ↑ Клейн Ф. Элементарная математика с точки зрения высшей, 1987, с. 406..
  6. ↑ История математики, том II, 1970, с. 62..
  7. Гнеденко Б. В. Очерки по истории математики в России, издание 2-е. — М.: КомКнига, 2005. — С. 66.. — 296 с. — ISBN 5-484-00123-4.
  8. ↑ Логарифмические таблицы // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
3-8
9 Оценить квадратный корень из 12
10 Оценить квадратный корень из 20
11 Оценить квадратный корень из 50 94
18 Оценить квадратный корень из 45
19 Оценить квадратный корень из 32
20 Оценить квадратный корень из 18 92

Умножение и деление числа больше единицы с помощью логарифма Математика

Умножение и деление числа больше единицы с помощью логарифма

законы вычитания индексов из логарифмов. Сложите логарифм при умножении и вычтите при делении.

Примеры: Оцените с помощью логарифма.

  1. 4627 x 29.3
  2. 8198 ÷ 3.905
  3. 48.63 x  8.53

15.39

Solutions

  1. 4627 x 29.3

To find the Antilog of the log 5.1322 use the antilogarithm table:

Check 13 под 2 diff 2 (добавьте значение разницы) число равно 0,1356. Чтобы поместить десятичную точку в нужное место, прибавьте единицу к целому числу логарифма, т. е. 5 + 1 = 6, затем сдвиньте десятичную точку антилогарифмической цифры вправо (положительно) на 6 знаков.

  1. 819.8 x 3.905

                                No            Log

819.8       2.9137

3.905       0.5916

antilog →        209.9     2.3221

                                therefore   819.8 ÷ 3.905   =   209.9

  1. 48. 63 X 8.8.53

15.39

ОЦЕНКА (Используйте поле внизу, чтобы опубликовать свой ответ для обсуждения и оценки):

  1. Используйте таблицу, чтобы найти полный логарифм следующего:

(a)  183      (b) 89500     (c) 10,1300      (d) 7

2    Используйте логарифм для расчета.

3612 x 750,9

113,2 x 9,98

Простой пример для сил: Источник здесь

Мы стремимся рассчитать 2345

Использование Правило (3). log2=0,30103, так что это 345∗0,30103=103,85535

Следовательно, используя правило (5), 2345=10103,85535

, мы можем упростить это с помощью правила (1) до 2345=100,85535∗10103

. *10103

Более сложный пример для степеней:

Мы пытаемся выполнить невероятное ππ. log(ππ)=π∗logπ

Используя наш алгоритм вычисления логарифмов, мы аппроксимируем logπ следующим образом:

log3,14159=log227–0.04%=log11+log2–log7–0. 00432∗0.04

Note: the 0.04% is from quickly approximating 227–ππ

log3.14159=1.04139+0.30103–0.84510–0.00017=0.49715

The most сложная часть в этом расчете — слепое умножение 3,14159 и 0,49715 до 5 знаков после запятой:

log(ππ)=3,14159∗0,49715=1,56184

Затем снова используем наш метод для антилогарифмов, чтобы вычислить ππ=101,56184

9

log36=1,55630, значит, ππ=36∗100,00554

0,00554/0,00432=1,28, поэтому ππ=36+1,28%=36,46

Пример для корней:

Тот же метод работает для любых корней, за исключением того, что мы выполняем деление, а не умножение. В качестве примера вычислим 902,54——√7

Используя метод вычисления логарифмов, log902,54=2,95547

log902,54——√7=log902,547=2,955477=0,42221 902,54- −−−−√7=100,42221

Используя метод вычисления антилогарифмов, 100,42221=2,643 и это наш ответ.

Оценка (используйте коробку внизу, чтобы опубликовать свой ответ для обсуждения и оценки)

  1. Найдите логарифм следующего:

(a) 0,064 (b) 0,002 (C) 0,802

909
  • 19156956956956956956956956956956956956956956956956956956956956956956956956

    6956

    (A) 0,064 (B) 0,002 (C) 0,809

    (A) 0,064 (B) 0,002 (C) 0,809

    (A) 0,064 (B) 0,002. используя логарифм.

  • 95,3 x    √ 318,4

    1,29 5  x 2,03

    Использование логарифмирования для решения задач на умножение, деление, степени и корни с числами меньше единицы.

    Examples:

    1. 0.6735 x 0.928
    2. 0.005692 ¸ 0.0943
    3. 0.6104 3
    4. 4 √ 0.000
    1. 3 √ 0.06642

    Solution

    1. 0.6735 x 0.928

    No.

    0,6735 1,8283

    0,928 1,9675

    0,6248 1,7958

    Следовательно, 0,6735 x 0,928              =              0,6248

    Присоединяйтесь к дискуссионному форуму и выполняйте задание : Найдите вопросы в конце каждого урока. Нажмите здесь, чтобы обсудить свои ответы на форуме

    Объявление: Получите БЕСПЛАТНУЮ Библию : Обрести истинный покой.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *