Область значений синуса: Область значений синуса

Содержание

Синус и косинус — тригонометрические функции y=sin(x), y=cos(x). Свойства, область определения, значения, четность, периоды, нули, промежутки знакопостоянства, возрастание, убывание, минимумы, максимумы, основные значения, знаки, формулы приведения





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Математический справочник / / Тригонометрические функции, формулы и графики. sin, cos, tg, ctg….Значения тригонометрических функций. Формулы приведения тригонометрических функций. Тригонометрические тождества.  / / Синус и косинус — тригонометрические функции y=sin(x), y=cos(x). Свойства, область определения, значения, четность, периоды, нули, промежутки знакопостоянства, возрастание, убывание, минимумы, максимумы, основные значения, знаки, формулы приведения

Поделиться:   

Синус (sin) и косинус (cos) — тригонометрические функции y=sin(x), y=cos(x). Свойства, область определения, область значения, четность, периоды, нули, промежутки знакопостоянства, возрастание, убывание, минимумы, максимумы, основные значения, знаки по четвертям, формулы приведения.

Свойства, область определения, область значения, четность, периоды, нули, промежутки знакопостоянства, возрастание, убывание, минимумы, максимумы, основные значения:

Свойства, область определения, область значения, четность, периоды, нули, промежутки знакопостоянства, возрастание, убывание, минимумы, максимумы, основные значения:

  • Область определения D(y):
  • Область значений E(x):
  • Наименьший положительный период:
  • Координаты точек пересечения графика функции с осью:

Свойства функций синуса, косинуса, тангенса и котангенса и их графики

Свойства функции y=sin(x) и ее график. 

График функции (синусоида)

Свойства функции

  1.  Область определения: R (x — любое действительное число) т.е. 
  2. Область значений:
  3. Функция нечетная:

    (график симметричен относительно начала координат).

  4. Функция периодическая с периодом 
  5. Точки пересечения с осями координат:  
  6. Промежутки знакопостоянства: 
  7. Промежутки возрастания и убывания:   

 

Объяснение и обоснование

Описывая свойства функций, мы будем чаще всего выделять такие их характеристики: 1) область определения; 2) область значений; 3) четность или нечетность; 4) периодичность; 5) точки пересечения с осями координат; 6)   промежутки знакопостоянства; 7) промежутки возрастания и убывания; 8) наибольшее и наименьшее значения функции.

Замечание. Абсциссы точек пересечения графика функции с осью Ох (то есть те значения аргумента, при которых функция равна нулю) называют нулями функции.

Напомним, что значение синуса — это ордината соответствующей точки единичной окружности (рис. 1).

 

 Рис.1.

Поскольку ординату можно найти для любой точки единичной окружности (в силу того, что через любую точку окружности всегда можно провести единственную прямую, перпендикулярную оси ординат), то область определения функции — все действительные числа. Это можно записать так:

Для точек единичной окружности ординаты находятся в промежутке [—1; 1] и принимают все значения от —1 до 1, поскольку через любую точку отрезка [—1; 1] оси ординат (который является диаметром единичной окружности) всегда можно провести прямую, перпендикулярную оси орди­нат, и получить точку окружности, которая имеет рассматриваемую орди­нату. Таким образом, для функции

область значений: . Это можно записать так:.Как видим, наибольшее значение функции sin x равно единице. Это зна­чение достигается только тогда, когда соответствующей точкой единичной окружности является точка A, то есть при Наименьшее значение функции равно минус единице. Это значение достигается только тогда, когда соответствующей точкой единичной окруж­ности является точка B, то есть при.

Синус — нечетная функция: , поэтому ее график симметричен относительно начала координат.

Синус — периодическая функция с наименьшим положительным периодом : , таким образом, через промежутки длиной вид графика функции повторя­ется. Поэтому при построении графика этой функции достаточно построить график на любом промежутке длиной , а потом полученную линию парал­лельно перенести вправо и влево вдоль оси Ox на расстояние , где k — любое натуральное число.

Чтобы найти точки пересечения графика функции с осями координат

, напомним, что на оси значение . Тогда соответствующее значение , то есть график функции проходит через начало координат.

На оси значение . Поэтому необходимо найти такие значения , при которых , то есть ордината соответствующей точки единичной окруж­ности, равна нулю. Это будет тогда и только тогда, когда на единичной окруж­ности будут выбраны точки C или D, то есть при (см. рис. 1).

Промежутки знакопостоянства. Значения функции синус положительны (то есть ордината соответствующей точки единичной окружности положительна) в I и II четвертях (рис. 2). Таким образом, при всех , а также, учитывая период, при всех .

Значения функции синус отрицательны (то есть ордината соответствую­щей точки единичной окружности отрицательна) в III и IV четвертях, поэто­му при .

Промежутки возрастания и убывания. Учитывая периодичность функции с периодом , достаточно исследовать ее на возрастание и убывание на любом промежутке длиной , например на промежутке . 

Если (рис. 3, а), то при увеличении аргумента  ордината соответствующей точки единичной окружности увеличивается (то есть , следовательно, на этом промежутке функция возрас­тает. Учитывая периодичность функции , делаем вывод, что она также возрастает на каждом из промежутков 

Рис.2                                                                            Рис.3

Если  (рис.3,б), то при увеличении аргумента  ордината соответствующей точки единичной окружности уменьшается (то есть ), таким образом, на этом промежутке функция убыва­ет. Учитывая периодичность функции , делаем вывод, что она также убывает на каждом из промежутков 

Проведенное исследование позволяет обоснованно построить график функции . Учитывая периодичность этой функции (с периодом ), достаточно сначала построить график на любом промежутке длиной , на­пример на промежутке . Для более точного построения точек графика воспользуемся тем, что значение синуса — это о

Тригонометрические функции

В школьной программе изучаются четыре тригонометрических функции — синус, косинус, тангенс и котангенс. В этой статье мы рассмотрим графики и основные свойства этих функций.

1. Начнем с построения графика функции y = sin x.

Выберем подходящий масштаб. По оси X: три клетки примем за (это примерно полтора). Тогда — одна клеточка, — две клетки.
По оси Y : две клетки примем за единицу.

Область определения функции y = sin x — все действительные числа, поскольку значение sin α можно посчитать для любого угла α.

Вспомним, что у нас есть тригонометрический круг, на котором обозначены синусы и косинусы основных углов. Удобнее всего отметить на будущем графике точки, в которых значение синуса является рациональным числом.

Можем добавить, для большей плавности графика, точки и . В них значение синуса равно

Соединим полученные точки плавной кривой.

\frac{\sqrt{3}}{2 }\approx0,86

Мы помним, что . Это значит, что
Получается часть графика, симметричная той, которую нарисовали раньше.

\sin (-\frac{\pi }{6})=-\frac{1}{2}; \sin (-\frac{\pi }{2})=-1

Кроме того, значения синуса повторяются через полный круг или через целое число кругов, то есть

Это значит, что функция y = sin x является периодической. Мы уже построили уча-сток графика длиной 2π. А теперь мы как будто «копируем» этот участок и повторяем его с периодом 2π:

\sin (x + 2\pi n) = \sin x.

Синусоида построена.
Перечислим основные свойства функции y = sin x.

1) D(y): x ∈ R, то есть область определения — все действительные числа.

2) E(y): y ∈ [−1; 1]. Это означает, что наибольшее значение функции y = sin x равно единице, а наименьшее — минус единице.

3) Функция y = sin x — нечетная. Ее график симметричен относительно нуля.

4) Функция y = sin x — периодическая. Ее наименьший положительный период равен 2π.

2. Следующий график: y = cos x. Масштаб — тот же. Отметим на графике точки, в которых косинус является рациональным числом:

\sin (x + 2\pi n) = \sin x.

Поскольку cos (−x) = cos x, график будет симметричен относительно оси Y , то есть левая его часть будет зеркальным отражением правой.

\sin (x + 2\pi n) = \sin x.

Функция y = cos x — тоже периодическая. Так же, как и для синуса, ее значения повторяются через 2πn. «Копируем» участок графика, который уже построили, и повторяем периодически.

\sin (x + 2\pi n) = \sin x.

Перечислим основные свойства функции y = cos x.

1) D(y): x ∈ R, то есть область определения — все действительные числа.

2) E(y): y ∈ [−1; 1]. Это означает, что наибольшее значение функции y = cos x равно единице, а наименьшее — минус единице.

3) Функция y = cos x — четная. Ее график симметричен относительно оси Y .

4) Функция y = cos x — периодическая. Ее наименьший положительный период равен 2π.

Отметим еще одно свойство. Графики функций y = sin x и y = cos x весьма похожи друг на друга. Можно даже сказать, что график косинуса получится, если график синуса сдвинуть на влево. Так оно и есть — по одной из формул приведения,.

Форма графиков функций синус и косинус, которые мы построили, очень характерна и хорошо знакома нам. Такой линией дети рисуют волны. Да, это и есть волны!

Функции синус и косинус идеально подходят для описания колебаний и волн — то есть процессов, повторяющихся во времени.

По закону синуса (или косинуса) происходят колебания маятника или груза на пружине. Переменный ток (тот, который в розетке) выражается формулой I(t) = I cos(ωt+α). Но и это не все. Функции синус и косинус описывают звуковые, инфра– и ультразвуковые волны, а также весь спектр электромагнитных колебаний. Ведь то, что наш глаз воспринимает как свет и цвет, на самом деле представляет собой электромагнитные колебания. Разные длины волн света воспринимается нами как разные цвета. Наши глаза видят лишь небольшую часть спектра электромагнитных волн. Кроме видимого цвета, в нем присутствуют радиоволны, тепловое (инфракрасное) излучение, ультрафиолетовое, рентгеновское и гамма–излучение. Более того — объекты микромира (например, электрон) проявляют волновые свойства.

3. Перейдем к графику функции y = tg x.

Чтобы построить его, воспользуемся таблицей значений тангенса. Масштаб возьмем тот же — три клетки по оси X соответствуют , две клетки по Y — единице. График будем строить на отрезке от 0 до π. Поскольку tg (x + πn) = tg x, функ-ция тангенс также является периодической. Мы нарисуем участок длиной π, а затем периодически его повторим.

Непонятно только, как быть с точкой . Ведь в этой точке значение тангенса не определено. А как же будет вести себя график функции y = tg x при x, близких к , то есть к 90 градусам?

Чтобы ответить на этот вопрос, возьмем значение x, близкое к , и посчитаем на калькуляторе значения синуса и косинуса этого угла. Пусть .

Синус угла — это почти 1. Точнее, sin = 0,9998. Косинус этого угла близок к нулю. Точнее, cos = 0,0175.

Тогда
график уйдет на 59 единиц (то есть на 118 клеток) вверх. Можно сказать, что если x стремится к (то есть к , значение функции y = tg x стремится к бесконечности.

Аналогично, при x, близких к , график тангенса уходит вниз, то есть стремится к минус бесконечности.

-\frac{\pi }{2}

Осталось только «скопировать» этот участок графика и повторить его с периодом π.

-\frac{\pi }{2}

Перечислим свойства функции y = tg x.

1) .
Другими словами, тангенс не определен для где n ∈ Z.
2) Область значений E(y) — все действительные числа.

3) Функция y = tg x — нечетная. Ее график симметричен относительно начала координат.

4) Функция y = tg x — периодическая. Ее наименьший положительный период равен π.

5) Функция y = tg x возрастает при то есть на каждом участке, на котором она непрерывна.

4. График функции y = ctg x строится аналогично. Вот он:

x\in (-\frac{\pi }{2}+\pi n; \frac{\pi }{2}+\pi n)

1) .
Другими словами, котангенс не определен для где n ∈ Z.
2) Область значений E(y) — все действительные числа.

3) Функция y = сtg x — нечетная. Ее график симметричен относительно начала координат.

4) Функция y = сtg x — периодическая. Ее наименьший положительный период равен π.

5) Функция y = сtg x убывает при то есть на каждом участке, на котором она непрерывна.

Свойства синуса, косинуса, тангенса и котангенса

Wiki-учебник
Поиск по сайту
Реклама от партнёров:

Свойства синуса

  • 1. Область определения: вся числовая ось
  • 2. Область значений: [-1;1]
  • 3. Нечетная функция.
  • 4. Наименьший положительный период: 2*pi
  • 5. Координаты точек пересечения графика функции с осью Ох: (pi*n; 0)
  • 6. Координаты точек пересечения графика функции с осью Оу: (0;0)
  • 7. Промежутки, на которых функция положительна: (2*pi*n; pi+2*pi*n)
  • 8. Промежутки, на которых функция отрицательна: (-pi + 2*pi*n; 2*pi*n)
  • 9. Промежутки возрастания: [-pi/2 +2*pi*n; pi/2 +2*pi*n]
  • 10. Промежутки убывания: [pi/2 +2*pi*n; 3*pi/2 +2*pi*n]
  • 11. Точки минимума: -pi/2 +2*pi*n
  • 12. Минимум функции: -1
  • 13. Точки максимума: pi/2 +2*pi*n
  • 14. Максимум функции: 1

Свойства косинуса

  • 1. Область определения: вся числовая ось
  • 2. Область значений: [-1;1]
  • 3. Четная функция.
  • 4. Наименьший положительный период: 2*pi
  • 5. Координаты точек пересечения графика функции с осью Ох: (pi/2 +pi*n; 0)
  • 6. Координаты точек пересечения графика функции с осью Оу: (0;1) 
  • 7. Промежутки, на которых функция положительна: (-pi/2 +2*pi*n; pi/2 +2*pi*n)
  • 8. Промежутки, на которых функция отрицательна: (pi/2 +2*pi*n; 3*pi/2 +2*pi*n)
  • 9. Промежутки возрастания: [-pi + 2*pi*n; 2*pi*n]
  • 10. Промежутки убывания: [2*pi*n; pi+2*pi*n]
  • 11. Точки минимума: pi+2*pi*n
  • 12. Минимум функции: -1
  • 13. Точки максимума: 2*pi*n
  • 14. Максимум функции: 1

Свойства тангенса

  • 1. Область определения: (-pi/2 +pi*n; pi/2 +pi*n)
  • 2. Область значений: вся числовая ось
  • 3. Нечетная функция.
  • 4. Наименьший положительный период: pi
  • 5. Координаты точек пересечения графика функции с осью Ох: (pi*n; 0)
  • 6. Координаты точек пересечения графика функции с осью Оу: (0;0) 
  • 7. Промежутки, на которых функция положительна: (pi*n; pi/2 +pi*n)
  • 8. Промежутки, на которых функция отрицательна: (-pi/2 +pi*n; pi*n)
  • 9. Функция возрастает на промежутках (-pi/2 + pi*n; pi/2 + pi*n)
  • 10. Точек максимума и минимума нет.

Свойства котангенса

  • 1. Область определения: (pi*n; pi +pi*n)
  • 2. Область значений: вся числовая ось
  • 3. Нечетная функция.
  • 4. Наименьший положительный период: pi
  • 5. Координаты точек пересечения графика функции с осью Ох: (pi/2 + pi*n; 0)
  • 6. Координаты точек пересечения графика функции с осью Оу: нет
  • 7. Промежутки, на которых функция положительна: (pi*n; pi/2 +pi*n) 
  • 8. Промежутки, на которых функция отрицательна: (-pi/2 +pi*n; pi*n)
  • 9. Функция убывает на промежутках (pi*n; pi +pi*n)
  • 10. Точек максимума и минимума нет.

На рисунке ниже представлены несколько единичных окружностей, в которых указаны знаки синуса, косинуса, тангенса и котангенса в различных координатных четвертях.

Нужна помощь в учебе?



Предыдущая тема: Определение синуса, косинуса, тангенса и котангенса и примеры
Следующая тема:&nbsp&nbsp&nbspРадианная мера угла: что означает, таблица соответствий с градусами

Все неприличные комментарии будут удаляться.


Mathway | Популярные задачи

1 Найти точное значение sin(30)
2 Найти точное значение sin(45)
3 Найти точное значение sin(60)
4 Найти точное значение sin(30 град. )
5 Найти точное значение sin(60 град. )
6 Найти точное значение tan(30 град. )
7 Найти точное значение arcsin(-1)
8 Найти точное значение sin(pi/6)
9 Найти точное значение cos(pi/4)
10 Найти точное значение sin(45 град. )
11 Найти точное значение sin(pi/3)
12 Найти точное значение arctan(-1)
13 Найти точное значение cos(45 град. )
14 Найти точное значение cos(30 град. )
15 Найти точное значение tan(60)
16 Найти точное значение csc(45 град. )
17 Найти точное значение tan(60 град. )
18 Найти точное значение sec(30 град. )
19 Преобразовать из радианов в градусы (3pi)/4
20 График y=sin(x)
21 Преобразовать из радианов в градусы pi/6
22 Найти точное значение cos(60 град. )
23 Найти точное значение cos(150)
24 Найти точное значение tan(45)
25 Найти точное значение sin(30)
26 Найти точное значение sin(60)
27 Найти точное значение cos(pi/2)
28 Найти точное значение tan(45 град. )
29 График y=sin(x)
30 Найти точное значение arctan(- квадратный корень 3)
31 Найти точное значение csc(60 град. )
32 Найти точное значение sec(45 град. )
33 Найти точное значение csc(30 град. )
34 Найти точное значение sin(0)
35 Найти точное значение sin(120)
36 Найти точное значение cos(90)
37 Преобразовать из радианов в градусы pi/3
38 Найти точное значение sin(45)
39 Найти точное значение tan(30)
40 Преобразовать из градусов в радианы 45
41 Найти точное значение tan(60)
42 Упростить квадратный корень x^2
43 Найти точное значение cos(45)
44 Упростить sin(theta)^2+cos(theta)^2
45 Преобразовать из радианов в градусы pi/6
46 Найти точное значение cot(30 град. )
47 Найти точное значение arccos(-1)
48 Найти точное значение arctan(0)
49 График y=cos(x)
50 Найти точное значение cot(60 град. )
51 Преобразовать из градусов в радианы 30
52 Упростить ( квадратный корень x+ квадратный корень 2)^2
53 Преобразовать из радианов в градусы (2pi)/3
54 Найти точное значение sin((5pi)/3)
55 Упростить 1/( кубический корень от x^4)
56 Найти точное значение sin((3pi)/4)
57 Найти точное значение tan(pi/2)
58 Найти угол А tri{}{90}{}{}{}{}
59 Найти точное значение sin(300)
60 Найти точное значение cos(30)
61 Найти точное значение cos(60)
62 Найти точное значение cos(0)
63 Найти точное значение arctan( квадратный корень 3)
64 Найти точное значение cos(135)
65 Найти точное значение cos((5pi)/3)
66 Найти точное значение cos(210)
67 Найти точное значение sec(60 град. )
68 Найти точное значение sin(300 град. )
69 Преобразовать из градусов в радианы 135
70 Преобразовать из градусов в радианы 150
71 Преобразовать из радианов в градусы (5pi)/6
72 Преобразовать из радианов в градусы (5pi)/3
73 Преобразовать из градусов в радианы 89 град.
74 Преобразовать из градусов в радианы 60
75 Найти точное значение sin(135 град. )
76 Найти точное значение sin(150)
77 Найти точное значение sin(240 град. )
78 Найти точное значение cot(45 град. )
79 Преобразовать из радианов в градусы (5pi)/4
80 Упростить 1/( кубический корень от x^8)
81 Найти точное значение sin(225)
82 Найти точное значение sin(240)
83 Найти точное значение cos(150 град. )
84 Найти точное значение tan(45)
85 Вычислить sin(30 град. )
86 Найти точное значение sec(0)
87 Упростить arcsin(-( квадратный корень 2)/2)
88 Найти точное значение cos((5pi)/6)
89 Найти точное значение csc(30)
90 Найти точное значение arcsin(( квадратный корень 2)/2)
91 Найти точное значение tan((5pi)/3)
92 Найти точное значение tan(0)
93 Вычислить sin(60 град. )
94 Найти точное значение arctan(-( квадратный корень 3)/3)
95 Преобразовать из радианов в градусы (3pi)/4
96 Вычислить arcsin(-1)
97 Найти точное значение sin((7pi)/4)
98 Найти точное значение arcsin(-1/2)
99 Найти точное значение sin((4pi)/3)
100 Найти точное значение csc(45)

Синус

Примеры:

\(\sin{⁡30^°}=\)\(\frac{1}{2}\)
\(\sin⁡\)\(\frac{π}{3}\)\(=\)\(\frac{\sqrt{3}}{2}\)
\(\sin⁡2=0,909…\) 

Содержание:

Аргумент и значение


Синус острого угла

Синус острого угла можно определить с помощью прямоугольного треугольника — он равен отношению противолежащего катета к гипотенузе.

Пример:

1) Пусть дан угол и нужно определить синус этого угла.


2) Достроим на этом угле любой прямоугольный треугольник.

3) Измерив, нужные стороны, можем вычислить \(sinA\).

Синус числа


Числовая окружность позволяет определить синус любого числа, но обычно находят синус чисел как-то связанных с Пи: \(\frac{π}{2}\), \(\frac{3π}{4}\), \(-2π\).

Например, для числа \(\frac{π}{6}\) — синус будет равен \(0,5\). А для числа \(-\)\(\frac{3π}{4}\) он будет равен \(-\)\(\frac{\sqrt{2}}{2}\) (приблизительно \(-0,71\)).


Подробнее как вычисляется синус разных чисел можно прочитать в этой статье.

Значение синуса всегда лежит в пределах от \(-1\) до \(1\). При этом вычислен он может быть для абсолютно любого угла и числа.

Синус любого угла

Благодаря единичному кругу можно определять тригонометрические функции не только острого угла, но и тупого, отрицательного, и даже большего, чем \(360°\) (полный оборот). Как это делать — проще один раз увидеть, чем \(100\) раз услышать, поэтому смотрите картинку.


Теперь пояснение: пусть нужно определить \(sin∠КОА\) с градусной мерой в \(150°\). Совмещаем точку О с центром окружности, а сторону ОК – с осью \(x\). После этого откладываем \(150°\) против часовой стрелки. Тогда ордината точки А покажет нам \(\sin⁡∠KOA\).

Если же нас интересует угол с градусной мерой, например, в \(-60°\) (угол КОВ), делаем также, но \(60°\) откладываем по часовой стрелке.


И, наконец, угол больше \(360°\) (угол КОС) — всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол \(405°\) отложен как \(360° + 45°\).

Несложно догадаться, что для откладывания угла, например, в \(960°\), надо сделать уже два оборота (\(360°+360°+240°\)), а для угла в \(2640°\) — целых семь.

Как вы могли заменить, и синус числа, и синус произвольного угла определяется практически одинаково. Изменяются только способ нахождения точки на окружности.

Связь с другими тригонометрическими функциями:

— косинусом того же угла (или числа): основным тригонометрическим тождеством \(\sin^2⁡x+\cos^2⁡x=1\)
— тангенсом и косинусом того же угла (или числа): формулой \(tg⁡x=\)\(\frac{\sin⁡x}{\cos⁡x}\)
— котангенсом того же угла (или числа): формулой \(1+сtg^2⁡x=\)\(\frac{1}{\sin^2⁡x}\)
Другие наиболее часто применяемые формулы смотри здесь.

Функция \(y=\sin⁡x\)

Если отложить по оси \(x\) углы в радианах, а по оси \(y\) — соответствующие этим углам значения синуса, мы получим следующий график:

График данной функции называется синусоида и обладает следующими свойствами:

      — область определения – любое значение икса:   \(D(\sin⁡x )=R\)
      — область значений – от \(-1\) до \(1\) включительно:    \(E(\sin⁡x )=[-1;1]\)
      — нечетная:   \(\sin⁡(-x)=-\sin⁡x\)
      — периодическая с периодом \(2π\):   \(\sin⁡(x+2π)=\sin⁡x\)
      — точки пересечения с осями координат:
             ось абсцисс:   \((πn;0)\), где \(n ϵ Z\)
             ось ординат:   \((0;0)\)
      — промежутки знакопостоянства:
             функция положительна на интервалах:   \((2πn;π+2πn)\), где \(n ϵ Z\)
             функция отрицательна на интервалах:    \((π+2πn;2π+2πn)\), где \(n ϵ Z\)
      — промежутки возрастания и убывания:
             функция возрастает на интервалах:    \((-\)\(\frac{π}{2}\)\(+2πn;\) \(\frac{π}{2}\)\(+2πn)\), где \(n ϵ Z\)
             функция убывает на интервалах:    \((\)\(\frac{π}{2}\)\(+2πn;\)\(\frac{3π}{2}\)\(+2πn)\), где \(n ϵ Z\)
       — максимумы и минимумы функции:
             функция имеет максимальное значение \(y=1\) в точках \(x=\)\(\frac{π}{2}\)\(+2πn\), где \(n ϵ Z\)
             функция имеет минимальное значение \(y=-1\) в точках \(x=-\)\(\frac{π}{2}\)\(+2πn\), где \(n ϵ Z\).

Смотрите также:

Косинус
Тангенс
Котангенс
Решение уравнения \(\sin⁡x=a\)

Скачать статью

Mathway | Популярные задачи

1 Найти точное значение sin(30)
2 Найти точное значение sin(45)
3 Найти точное значение sin(60)
4 Найти точное значение sin(30 град. )
5 Найти точное значение sin(60 град. )
6 Найти точное значение tan(30 град. )
7 Найти точное значение arcsin(-1)
8 Найти точное значение sin(pi/6)
9 Найти точное значение cos(pi/4)
10 Найти точное значение sin(45 град. )
11 Найти точное значение sin(pi/3)
12 Найти точное значение arctan(-1)
13 Найти точное значение cos(45 град. )
14 Найти точное значение cos(30 град. )
15 Найти точное значение tan(60)
16 Найти точное значение csc(45 град. )
17 Найти точное значение tan(60 град. )
18 Найти точное значение sec(30 град. )
19 Преобразовать из радианов в градусы (3pi)/4
20 График y=sin(x)
21 Преобразовать из радианов в градусы pi/6
22 Найти точное значение cos(60 град. )
23 Найти точное значение cos(150)
24 Найти точное значение tan(45)
25 Найти точное значение sin(30)
26 Найти точное значение sin(60)
27 Найти точное значение cos(pi/2)
28 Найти точное значение tan(45 град. )
29 График y=sin(x)
30 Найти точное значение arctan(- квадратный корень 3)
31 Найти точное значение csc(60 град. )
32 Найти точное значение sec(45 град. )
33 Найти точное значение csc(30 град. )
34 Найти точное значение sin(0)
35 Найти точное значение sin(120)
36 Найти точное значение cos(90)
37 Преобразовать из радианов в градусы pi/3
38 Найти точное значение sin(45)
39 Найти точное значение tan(30)
40 Преобразовать из градусов в радианы 45
41 Найти точное значение tan(60)
42 Упростить квадратный корень x^2
43 Найти точное значение cos(45)
44 Упростить sin(theta)^2+cos(theta)^2
45 Преобразовать из радианов в градусы pi/6
46 Найти точное значение cot(30 град. )
47 Найти точное значение arccos(-1)
48 Найти точное значение arctan(0)
49 График y=cos(x)
50 Найти точное значение cot(60 град. )
51 Преобразовать из градусов в радианы 30
52 Упростить ( квадратный корень x+ квадратный корень 2)^2
53 Преобразовать из радианов в градусы (2pi)/3
54 Найти точное значение sin((5pi)/3)
55 Упростить 1/( кубический корень от x^4)
56 Найти точное значение sin((3pi)/4)
57 Найти точное значение tan(pi/2)
58 Найти угол А tri{}{90}{}{}{}{}
59 Найти точное значение sin(300)
60 Найти точное значение cos(30)
61 Найти точное значение cos(60)
62 Найти точное значение cos(0)
63 Найти точное значение arctan( квадратный корень 3)
64 Найти точное значение cos(135)
65 Найти точное значение cos((5pi)/3)
66 Найти точное значение cos(210)
67 Найти точное значение sec(60 град. )
68 Найти точное значение sin(300 град. )
69 Преобразовать из градусов в радианы 135
70 Преобразовать из градусов в радианы 150
71 Преобразовать из радианов в градусы (5pi)/6
72 Преобразовать из радианов в градусы (5pi)/3
73 Преобразовать из градусов в радианы 89 град.
74 Преобразовать из градусов в радианы 60
75 Найти точное значение sin(135 град. )
76 Найти точное значение sin(150)
77 Найти точное значение sin(240 град. )
78 Найти точное значение cot(45 град. )
79 Преобразовать из радианов в градусы (5pi)/4
80 Упростить 1/( кубический корень от x^8)
81 Найти точное значение sin(225)
82 Найти точное значение sin(240)
83 Найти точное значение cos(150 град. )
84 Найти точное значение tan(45)
85 Вычислить sin(30 град. )
86 Найти точное значение sec(0)
87 Упростить arcsin(-( квадратный корень 2)/2)
88 Найти точное значение cos((5pi)/6)
89 Найти точное значение csc(30)
90 Найти точное значение arcsin(( квадратный корень 2)/2)
91 Найти точное значение tan((5pi)/3)
92 Найти точное значение tan(0)
93 Вычислить sin(60 град. )
94 Найти точное значение arctan(-( квадратный корень 3)/3)
95 Преобразовать из радианов в градусы (3pi)/4
96 Вычислить arcsin(-1)
97 Найти точное значение sin((7pi)/4)
98 Найти точное значение arcsin(-1/2)
99 Найти точное значение sin((4pi)/3)
100 Найти точное значение csc(45)

График функции синуса — тригонометрия

График функции синуса — Тригонометрия — Открытый справочник по математике

Когда синус угла наносится на график относительно этой угловой меры,
, результатом является классическая форма «синусоидальной кривой».

Попробуй это Перетащите вершине треугольника и посмотрите, как функция синуса изменяется с углом.

Чтобы построить график функции синуса, мы отмечаем угол по горизонтальной оси x, и для каждого угла мы помещаем синус этого угла на вертикальную ось y.В результате, как показано выше, получается плавная кривая, которая изменяется от +1 до -1.

Кривые, следующие за этой формой, называются «синусоидальными» по названию синусоидальной функции. Эта форма также называется синусоидальной волной, особенно когда она появляется в радио и электронных схемах.

На схеме выше перетащите точку A по круговой траектории, чтобы изменить угол CAB. При этом точка на графике перемещается в соответствии с углом и его синусом. (Если вы отметите поле «прогрессивный режим», кривая будет рисоваться при перемещении точки A вместо отслеживания существующей кривой.)

Область синусоидальной функции

Когда вы перетаскиваете точку A вокруг, обратите внимание, что после полного поворота вокруг B форма графика повторяется. Форма синусоиды одинакова для каждого полного поворота угла, поэтому функция называется «периодической». Период функции равен 360 ° или 2π радиан. Вы можете поворачивать точку сколько угодно раз. Это означает, что вы можете найти синус любого угла, независимо от его размера. В математических терминах мы говорим, что «область» синусоидальной функции — это набор всех действительных чисел.

Диапазон

Диапазон функции — это набор значений результата, которые она может создать. Функция синуса имеет диапазон от -1 до +1. Взглянув на синусоидальную кривую, вы увидите, что она никогда не выходит за пределы этого диапазона.

Функция обратной синусоиды

Что, если бы нас попросили найти обратный синус числа, скажем 0,5? Другими словами, у какого угла синус 0,5?

Если мы посмотрим на кривую выше, мы увидим четыре угла, синус которых равен 0.5 (красные точки). Фактически, поскольку график продолжается вечно в обоих направлениях, существует бесконечное количество углов с синусом 0,5.

Так что же говорит калькулятор?

Если вы попросите калькулятор найти арксинус (sin -1 ) числа, он не сможет вернуть бесконечно длинный список углов, поэтому по соглашению он находит только первый. Но помните, есть много других.

Другие темы по тригонометрии

Уголки

Тригонометрические функции

Решение задач тригонометрии

Исчисление

(C) Открытый справочник по математике, 2011 г.
Все права защищены.

,

Функция тригонометрии arcsin () — обратный синус — определение математического слова

Функция тригонометрии arcsin () — обратный синус — определение математического слова — Math Open Reference

Функция arcsin является обратной функцией синуса.
Возвращает угол, синус которого является заданным числом.

Попробуй это Перетащите любой вершине треугольника и посмотрите, как вычисляется угол C с помощью функции arcsin ().

Для каждой тригонометрической функции существует обратная функция, которая работает наоборот.Эти обратные функции имеют то же имя, но с дугой впереди. (На некоторых калькуляторах кнопка arcsin может быть помечена как asin, а иногда sin -1 .) Итак, обратное к греху — это arcsin и т. Д. Когда мы видим «arcsin A», мы понимаем его как «угол, грех которого равен A».

sin30 = 0,5 Означает: синус 30 градусов равен 0,5
арксин 0,5 = 30 Означает: Угол, грех которого равен 0,5, равен 30 градусам.
Используйте arcsin, если вы знаете синус угла и хотите узнать фактический угол.
См. Также Обратные функции — тригонометрия

Пример — использование arcsin для поиска угла

На рисунке выше нажмите «сбросить». Нам известны длины сторон, но нам нужно найти величину угла C.
Мы знаем, что поэтому нам нужно знать угол, грех которого равен 0,5, или формально: Используя калькулятор, чтобы найти arcsin 0,5, мы находим, что это 30 °.

Большие и отрицательные углы

Напомним, что мы можем применить триггерные функции на любой угол, включая большие и отрицательные углы.Но когда мы Рассмотрим обратную функцию, и мы столкнемся с проблемой, потому что существует бесконечное количество углов, имеющих одинаковый синус. Например, 45 ° и 360 + 45 ° будут иметь одинаковый синус. Подробнее об этом см. Обратные тригонометрические функции.

Чтобы решить эту проблему, ассортимент обратных триггерных функций ограничены таким образом, чтобы обратные функции были взаимно однозначными, то есть для каждого входного значения был только один результат.

Диапазон и домен arcsin

Напомним, что область действия функции — это набор допустимых входных данных для нее.Диапазон — это набор возможных выходов.

Для y = arcsin x:

Условно диапазон arcsin ограничен от -90 ° до + 90 °. Итак, если вы используете калькулятор для решения, скажем, arcsin 0,55, из бесконечного числа возможностей он вернет 33,36 °, тот, который находится в диапазоне функции.

Что попробовать

  1. На рисунке выше нажмите «сбросить» и «скрыть детали».
  2. Отрегулируйте треугольник до нового размера
  3. Используя функцию arcsin, вычислите значение угла C на основе длин сторон
  4. Щелкните «Показать подробности», чтобы проверить ответ.

Другие темы по тригонометрии

Уголки

Тригонометрические функции

Решение задач тригонометрии

Исчисление

(C) Открытый справочник по математике, 2011 г.
Все права защищены.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *