Онлайн решение уравнений матричным способом онлайн: Онлайн калькулятор. Решение систем линейных уравнений. Матричный метод. Метод обратной матрицы. – Матричный метод онлайн

Содержание

Матричный метод онлайн

Данный онлайн калькулятор решает систему линейных уравнений матричным методом. Дается очень подробное решение. Для решения системы линейных уравнений выберите количество переменных. Выбирайте метод вычисления обратной матрицы. Затем введите данные в ячейки и нажимайте на кнопку «Вычислить».

Очистить все ячейки?

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Матричный метод решения систем линейных уравнений

Рассмотрим следующую систему линейных уравнений:

(1)

Для решения системы линейных уравнений (1) матричным методом запишем ее матричном виде:

где

Мы будем предполагать, что матрица A имеет обратное, т.е. определитель матрицы A не равен нулю.

Умножим матричное уравнение (2) на обратную матрицу A−1. Тогда

Учитывая определение обратной матрицы, имеем A−1A=E, где E— единичная матрица. Следовательно (4) можно записать так:

или, учитывая, что Ex=x:

Таким образом, для решения системы линейных уравнений (1) (или (2)), достаточно умножить обратную к A матрицу на вектор ограничений b.

Примеры решения системы линейных уравнений матричным методом

Пример 1. Решить следующую систему линейных уравнений матричным методом:

Матричный вид записи системы линейных уравнений: Ax=b, где

.

Найдем обратную к матрице A методом Жордана-Гаусса. С правой стороны матрицы A запишем единичную матрицу:

.

Выбираем самый большой по модулю ведущий элемент столбца 1. Для этого заменяем местами строки 1 и 2:

.

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/3,-1/3 соответственно:

.

Выбираем самый большой по модулю ведущий элемент столбца 2. Для этого заменяем местами строки 2 и 3:

.

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строку 3 со строкой 2, умноженной на -24/51:

.

Исключим элементы 3-го столбца матрицы выше главной диагонали. Для этого сложим строки 1, 2 со строкой 3, умноженной на 17/53, 85/159 соответственно:

.

Исключим элементы 2-го столбца матрицы выше главной диагонали. Для этого сложим строку 1 со строкой 2, умноженной на -3/17:

.

Делим каждую строку матрицы на ведущий элемент соответствующей строки:

.

Отделяем правую часть матрицы. Полученная матрица является обратной матрицей к A :

.

Обратная матрица найдена. Решение системы линейных уравнений имеет вид x=A−1b. Тогда

.

Ответ:

Пример 2. Решить следующую систему линейных уравнений матричным методом:

.

Матричный вид записи системы линейных уравнений: Ax=b, где

.

Найдем обратную к матрице A методом алгебраических дополнений. Вычислим определитель матрицы A

:

.

Вычислим все алгебраические дополнения матрицы A:

,
,
,
,
,
,
,
,
.

Обратная матрица вычисляется из следующего выражения:

где Aij − алгебраическое дополнение элемента матрицы A, находящиеся на пересечении i-ой строки и j-ого столбца, а Δ − определитель матрицы A.

Используя формулу обратной матрицы, получим:

Обратная матрица найдена. Решение системы линейных уравнений имеет вид x=A−1b. Тогда

Ответ:

Решение системы линейных уравнений (матричный метод)

Этот онлайн калькулятор позволит вам очень просто решить систему линейных уравнений (СЛУ) матричным методом.

Для того чтобы решить систему линейных уравнений матричным методом, выберите количество неизвестных величин: 2345

Заполните систему линейных уравнений

Для изменения в уравнении знаков с «+» на «-» вводите отрицательные числа. Если в вашем уравнение отсутствует какой-то коэффициент, то на его месте в калькуляторе введите ноль. Вводить можно числа или дроби. Например: 1.5 или 1/7 или -1/4 и т.д.

Решить систему

Воспользуйтесь также:
Решение системы линейных уравнений (метод подстановки)

Решение системы линейных уравнений (метод Гаусса)
Решение системы линейных уравнений (метод Крамера)

Решение системы линейных уравнений матричным методом

Матричный метод решения СЛУ

Если выписать коэффициенты при неизвестных величинах xi в матрицу A, неизвестные величины собрать в вектор столбец X, а свободные члены в вектор столбец B, то система линейных уравнения сведется к следующему матричному уравнению

A · X = B,

которое имеет единственное решение только тогда, когда определитель матрицы A не будет равен нулю (в противном случае система уравнений будет иметь либо бесконечное количество решений, либо не иметь решений вовсе).

Если определитель матрицы A отличен от нуля, то решение системы уравнений можно найти следующим способом

X = A-1 · B,

где A-1 обратная матрица, которую можно найти используя, например, Онлайн сервис для вычисления обратной матрицы на нашем сайте.

Таким образом, задача решения системы линейных уравнений матричным способом сводится к нахождению обратной матрицы A

-1 и последующему умножению её на матрицу-столбец B. Именно эта задача и выполняется с помощью предложенного вам онлайн калькулятора.

Матричный калькулятор онлайн

Инструкция матричного онлайн калькулятора

С помощью матричного онлайн калькулятора вы можете сложить, вычитать, умножить, транспонировать матрицы, вычислить обратную матрицу, псевдообратную матрицу, ранг матрицы, определитель матрицы, m-норму и l-норму матрицы, возвести матрицу в степень, умножить матрицу на число, сделать скелетное разложение матрицы, удалить из матрицы линейно зависимые строки или линейно зависимые столбцы, проводить исключение Гаусса, решить матричное уравнение AX=B, сделать LU разложение матрицы, вычислить ядро (нуль пространство) матрицы, сделать ортогонализацию Грамма-Шмидта и ортонормализацию Грамма-Шмидта

.

Матричный онлайн калькулятор работает не только с десятичными числами, но и с дробями. Для ввода дроби нужно в исходные матрицы A и B вводить числа в виде a или a/b, где a и b целые или десятичные числа (b положительное число). Например 12/67, -67.78/7.54, 327.6, -565.

Кнопка меню в верхем левом углу матрицы открывает меню (Рис.1) для преобразования исходной матрицы (создание единичной матрицы кнопка единичная матрица, нулевой матрицы кнопка нулевая матрица

, очищать содержимое ячеек кнопка очистить матрицу) и т.д.

меню1

Рис.1

При вычислениях пустая ячейка воспринимается как нуль.

Для операций с одной матрицей (т.е. транспонирование, обратное, псевдообратное, скелетное разложение и т.д.) сначала выбирается конкретная матрица с помощью радиокнопки радиокнопка.

Кнопки Fn1, Fn2 и Fn3 переключают разные группы функциий.

Нажимая на вычисленных матрицах открывается меню (Рис.2), что позволяет записать данную матрицу в исходные матрицы A и B, а также преобразовать на месте элементы матрицы в обыкновенную дробь, смешанную дробь или в десятичное число.

меню1

Рис.2

Вычисление суммы, разности, произведения матриц онлайн

Матричным онлайн калькулятором можно вычислить сумму, разность или произведение матриц. Для вычисления суммы или разности матриц, необходимо, чтобы они были одинаковой размерности, а для вычисления произведения матриц, количество столбцов первой матрицы должен быть равным количеству строк второй матрицы.

Для вычисления суммы, разности или произведения матриц:

  1. Введите размерности матриц A и B.
  2. Введите элементы матриц.
  3. Нажмите на кнопку «A+B «,»A-B» или «A×B».

Вычисление обратной матрицы онлайн

Матричным онлайн калькулятором можно вычислить обратную матрицу. Для того, чтобы существовала обратная матрица, исходная матрица должна быть невырожденной квадратной матрицей.

Для вычисления обратной матрицы:

  1. Выберите матрицу A или B с помощью радиокнопки радиокнопка.
  2. Введите размерность матрицы .
  3. Введите элементы матрицы.
  4. Нажмите на кнопку «обратное «.

Для подробного вычисления обратной матрицы по шагам, пользуйтесь этим калькулятором для вычисления обратной матрицы. Теорию вычисления обратной матрицы смотрите здесь.

Вычисление определителя матрицы онлайн

Матричным онлайн калькулятором можно вычислить определитель матрицы. Для того, чтобы существовал определитель матрицы, исходная матрица должна быть невырожденной квадратной матрицей.

Для вычисления определителя матрицы:

  1. Выберите матрицу A или B с помощью радиокнопки радиокнопка.
  2. Введите размерность матрицы .
  3. Введите элементы матрицы.
  4. Нажмите на кнопку «определитель «.

Для подробного вычисления определителя матрицы по шагам, пользуйтесь этим калькулятором для вычисления определителя матрицы. Теорию вычисления определителя матрицы смотрите здесь.

Вычисление ранга матрицы онлайн

Матричным онлайн калькулятором можно вычислить ранг матрицы.

Для вычисления ранга матрицы:

  1. Выберите матрицу A или B с помощью радиокнопки радиокнопка.
  2. Введите размерность матрицы .
  3. Введите элементы матрицы.
  4. Нажмите на кнопку «ранг «.

Для подробного вычисления ранга матрицы по шагам, пользуйтесь этим калькулятором для вычисления ранга матрицы. Теорию вычисления ранга матрицы смотрите здесь.

Вычисление псевдообратной матрицы онлайн

Матричным онлайн калькулятором можно вычислить псевдообратную матрицу. Псевдообратная к данной матрице всегда существует.

Для вычисления псевдообратной матрицы:

  1. Выберите матрицу A или B с помощью радиокнопки радиокнопка.
  2. Введите размерность матрицы.
  3. Введите элементы матрицы.
  4. Нажмите на кнопку «псевдообратное «.

Удаление линейно зависимых строк или столбцов матрицы онлайн

Матричным онлайн калькулятор позволяет удалить из матрицы линейно зависимые строки или столбцы, т.е. создать матрицу полного ранга.

Для удаления линейно зависимых строк или столбцов матрицы:

  1. Выберите матрицу A или B с помощью радиокнопки радиокнопка.
  2. Введите размерность матрицы.
  3. Введите элементы матрицы.
  4. Нажмите на кнопку «полный ранг строк » или «полный ранг столбцов».

Скелетное разложение матрицы онлайн

Для проведения скелетного разложения матрицы онлайн

  1. Выберите матрицу A или B с помощью радиокнопки радиокнопка.
  2. Введите размерность матрицы.
  3. Введите элементы матрицы.
  4. Нажмите на кнопку «скелетное разложение «.

Решение матричного уравнения или системы линейных уравнений AX=B онлайн

Матричным онлайн калькулятором можно решить матричное уравнение AX=B по отношению матрицы X. В частном случае, если матрица B является вектор-столбцом, то X , будет решением системы линейных уравнений AX=B.

Для решения матричного уравнения:

  1. Введите размерности матриц A и B.
  2. Введите элементы матриц.
  3. Нажмите на кнопку «решение AX=B».

Учтите, что матрицы A и B должны иметь равное количество строк .

Исключение Гаусса или приведение матрицы к треугольному (ступенчатому) виду онлайн

Матричный онлайн калькулятор проводит исключение Гаусса как для квадратных матриц, так и прямоугольных матриц любого ранга. Сначала проводится обычный метод Гаусса. Если на каком то этапе ведущий элемент равен нулю, то выбирается другой вариант исключения Гаусса с выбором наибольшего ведущего элемента в столбце.

Для исключения Гаусса или приведения матрицы к треугольному виду

  1. Выберите матрицу A или B с помощью радиокнопки радиокнопка.
  2. Задайте размерность матрицы.
  3. Введите элементы матрицы.
  4. Нажмите на кнопку «Треугольный вид».

LU-разложение или LUP-разложение матрицы онлайн

Данный матричный калькулятор позволяет проводить LU-разложение матрицы (A=LU) или LUP-разложение матрицы (PA=LU), где L нижняя треугольная матрица, U-верхняя треугольная (трапециевидная) матрица, P- матрица перестановок. Сначала программа проводит LU разложение, т.е. такое разложение , при котором P=E, где E-единичная матрица (т.е. PA=EA=A). Если это невозможно, то проводится LUP-разложение. Матрица A может быть как квадратной, так и прямоугольной матрицей любого ранга.

Для LU(LUP)-разложения:

  1. Выберите матрицу A или B с помощью радиокнопки радиокнопка.
  2. Задайте размерность матрицы.
  3. Введите элементы матрицы.
  4. Нажмите на кнопку «LU-разложение».

Построение ядра (нуль-пространства) матрицы онлайн

С помощью матричного калькулятора можно построить нуль-пространство (ядро) матрицы.

Для построения нуль-пространства (ядра) матрицы:

  1. Выберите матрицу A или B с помощью радиокнопки радиокнопка.
  2. Задайте размерность матрицы.
  3. Введите элементы матрицы.
  4. Нажмите на кнопку «ядро (·)».

Ортогонализация Грамма-Шмидта и Ортонормализация Грамма-Шмидта онлайн

С помощью матричного калькулятора можно сделать ортогонализацию и ортонормализацию Грамма-Шмидта матрицы онлайн.

Для ортогонализации или ортонормализации матрицы:

  1. Выберите матрицу A или B с помощью радиокнопки радиокнопка.
  2. Задайте размерность матрицы.
  3. Введите элементы матрицы.
  4. Нажмите на кнопку «Ортогонализация Г.-Ш. (·)» или «Ортонормализация Г.-Ш. (·)».

Матричный метод решения уравнений онлайн калькулятор

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Довольно часто матричный метод используют для решения систем линейных уравнений, поскольку любую такую систему можно представить в матричном виде, после чего, определив ее обратную матрицу, легко решить.

Решения таких систем основано на определенном свойстве обратной матрицы: произведение обратной матрицы (А-1) и исходной матрицы равно единичной матрице.

решить уравнение матричным способом

Так же читайте нашу статью «Решить уравнения методом простой итерации онлайн»

Допустим, нам дана следующая система:

\[ \left\{\begin{matrix} 2x_1-x_2+3x_3=1\\ -2x_2+2x_3=2\\ 3x_1+x_2+x_3=0 \end{matrix}\right.\]

Данную систему можно решить всего за три шага:

1 шаг

Составляем матрицу:

Матрица коэффициентов при неизвестных

\[A=\begin{pmatrix} 2 & -1&3\\ 0&-2&2\\ 3&1&1 \end{pmatrix}\]

Матрица неизвестных:

\[x=\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix}\]

Матрица свободных членов:

\[ B=\begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix} \]

2 шаг

Все, что мы делали в 1 шаге, было сделано для того, чтобы получить обратную матрицу коэффициентов при неизвестных:

\[ A^{-1}=\frac{1}{4}\cdot \begin{pmatrix} -4&4&4\\ 6&-7&-4\\ 6&-5&-4 \end{pmatrix} \]

3 шаг

Определяем матрицу неизвестных:

\[ x=\frac{1}{4}\cdot \begin{pmatrix} -4&4&4\\ 6&-7&-4\\ 6&-5&-4 \end{pmatrix}\cdot \begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix}=\begin{pmatrix} 1\\ -2\\ -1 \end{pmatrix} \]

Ответ:

\[x_1=1;x_2=-2;x_3=-1\]

Поскольку математика точная наука, нужно быть уверенным в правильности решения. Для этого сделаем стандартную проверку:

\[\left\{\begin{matrix} 2\cdot1-(-2)+3\cdot (-1)=1\\ -2\cdot(-2)+2\cdot (-1)=2\\ 3\cdot 1+(-2)+(-1)=0 \end{matrix}\right.\]

Проверка подтвердила правильность решения.

Где можно решить уравнение матричным методом онлайн с решением?

Решить уравнение матричным способом онлайн вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Решение систем линейных уравнений методом обратной матрицы онлайн

Одним из популярных методов решения систем линейных алгебраических уравнений (СЛАУ) является метод обратной матрицы. Рассмотрим этот метод подробнее на примере решения СЛАУ, состоящей из двух уравнений с двумя неизвестными.

Введем обозначения: A — матрица СЛАУ, которая имеет вид:

X — вектор столбец неизвестных, которые нам нужно найти:

B — вектор столбец свободных коэффициентов:

В результате, исходную СЛАУ можно записать в матричной форме:

Решим это матричное уравнение, для чего домножим его обе части слева на матрицу A-1:

Здесь, A-1 — это матрица, обратная к матрице A. Такая матрица существует для любой квадратной невырожденной матрицы (т.е. такой, определитель которой не равен нулю).

Эти условия показывают границы применимости метода обратной матрицы для решения СЛАУ. Во-первых: матрица СЛАУ A должна быть квадратной. Это означает, что количество уравнений должно быть равно количеству неизвестных. Во-вторых: определитель матрицы A должен быть отличен от нуля:

Кроме того, обратная матрица обладает ещё одним замечательным свойством: её произведение на исходную матрицу коммутативно и равно единичной матрице:

Возвращаясь к решению нашего матричного уравнения, получаем:

Таким образом, для того, чтобы решить СЛАУ методом обратной матрицы, сначала нам нужно убедиться, что обратная матрица существует, затем найти её и умножить на вектор B.

Наш онлайн калькулятор предназначен для решения СЛАУ методом обратной матрицы. Калькулятор выдаёт пошаговое решение с описанием действий на русском языке. Уравнения СЛАУ вводятся в калькулятор в естественном виде. В качестве коэффициентов уравнения можно вводить не только числа и дроби, но и параметры — в этом случае калькулятор выдаст решение в общем виде.

Добавить комментарий

Ваш адрес email не будет опубликован.