Парабола y 2 2x: Mathway | Популярные задачи

2

Парабола, её каноническое уравнение, вершина, форма и характеристики параболы

О чем статья

Парабола

Парабола – это множество точек плоскости, которые равноотделённые  от заданной точки, что называется фокусом и заданной прямой под названием директриса.

Чтобы получить каноническое уравнение параболы, расположим директрису перпендикулярно оси , а фокус  на оси  так, чтобы начало координат  помещался на одинаковом расстоянии от них (см. рис. 1). Обозначим через  расстояние от фокуса к директрисе, тогда у фокуса будут координаты , .

Для произвольной точки параболы расстояний , а расстояние к директрисе . По определению из рис. 1 видим, что , а и поэтому:

Рис. 1

(1)

– каноническое уравнение параболы.

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать работу

Что такое вершина параболы

Вершина параболы – это парабола, которая проходит через точки . Если точка принадлежит параболе, то и тоже принадлежит параболе, так как из:

.

Значит, парабола симметрична относительно оси , её график достаточно построить в первой четверти, где из канонического уравнения параболы получается, что:

Чтобы найти вершину параболы, необходимо знать формулу: .

Давайте посмотрим, как данная формула действует, допустим дано уравнение:

Тогда:

, , .  Чтобы найти величины , и , в квадратном уравнении коэффициент при , при , постоянная (коэффициент без переменной) = . Если взять тот же пример, , получается, что:

, , .

Форма и характеристики параболы

Исследуем за каноническим уравнением форму и расположение параболы:

1. В уравнении переменная входит в парной степени откуда получается, что парабола симметрична относительно оси .  Ось – это ось, которая симметрична параболе.

2. Так как , тогда , откуда получается, что парабола расположена справа от оси .

3. При мы имеем , то есть парабола проходит через начало координат. Точка – это вершина параболы.

4. При увеличении значений переменной модуль тоже возрастает. Изобразим параболу на рисунке:

Рис. 2

5. В полярной системе координат, у канонического уравнения параболы такой вид:

6. Уравнение , , , тоже описывают параболы:

Рис. 3

Оптическое свойство параболы

У параболы “оптическое” свойство, если: в фокусе параболы поместить источник света, тогда отбитые от параболы лучи будут параллельными оси . Это свойство учитывают при изготовлении прожекторов, зеркальных телескопов, теле- и радио антенн.

При положительном уравнении:

описывают параболу симметричную относительно с вершиной в точке , ветви которой направлены влево (рис. 3 (а)).

Аналогично изложенному, уравнение и описывают параболы с вершиной в точке симметрично относительно , ветви которой направлены соответственно вверх и вниз (см. рис. 3 (б) и (в)). Если например, уравнение решить относительно

 и обозначить , тогда получим известное со школьного курса уравнение параболы . Теперь её фокусное расстояние .

Примеры решения

Пример 1

Задача

Найти координаты фокуса и составить уравнение директрисы параболы .

Решение

Сравнивая каноническое уравнение и данное , получим , , тогда. Так как уравнение директрисы , тогда в данном случае .

Ответ

координаты фокуса: , а уравнение директрисы параболы: .

Пример 2

Задача

Составить каноническое уравнение параболы:

а) с фокусом в точке ;

б) с фокусом в точке .

Решение

а). Так как фокус  на положительной полуоси , тогда парабола симметрична относительно с вершиной в точке и , поэтому и согласно формуле (1) .

б). Фокус  лежит на отрицательной полуоси с вершиной в точке , ветви направлены вниз, каноническое уравнение следует искать в виде .

Фокусное расстояние параболы и уравнение запишется .

Ответ

а) каноническое уравнение параболы с фокусом в точке :  ;

б) каноническое уравнение с фокусом в точке : .

Пример 3

Задача

Показать путём выделения полного квадрата, что уравнение – это уравнение параболы. Привести его к каноническому виду. Найти вершину, фокус, ось и директрису этой параболы.

Решение

Выделим относительно переменной полный квадрат

= = = = = = .

Обозначим , .  Тогда в результате параллельного переноса координатных осей в новое начало, то есть в точку , получим каноническое уравнение параболы .

Ветви этой параболы направлены вниз симметрично относительно оси , , – фокусное расстояние. В новой системе координат фокус находится в точке , уравнение директрисы в новой системе .

Повернёмся к старым координатам при помощи замены , . Уравнение оси в новой системе , а в старой – уравнение оси параболы.

Уравнение директрисы в новой системе координат , а в старой .

В новой системе для фокуса , , а в старой системе , , то есть .

Ответ

Каноническое уравнение параболы – ;

вершина – ветви параболы направлены вниз;

, , – фокусное расстояние, а фокус находится в точке ;

уравнение оси ;

уравнение директрисы .

3-8 9 Оценить квадратный корень из 12 10 Оценить квадратный корень из 20
11 Оценить квадратный корень из 50 94 18 Оценить квадратный корень из 45 19 Оценить квадратный корень из 32 20 Оценить квадратный корень из 18 92

[Решено] Найдите ближайшую точку на параболе y2 = 2x )

Вариант 3 : (2, 2)

Бесплатно

Электрические заряды и закон Кулона (основной)

75,7 тыс. 2}} \)

Проверка второй производной: быть функцией, определенной на интервале I.

  • Вычислить f’(x)
  • Решите f’(x) = 0 и найдите корни f’(x) = 0. Предположим, что x = c является корнем f’(x) = 0.
  • Вычислить f’’(x) и положить x = c, чтобы получить значение f’’(c).
  • Если f’’(c) < 0, то x = c — точка локальных максимумов.
  • Если f’’(c) > 0, то x = c является точкой локальных минимумов.
  • Если f’’(c) = 0, нам нужно использовать первый критерий производной. 92}}}\)

    ⇒ f»(y) = 3y 2

    Теперь оцените значение f»(y) при y = 2

    ⇒ f»(2) = 12 > 0

    Поскольку мы знаем, что согласно критерию второй производной, если f»(c) > 0, то x = c является точкой минимума

    Итак, y = 2 является точкой максимума для f(y)

    Когда y = 2, то подставив y = 2 в уравнение x = y2/2, получим x = 2

    Итак, точка (2, 2) и есть искомая точка .

    Скачать решение PDF

    Поделиться в WhatsApp

    Последние обновления NDA

    Последнее обновление: 29 сентября 2022 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *