Перевод из радианов в градусы: Перевести радианы в градусы | Онлайн калькулятор

Содержание

Перевод градусов в радианы и обратно: формулы, примеры

Углы в математике (а также в тригонометрии и физике) высчитываются и измеряются в градусах или в радианах. Важно понимать и определять связь между этими единицами измерения, и переводить их из одной в другую. Понимание и определение этой связи позволяет оперировать углами и перевести градусы в радианы, а также осуществить перевод из радиан в градусы с помощью специальной тригонометрической формулы — формулы перевода градусов в радианы. В данной статье мы разберемся, зачем все это нужно конвертировать (и что делать с конвертируемым), выведем формулу для перевода градусов в радианы и обратно — из радианов в градусы, а также разберем несколько примеров из практики по конвертации.

Связь между градусами и радианами

Что такое радиан? Радиан вместе с градусом является выражением угловой меры: это величина, которая используется для измерения плоских углов. Поэтому, когда говорят о таблице градусов и радиан, то имеют в виду таблицу, в которой представлены соответствия угловых градусов радианам (что позволяет вам не находить и не считать самостоятельно на калькуляторе, к примеру).

Как перевести радианы в градусы — есть формула? Для нахождения связи между градусами и радианами, необходимо узнать, сколько будет градусная и ридианная (радиальная) мера какого-либо угла (и для этого нам не нужно пользоваться каким-либо переводчиком онлайн). Например, возьмем центральный угол, который опирается на диаметр окружности радиуса r. Чтобы вычислить радианную меру этого угла, необходимо рассчитать определенные данные: длину дуги разделить на длину радиуса окружности. Рассматриваемому углу соответствует длина дуги, равная половине длины окружности π·r. Разделим длину дуги на радиус и получим радианную меру угла: π·rr=π рад.

Итак, рассматриваемый угол равен π радиан. С другой стороны, это развернутый угол, равный 180°. Следовательно, 180°=π рад. 

Связь градусов с радианами

Связь между радианами и градусами выражается следующей полной формулой 

π радиан =180°

Формулы перевода из градусов в радианы и наоборот

Как перевести градусы в радианы не более, чем за минуту? Что делать с координатами в градусах, если нужны в радианах? Из содержания формулы, полученной выше, можно вывести другие формулы для перевода углов из радианов в градусы и обратно из градусов в радианы (взаимно преобразовывать и пересчитывать).

Как онлайн найти градусную меру угла и сделать пересчет? Выразим 1 радиан в градусах. Для этого разделим левую и правую части радиуса на пи.

1 рад=180π° — град. мера угла в 1 радиан равна 180π.

Также можно выразить один градус в радианах. Чему равен 1 радиан и во что он будет переходить? Вот простой расчет.

1°=π180рад

Можно произвести приблизительные вычисления величин угла в радианах и наоборот. Для этого возьмем значения числа π с точностью до десятитысячных и подставим в полученные формулы. 

1 рад=180π°=1803,1416°=57,2956°

Значит, в одном радиане примерно 57 градусов

1°=π180рад=3,1416180рад=0,0175 рад

Один градус содержит 0,0175 радиана.

По какой формуле перевести радианы в градусы?

Формула перевода радианов в градусы

x рад=х·180π°

Чтобы перевести угол из радианов в градусы, нужно значение угла в радианах умножить на 180 и разделить на пи.

Примеры перевода градусов в радианы и радианов в градусы

Рассмотрим пример, как перевести градусы в радианы по формуле.

Конечно, в интернете это все может считаться за секунду, но у самостоятельного подсчета другие преимущества.

Пример 1. Перевод косинуса угла из радианов в градусы

Пусть α=3,2 рад. Нужно узнать градусную меру этого угла.

Применим формулу перехода от радианов к градусам и получим:

3,2 рад=3,2·180π°≈3,2·1803,14°≈5763,14°≈183,4°

Аналогично можно получить формулу перевода в радианы из градусов.

Формула перевода из градусов в радианы

y°=y·π180рад

Пример 2. Перевод из градусов в радианы

Переведем 47 градусов в радианы.

Согласно формуле, умножим 47 на пи и разделим на 180.

47°≈47·3,14180≈0,82 рад

Автор: Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Чему равен 1 радиан в градусах.

Перевод градусов в радианы и обратно, формулы, примеры

Углы измеряются в градусах или в радианах. Важно понимать связь между этими единицами измерения. Понимание этой связи позволяет оперировать углами и осуществлять переход от градусов к радианам и обратно. В данной статье выведем формулу для перевода градусов в радианы и радианов в градусы, а также разберем несколько примеров из практики.

Yandex.RTB R-A-339285-1

Связь между градусами и радианами

Чтобы установить связь между градусами и радианами, необходимо узнать градусную и радианную меру какого-либо угла. Например, возьмем центральный угол, который опирается на диаметр окружности радиуса r. Чтобы вычислить радианную меру этого угла необходимо длину дуги разделить на длину радиуса окружности. Рассматриваемому углу соответствует длина дуги, равная половине длины окружности π · r . Разделим длину дуги на радиус и получим радианную меру угла: π · r r = π рад.

Итак, рассматриваемый угол равен π радиан. С другой стороны, это развернутый угол, равный 180 ° . Следовательно 180 ° = π рад.

Связь градусов с радианами

Связь между радианами и градусами выражается формулой

π радиан = 180 °

Формулы перевода радианов в градусы и наоборот

Из формулы, полученной выше, можно вывести другие формулы для перевода углов из радианов в градусы и из градуов в радианы.

Выразим один радиан в градусах. Для этого разделим левую и правую части радиуса на пи.

1 р а д = 180 π ° — градусная мера угла в 1 радиан равна 180 π .

Также можно выразить один градус в радианах.

1 ° = π 180 р а д

Можно произвести приблизтельные вычисления величин угла в радианах и наоборот. Для этого возьмем значения числа π с точностью до десятитысячных и подставим в полученные формулы.

1 р а д = 180 π ° = 180 3 , 1416 ° = 57 , 2956 °

Значит, в одном радиане примерно 57 градусов

1 ° = π 180 р а д = 3 , 1416 180 р а д = 0 , 0175 р а д

Один градус содержит 0,0175 радиана.

Формула перевода радианов в градусы

x р а д = х · 180 π °

Чтобы перевести угол из радианов в градусы, нужно значение угла в радианах умножить на 180 и разделить на пи.

Примеры перевода градусов в радианы и радианов в градусы

Рассмотрим пример.

Пример 1. Перевод из радианов в градусы

Пусть α = 3 , 2 рад. Нужно узнать градусную меру этого угла.

    Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол . С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике. Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций (ряда Фурье). Данные функции часто появляются при решениидифференциальныхи функциональных уравнений.

    К тригонометрическим функциям относятся следующие 6 функций:

    синус , косинус , тангенс , котангенс , секанс и косеканс . Для каждой из указанных функций существует обратная тригонометрическая функция.

    Геометрическое определение тригонометрических функций удобно ввести с помощью единичного круга . На приведенном ниже рисунке изображен круг радиусом r = 1. На окружности обозначена точка M (x,y ). Угол между радиус-вектором OM и положительным направлением оси Ox равен α .

    Синусом угла α y точки M (x,y ) к радиусу r : sin α = y /r . Поскольку r = 1, то синус равен ординате точки M (x,y ).

    Косинусом угла

    α x точки M (x,y ) к радиусу r : cos α = x /r = x

    Тангенсом угла α называется отношение ординаты y точки M (x,y ) к ee абсциссе x : tan α = y /x , x ≠ 0

    Котангенсом угла α называется отношение абсциссы x точки M (x,y ) к ее ординате y : cot α = x /y , y ≠ 0

    Секанс угла α − это отношение радиуса r к абсциссе x точки M (x,y ): sec α = r /x = 1/x , x ≠ 0

    Косеканс угла α − это отношение радиуса r к ординате y точки M (x,y ): cosec α = r /y = 1/y , y ≠ 0

    В единичном круге проекции x , y точки M (x,y ) и радиус

    r образуют прямоугольный треугольник, в котором x, y являются катетами, а r − гипотенузой. Поэтому, приведенные выше определения тригонометрических функций в приложении к прямоугольному треугольнику формулируются таким образом: Синусом угла α называется отношение противолежащего катета к гипотенузе. Косинусом угла α называется отношение прилежащего катета к гипотенузе. Тангенсом угла α называется противолежащего катета к прилежащему. Котангенсом угла α называется прилежащего катета к противолежащему.

    График функции синус y = sin x , область определения: x , область значений: −1 ≤ sin x ≤ 1

    График функции косинус y = cos x , область определения:

    x , область значений: −1 ≤ cos x ≤ 1

    График функции тангенс y = ttg x , область определения: x , x ≠ (2k + 1)π /2, область значений: −∞ x

    График функции котангенс y = ctg x , область определения: x , x , область значений: −∞ x

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др.

единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 радиан [рад] = 57,2957795130823 градус [°]

Исходная величина

Преобразованная величина

градус радиан град гон минута секунда зодиакальный сектор тысячная оборот окружность оборот квадрант прямой угол секстант

Электрическая проводимость

Общие сведения

Плоский угол — геометрическая фигура образованная двумя пересекающимися линиями. Плоский угол состоит из двух лучей с общим началом, и эта точка называется вершиной луча. Лучи называются сторонами угла. У углов много интересных свойств, например, сумма всех углов в параллелограмме — 360°, а в треугольнике — 180°.

Виды углов

Прямые углы равны 90°, острые — меньше 90°, а тупые — наоборот, больше 90°. Углы, равные 180° называются развернутыми , углы в 360° называются полными , а углы больше развернутых но меньше полных называются невыпуклыми . Когда сумма двух углов равна 90°, то есть один угол дополняет другой до 90°, они называются дополнительными смежными , а если же до 360° — то сопряженными

Когда сумма двух углов равна 90°, то есть один угол дополняет другой до 90°, они называются дополнительными . Если они дополняют друг друга до 180°, они называются смежными , а если же до 360° — то сопряженными . В многоугольниках углы внутри многоугольника называются внутренними, а сопряженные с ними — внешними.

Два угла, образованные при пересечении двух прямых и не являющихся смежными, называются вертикальными . Они равны.

Измерение углов

Углы измеряют с помощью транспортира или вычисляют по формуле, измерив стороны угла от вершины и до дуги, и длину дуги, которая эти стороны ограничивает. Углы обычно измеряют в радианах и градусах, хотя существуют и другие единицы.

Можно измерять как углы, образованные между двумя прямыми, так и между кривыми линиями. Для измерения между кривыми используют касательные в точке пересечения кривых, то есть в вершине угла.


Транспортир

Транспортир — инструмент для измерения углов. Большинство транспортиров имеют форму полукруга или окружности и позволяют измерить углы до 180° и до 360° соответственно. В некоторых транспортирах встроена дополнительная вращающаяся линейка для удобства в измерении. Шкалы на транспортирах наносят чаще в градусах, хотя иногда они бывают и в радианах. Транспортиры чаще всего используют в школе на уроках геометрии, но их также применяют в архитектуре и в технике, в частности в инструментальном производстве.

Использование углов в архитектуре и искусстве

Художники, дизайнеры, мастера и архитекторы издавна используют углы для создания иллюзий, акцентов и других эффектов. Чередование острых и тупых углов или геометрические узоры из острых углов часто используются в архитектуре, мозаике и витражах, например в строении готических соборов и в исламской мозаике.

Одна из известных форм исламского изобразительного искусства — украшение с помощью геометрического орнамента гирих. Этот рисунок применяют в мозаике, резьбе по металлу и дереву, на бумаге и на ткани. Рисунок создается с помощью чередования геометрических фигур. Традиционно используют пять фигур со строго определенными углами из комбинаций в 72°, 108°, 144° и 216°. Все эти углы делятся на 36°. Каждая фигура разделена линиями на несколько более маленьких симметричных фигур, чтобы создать более тонкий рисунок. Изначально гирихом назывались сами эти фигуры или кусочки для мозаики, отсюда и пошло название всего стиля. В Марокко существует похожий геометрический стиль мозаики, зулляйдж или зилидж. Форма терракотовых изразцов, из которых складывают эту мозаику, не соблюдается так строго, как в гирихе, и изразцы часто более причудливой формы, чем строгие геометрические фигуры в гирихе. Несмотря на это, мастера зулляйджа также используют углы для создания контрастных и причудливых узоров.

В исламском изобразительном искусстве и архитектуре часто используется руб аль-хизб — символ в форме одного квадрата, наложенного на другой под углом в 45°, как на иллюстрациях. Он может быть изображен как сплошная фигура, или в виде линий — в этом случае этот символ называется звездой Al-Quds (аль кудс). Руб аль-хизб иногда украшают небольшими кругами на пересечении квадратов. Этот символ используют в гербах и на флагах мусульманских стран, например на гербе Узбекистана и на флаге Азербайджана. Основания самых высоких в мире на момент написания (весна 2013) башен близнецов, башен Петро́нас построены в форме руб аль-хизба. Эти башни находятся в Куала-Лумпуре в Малайзии и в их проектировании участвовал премьер-министр страны.

Острые углы часто используют в архитектуре как декоративные элементы. Они придают зданию строгую элегантность. Тупые углы, наоборот, придают зданиям уютный вид. Так, например, мы восхищаемся готическими соборами и замками, но они выглядят немного печально и даже устрашающе. А вот дом себе мы скорее всего выберем с крышей с тупыми углами между скатами. Углы в архитектуре также используют для укрепления разных частей здания. Архитекторы проектируют форму, размер и угол наклона в зависимости от нагрузки на стены, нуждающиеся в укреплении. Этот принцип укрепления с помощью наклона использовали еще с древних времен. Например, античные строители научились строить арки без цемента и иных связующих материалов, укладывая камни под определенным углом.

Обычно здания строят вертикально, но иногда бывают исключения. Некоторые здания специально строят с наклоном, а некоторые наклоняются из-за ошибок. Один из примеров наклонных зданий — Тадж-Махал в Индии. Четыре минарета, которые окружают главное строение, построены с наклоном от центра, чтобы в случае землетрясения они упали не вовнутрь, на мавзолей, а в другую сторону, и не повредили основное здание. Иногда здания строят под углом к земле в декоративных целях. Например, Падающая башня Абу-Даби или Capital Gate наклонена на 18° к западу. А одно из зданий в Мире Головоломок Стюарта Лэндсборо в городе Ванка в Новой Зеландии наклоняется к земле на 53°. Это здание так и называется, «Падающая башня».

Иногда наклон здания — результат ошибки в проектировании, как например наклон Пизанской башни. Строители не учли структуру и качество почвы, на которой ее возводили. Башня должна была стоять прямо, но плохой фундамент не смог поддерживать ее вес и здание осело, покосившись на один бок. Башню много раз реставрировали; самая последняя реставрация в 20-м веке остановила ее постепенное оседание и увеличивающийся наклон. Ее удалось выровнять с 5. 5°до 4°. Башня церкви СуурХусен в Германии тоже наклонена из-за того, что ее деревянный фундамент прогнил с одной стороны после осушения болотистой почвы, на которой она построена. На данный момент эта башня наклонена больше, чем Пизанская — примерно на 5°.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Градусная мера угла. Радианная мера угла. Перевод градусов в радианы и обратно.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень…»
И для тех, кто «очень даже…»)

В предыдущем уроке мы освоили отсчёт углов на тригонометрическом круге. Узнали, как отсчитывать положительные и отрицательные углы. Осознали, как нарисовать угол больше 360 градусов. Пришла пора разобраться с измерением углов. Особенно с числом «Пи», которое так и норовит запутать нас в хитрых заданиях, да. ..

Стандартные задания по тригонометрии с числом «Пи» решаются неплохо. Зрительная память выручает. А вот любое отклонение от шаблона — валит наповал! Чтобы не свалиться — понимать надо. Что мы с успехом сейчас и сделаем. В смысле — всё поймём!

Итак, в чём считаются углы? В школьном курсе тригонометрии используются две меры: градусная мера угла и радианная мера угла . Разберём эти меры. Без этого в тригонометрии — никуда.

Градусная мера угла.

К градусам мы как-то привыкли. Геометрию худо-бедно проходили… Да и в жизни частенько встречаемся с фразой «повернул на 180 градусов», например. Градус, короче, штука простая…

Да? Ответьте мне тогда, что такое градус? Что, не получается с ходу? То-то…

Градусы придумали в Древнем Вавилоне. Давненько это было… Веков 40 назад… И придумали просто. Взяли и разбили окружность на 360 равных частей. 1 градус — это 1/360 часть окружности. И всё. Могли разбить на 100 частей. Или на 1000. Но разбили на 360. Кстати, почему именно на 360? Чем 360 лучше 100? 100, вроде, как-то ровнее… Попробуйте ответить на этот вопрос. Или слабо против Древнего Вавилона?

Где-то в то же время, в Древнем Египте мучились другим вопросом. Во сколько раз длина окружности больше длины её диаметра? И так измеряли, и этак… Всё получалось немного больше трёх. Но как-то лохмато получалось, неровно… Но они, египтяне не виноваты. После них ещё веков 35 мучились. Пока окончательно не доказали, что как бы мелко не нарезать окружность на равные кусочки, из таких кусочков составить ровно длину диаметра нельзя… В принципе нельзя. Ну, во сколько раз окружность больше диаметра установили, конечно. Примерно. В 3,1415926… раз.

Это и есть число «Пи». Вот уж лохматое, так лохматое. После запятой — бесконечное число цифр без всякого порядка… Такие числа называются иррациональными. Это, кстати, и означает, что из равных кусочков окружности диаметр ровно не сложить. Никогда.

Для практического применения принято запоминать всего две цифры после запятой. Запоминаем:

Раз уж мы поняли, что длина окружности больше диаметра в «Пи» раз, имеет смысл запомнить формулу длины окружности:

Где L — длина окружности, а d — её диаметр.

В геометрии пригодится.

Для общего образования добавлю, что число «Пи» сидит не только в геометрии… В самых различных разделах математики, а особенно в теории вероятности, это число возникает постоянно! Само по себе. Вне наших желаний. Вот так.

Но вернёмся к градусам. Вы сообразили, почему в Древнем Вавилоне круг разбили на 360 равных частей? А не на 100, к примеру? Нет? Ну ладно. Выскажу версию. У древних вавилонян не спросишь… Для строительства, или, скажем, астрономии, круг удобно делить на равные части. А теперь прикиньте, на какие числа делится нацело 100, и на какие — 360? И в каком варианте этих делителей нацело — больше? Людям такое деление очень удобно. Но…

Как выяснилось много позже Древнего Вавилона, не всем нравятся градусы. Высшей математике они не нравятся… Высшая математика — дама серьёзная, по законам природы устроена. И эта дама заявляет: «Вы сегодня на 360 частей круг разбили, завтра на 100 разобьёте, послезавтра на 245… И что мне делать? Нет уж…» Пришлось послушаться. Природу не обманешь…

Пришлось ввести меру угла, не зависящую от человеческих придумок. Знакомьтесь — радиан!

Радианная мера угла.

Что такое радиан? В основе определения радиана — всё равно окружность. Угол в 1 радиан, это угол, который вырезает из окружности дугу, длина которой (L ) равна длине радиуса (R ). Смотрим картинки.

Маленький такой угол, почти и нет его… Наводим курсор на картинку (или коснёмся картинки на планшете) и видим примерно один радиан . L = R

Чувствуете разницу?

Один радиан много больше одного градуса. А во сколько раз?

Смотрим следующую картинку. На которой я нарисовал полукруг. Развёрнутый угол размером, естественно, в 180°.

А теперь я нарежу этот полукруг радианами! Наводим курсор на картинку и видим, что в 180° укладывается 3 с хвостиком радиана.

Кто угадает, чему равен этот хвостик!?

Да! Этот хвостик — 0,1415926…. Здравствуй, число «Пи», мы тебя ещё не забыли!

Действительно, в 180° градусах укладывается 3,1415926… радиан. Как вы сами понимаете, всё время писать 3,1415926… неудобно. Поэтому вместо этого бесконечного числа всегда пишут просто:

А вот в Интернете число

писать неудобно… Поэтому я в тексте пишу его по имени — «Пи». Не запутаетесь, поди?…

Вот теперь совершенно осмысленно можно записать приближённое равенство:

Или точное равенство:

Определим, сколько градусов в одном радиане. Как? Легко! Если в 3,14 радианах 180° градусов, то в 1 радиане в 3,14 раз меньше! То есть, мы делим первое уравнение (формула — это тоже уравнение!) на 3,14:

Это соотношение полезно запомнить В одном радиане примерно 60°. В тригонометрии очень часто приходится прикидывать, оценивать ситуацию. Вот тут это знание очень помогает.

Но главное умение этой темы — перевод градусов в радианы и обратно.

Если угол задан в радианах с числом «Пи», всё очень просто. Мы знаем, что «Пи» радиан = 180°. Вот и подставляем вместо «Пи» радиан — 180°. Получаем угол в градусах. Сокращаем, что сокращается, и ответ готов. Например, нам нужно выяснить, сколько градусов в угле «Пи»/2 радиан ? Вот и пишем:

Или, более экзотическое выражение:

Легко, верно?

Обратный перевод чуть сложнее. Но не сильно. Если угол дан в градусах, мы должны сообразить, чему равен один градус в радианах, и умножить это число на количество градусов. Чему равен 1° в радианах?

Смотрим на формулу и соображаем, что если 180° = «Пи» радиан, то 1° в 180 раз меньше. Или, другими словами, делим уравнение (формула — это тоже уравнение!) на 180. Представлять «Пи» как 3,14 никакой нужды нет, его всё равно всегда буквой пишут. Получаем, что один градус равен:

Вот и всё. Умножаем число градусов на это значение и получаем угол в радианах. Например:

Или, аналогично:

Как видите, в неспешной беседе с лирическими отступлениями выяснилось, что радианы — это очень просто. Да и перевод без проблем… И «Пи» — вполне терпимая штука… Так откуда путаница!?

Вскрою тайну. Дело в том, что в тригонометрических функциях значок градусов — пишется. Всегда. Например, sin35°. Это синус 35 градусов . А значок радианов (рад ) — не пишется! Он подразумевается. То ли лень математиков обуяла, то ли ещё что… Но решили не писать. Если внутри синуса — котангенса нет никаких значков, то угол — в радианах ! Например, cos3 — это косинус трёх радианов .

Это и приводит к непоняткам… Человек видит «Пи» и считает, что это 180°. Всегда и везде. Это, кстати, срабатывает. До поры до времени, пока примеры — стандартные. Но «Пи» — это число! Число 3,14, а никакие не градусы! Это «Пи» радиан = 180°!

Ещё раз: «Пи» — это число! 3,14. Иррациональное, но число. Такое же, как 5 или 8. Можно, к примеру, сделать примерно «Пи» шагов. Три шага и ещё маленько. Или купить «Пи» килограммов конфет. Если продавец образованный попадётся…

«Пи» — это число! Что, достал я вас этой фразой? Вы уже всё давно поняли? Ну ладно. Проверим. Скажите-ка, какое число больше?

Или, что меньше?

Это из серии слегка нестандартных вопросов, которые могут и в ступор вогнать…

Если вы тоже в ступор впали, вспоминаем заклинание: «Пи» — это число! 3,14. В самом первом синусе четко указано, что угол — в градусах ! Стало быть, заменять «Пи» на 180° — нельзя! «Пи» градусов — это примерно 3,14°. Следовательно, можно записать:

Во втором синусе обозначений никаких нет. Значит, там — радианы ! Вот здесь замена «Пи» на 180° вполне прокатит. Переводим радианы в градусы, как написано выше, получаем:

Осталось сравнить эти два синуса. Что. забыли, как? С помощью тригонометрического круга, конечно! Рисуем круг, рисуем примерные углы в 60° и 1,05°. Смотрим, какие синусы у этих углов. Короче, всё, как в конце темы про тригонометрический круг расписано. На круге (даже самом кривом!) будет чётко видно, что sin60° существенно больше, чем sin1,05° .

Совершенно аналогично поступим и с косинусами. На круге нарисуем углы примерно 4 градуса и 4 радиана (не забыли, чему примерно равен 1 радиан?). Круг всё и скажет! Конечно, cos4 меньше cos4°.

Потренируемся в обращении с мерами угла.

Переведите эти углы из градусной меры в радианную:

360°; 30°; 90°; 270°; 45°; 0°; 180°; 60°

У вас должны получиться такие значения в радианах (в другом порядке!)

Я, между прочим, специально выделил ответы в две строчки. Ну-ка, сообразим, что за углы в первой строчке? Хоть в градусах, хоть в радианах?

Да! Это оси системы координат! Если смотреть по тригонометрическому кругу, то подвижная сторона угла при этих значениях точно попадает на оси . Эти значения нужно знать железно. И угол 0 градусов (0 радиан) я отметил не зря. А то некоторые этот угол никак на круге найти не могут… И, соответственно, в тригонометрических функциях нуля путаются… Другое дело, что положение подвижной стороны в нуле градусов совпадает с положением в 360°, так совпадения на круге — сплошь и рядом.

Во второй строчке — тоже углы специальные… Это 30°, 45° и 60°. И что в них такого специального? Особо — ничего. Единственное отличие этих углов от всех остальных — именно про эти углы вы должны знать всё . И где они располагаются, и какие у этих углов тригонометрические функции. Скажем, значение sin100° вы знать не обязаны. А sin45° — уж будьте любезны! Это обязательные знания, без которых в тригонометрии делать нечего… Но об этом подробнее — в следующем уроке.

А пока продолжим тренировку. Переведите эти углы из радианной меры в градусную:

У вас должны получиться такие результаты (в беспорядке):

210°; 150°; 135°; 120°; 330°; 315°; 300°; 240°; 225°.

Получилось? Тогда можно считать, что перевод градусов в радианы и обратно — уже не ваша проблема. ) Но перевод углов — это первый шаг к постижению тригонометрии. Там же ещё с синусами-косинусами работать надо. Да и с тангенсами, котангенсами тоже…

Второй мощный шаг — это умение определять положение любого угла на тригонометрическом круге. И в градусах, и в радианах. Про это самое умение я буду вам во всей тригонометрии занудно намекать, да…) Если вы всё знаете (или думаете, что всё знаете) про тригонометрический круг, и отсчёт углов на тригонометрическом круге, можете провериться. Решите эти несложные задания:

1. В какую четверть попадают углы:

45°, 175°, 355°, 91°, 355° ?

Легко? Продолжаем:

2. В какую четверть попадают углы:

402°, 535°, 3000°, -45°, -325°, -3000°?

Тоже без проблем? Ну, смотрите…)

3. Сможете разместить по четвертям углы:

Смогли? Ну вы даёте..)

4. На какие оси попадёт уголок:

и уголок:

Тоже легко? Хм…)

5. В какую четверть попадают углы:

И это получилось!? Ну, тогда я прям не знаю. ..)

6. Определить, в какую четверть попадают углы:

1, 2, 3 и 20 радианов.

Ответ дам только на последний вопрос (он слегка хитрый) последнего задания. Угол в 20 радианов попадёт в первую четверть.

Остальные ответы не дам не из жадности.) Просто, если вы не решили чего-то, сомневаетесь в результате, или на задание №4 потратили больше 10 секунд, вы слабо ориентируетесь в круге. Это будет вашей проблемой во всей тригонометрии. Лучше от неё (проблемы, а не тригонометрии!)) избавиться сразу. Это можно сделать в теме: Практическая работа с тригонометрическим кругом в разделе 555.

Там рассказано, как просто и правильно решать такие задания. Ну и эти задания решены, разумеется. И четвёртое задание решено за 10 секунд. Да так решено, что любой сможет!

Если же вы абсолютно уверены в своих ответах и вас не интересуют простые и безотказные способы работы с радианами — можете не посещать 555. Не настаиваю.)

Хорошее понимание — достаточно веская причина, чтобы двигаться дальше!)

Если Вам нравится этот сайт. ..

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

Преобразователь радианы в градусы

Радиан (обозначение: рад) — стандартная единица измерения угла, используемая во многих областях математики. Измерение угла в радианах численно равно длине соответствующей дуги единичного круга, поэтому один радиан составляет чуть менее 57,3 градуса (когда длина дуги равна радиусу). π имеет бесконечные десятичные цифры. Для всех расчетов π считается равным 3,14159265358979323846.

Этот инструмент преобразует радианы в градусы (рады в градусы) и наоборот. 1 радиан = 57,295779513082 градуса . Пользователь должен заполнить одно из двух полей и преобразование произойдет автоматически.

радианы (рад)градусы (градусы)аркминутыарксекундыградианы (град)гонциклы   радианы (рад)градусы (градусы)аркминутыарксекундыградианы (град)гонциклы
 <=> 
   

точность:авто0 десятичный 1 десятичный 2 десятичный 3 десятичный 4 десятичный 5 десятичный 6 десятичный 7 десятичный 8 десятичный 9 десятичный 10 десятичный 11 десятичный 12 десятичный

1 радианы = 57,2958 градусов

 

Формула радианы в градусах (рад в градусах). Градус = рад*57,295779513082

 

Преобразование радиан в другие единицы

Радиан в Градус Радиан в Угловая минута Радиан в Угловая секунда
Радиан в Градиан Радиан в Гон Радиан в цикл

  

900 11 6 радиан = 343,7747 градусов 9001 0

Таблица радиан в

градусов
1 радиан = 57,2958 градуса 11 радиан = 630,254 градуса 21 радиан = 1203,211 градуса
2 радиана = 114,5916 градуса 12 радиан = 687,54 9 градусов 22 радиана = 1260,507 градуса
3 радиана = 171,8873 градуса 13 радиана = 744,845 градусов 23 радиана = 1317,803 градуса
4 радиана = 229,1831 градуса 14 радиана = 802,141 градуса 24 радианы = 1375,099 градусов
5 радиан = 286,4789 градусов 15 радиан = 859,437 градусов 25 радиан = 1432,394 градусов
16 радиан = 916,732 градуса 26 радиан = 1489,69 градусов
7 радиан = 401,0705 градуса 17 радиан = 974,028 градуса 27 радиан = 1546,986 градуса
8 радиан = 458,36 62 градуса 18 радиан = 1031,324 градуса 28 радиан = 1604,282 градуса
9 радиан = 515,662 градуса 19 радиан = 1088,6 2 градуса 29 радиан = 1661,578 градуса
10 радиан = 572,958 градуса 20 радиан = 1145,916 градусов 30 радиан = 1718,873 градуса
40 радиан = 2291,831 градусов 70 радиан = 4010,705 градусов 100 радиан = 57290,578 градуса
50 радиан = 2864,789 градуса 80 радиан = 4583,662 градуса 110 радиан = 6302,54 градуса
60 радиан = 3437,747 градуса 90 радиан = 5156,62 градуса 120 радиан = 6875,49 градуса
200 радиан = 11459,16 градусов 500 радиан = 28647,89 градусов 800 радиан = 45836,62 градусов
300 радиан = 17188,73 градусов 600 радиан = 34377,47 градусов 900 радиан = 51566,2 градусов
400 радиан = 22918,31 градусов 700 радиан = 40107,05 градусов 1000 радиан = 57295,78 градусы

  

Угловые преобразователи

Градус в Радиан Градус в Угловая минута Градус в угловая секунда
Градус в Градиан Степень в Гон Степень к циклу
Угловая минута в Радиан Угловая минута в Градус Угловая минута в Угловая секунда
Угловая минута в Градиан Аркминута в Гон Угловая минута в Цикл
Угловая секунда в Радиан Угловая секунда в Градус Угловая секунда в Угловая минута
Угловая секунда в Градиан Секунда дуги до Гона Угловая секунда к циклу
Градиан в Радиан Градиан в Градус Градиан в Угловая минута
Градиан в угловую секунду Градиан в Гон Градиан к циклу
Гон в Радиан Гон в степень Гон в Аркминута
Гон в угловую секунду Гон в Градиан Гон на велосипеде
Переключиться на радиан Цикл до степени Переключиться на угловую минуту
Переключиться на угловую секунду Переключиться на Градиан Цикл в Гон

 

 

Как преобразовать радианы в градусы в геометрии

В геометрии важно понимать, как преобразовывать радианы в градусы. Радианы — это единица измерения угла, а градусы — это единица измерения угла. Поэтому знание того, как сделать преобразование между ними, является важным навыком для любого изучающего математику и геометрию. Давайте посмотрим, что такое радианы и градусы и как их можно преобразовать друг в друга.

Что такое радианы?

радиана — единица измерения угла, используемая в геометрии. Они измеряют углы с точки зрения их длины по окружности круга, а не как угол, образованный двумя пересекающимися линиями. Это означает, что длина дуги по окружности любого заданного круга равна центральному углу (тета), умноженному на радиус (r) того же круга. Уравнение для этого выглядит следующим образом: Длина дуги = Theta x r

При измерении углов в радианах за один полный оборот вокруг окружности или 360° приходится 2π радиан, что делает преобразование между радианами и градусами относительно простым.

 

Как преобразовать радианы в градусы

Чтобы преобразовать радианы в градусы, мы используем следующую формулу: Измерение в градусах = Измерение в радианах x (180/π). Эта формула берет наше уравнение длины дуги выше и решает его для градусов вместо длины; таким образом, позволяя нам легко конвертировать из радианов в градусы. Просто подставив наши известные значения в это уравнение, мы можем легко выполнять преобразования между этими двумя единицами измерения. Например, если бы мы хотели узнать, сколько градусов эквивалентно 3π/4 радианам, то мы подставили бы 3π/4 в наше уравнение следующим образом: Измерение градусов = 3π/4 x (180/π) = 135°. Следовательно, Меры 3π/4 радиана были бы эквивалентны измерениям градусов 135 °.

Используя эту простую формулу, вы можете легко преобразовывать радианы в градусы, когда вам это нужно!

Заключение

Теперь вы знаете, как легко преобразовать радианы в градусы! Знание того, как сделать это преобразование, пригодится при изучении различных тем в геометрии, таких как тригонометрия или круги. С небольшой практикой и некоторым базовым пониманием этих концепций у вас не должно возникнуть проблем с освоением этих преобразований! Помните, что в 360° всегда 2π радиан, поэтому не забывайте свою удобную формулу преобразования, когда это необходимо!

Часто задаваемые вопросы

Что означают 2 радиана?

2 радиана равны 360° или полному обороту вокруг окружности.

Какова формула преобразования радианов в градусы?

Формула для преобразования радианов в градусы следующая: Измерение в градусах = Измерение в радианах x (180/π).

Сколько пи в 180 градусах?

В 180° содержится пи/180 радиан. Это также можно записать как π/180 или 1π/180.

Как перевести радианы в градусы?

Чтобы преобразовать радианы в градусы, вы можете использовать формулу Измерение в градусах = Измерение в радианах x (180/π). Затем вы можете подставить свои известные значения в это уравнение, чтобы выполнить преобразование. Например, если у вас есть 2 радиана, то вы можете подставить 2 в уравнение и найти градусы как таковые: Измерение градусов = 2 x (180/π) = 114,59° Следовательно, 2 радиана будут эквивалентны 114,59° градусов.

Сколько градусов составляют 2 радиана в пи?

2 радиана в пи равно 114,59° градусов. Чтобы рассчитать это, вы должны использовать формулу Измерение в градусах = Измерение в радианах x (180/π).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *