Площадь и периметр квадрата и прямоугольника формула: , , . — 136 -7708 . 8

Содержание

Онлайн урок: Площадь. Площадь прямоугольника по предмету Математика 5 класс

В нашей жизни приходится часто вычислять площади различных геометрических фигур. Например, площадь огорода, поля; при покупке жилья — площадь квартиры, дома, комнат; делая ремонт, мы вычисляем площадь стен, пола, окон, строительных материалов и т.д.

Сегодня мы научимся вычислять площади двух геометрических фигур: прямоугольника и квадрата, познакомимся с понятием площади и единицами ее измерения.

Выясним, какими свойствами обладает площадь.

Разберем несколько примеров решения задач.

Прямоугольник, квадрат и другие замкнутые геометрические фигуры имеют некоторую границу (контур), которая делит плоскость на области: область, которая находится снаружи этой границы, и область, которая находится внутри контура.

Площадью называют часть плоскости, ограниченную линией (кривой или ломаной).

Для обозначения площади обычно используют заглавную латинскую букву S.

Площадь различных фигур можно сравнивать.

Площадь будет больше у той фигуры, которая на плоскости занимает больше места.

Например, даны три фигуры №1, №2, №3.

Площадь фигуры №1 больше площади фигуры №2 и №3, а площадь фигуры №2 больше площади фигуры №3.

Невооруженным глазом заметно, какая фигура меньше, а какая больше.

 

Рассмотрим еще один пример.

Даны две фигуры №1 и №2.

Однозначно сказать, площадь какой фигуры больше, а какой меньше, затруднительно.

Нам известно, что фигуры называют равными, если при наложении одной фигуры на другую они совпадают.

Попробуем сравнить первую и вторую фигуры наложением.

Этот способ сравнения не смог дать нам однозначного ответа, поэтому постараемся найти более точный способ нахождения площади данных фигур.

Известно, чтобы определить длину отрезка, его сравнивают с отрезком, принятым за единицу измерения.

В таком случае, чтобы измерить площадь фигуры, необходимо посчитать сколько раз в ней помещается другая фигура, принятая за единицу измерения.

При измерении длины отрезка используют линейные меры длины: 1 мм, 1 см, 1 дм и т.д.

Площадь же измеряют квадратными единицами.

Квадратная единица представляет собой квадрат, стороны которого выражены линейными единицами; другими словами, площадь измеряется квадратными единицами длины.

Квадрат, у которого все стороны равны 1 мм, называется квадратным миллиметром.

Квадрат, у которого все стороны равны 1 см, называется квадратным сантиметром.

Квадрат, у которого все стороны равны

1 дм, называется квадратным дециметром.

Аналогично определяется квадратный метр и квадратный километр.

Определить площадь фигуры- это значит найти сколько квадратных единиц содержится в данной фигуре.

Обозначают квадратные единицы следующим образом:

1 мм2— один миллиметр квадратный (квадратный миллиметр)

1 см2— один сантиметр квадратный (квадратный сантиметр)

1 дм2— один дециметр квадратный (квадратный дециметр)

1 м2— один метр квадратный (квадратный метр)

1 км2— один километр квадратный (квадратный километр) и т.д.

Если разбить фигуру на n равных квадратов, то ее площадь будет равна n квадратных единиц.

Найдем для нашего примера площадь фигуры №

1 и площадь фигуры №2 и сравним полученные площади. Так мы сможем выяснить, какая из фигур имеет большую площадь.

Для этого разобьем эти две фигуры на одинаковые квадраты со сторонами 1 см (т. е. на квадратные сантиметры).

Фигура №1 состоит из 12 квадратов, следовательно, данная фигура имеет площадь 12 квадратных единиц, в нашем случае квадратных сантиметров: S1 = 12 см2

Фигура №2 состоит также из 12 квадратов, значит, данная фигура имеет площадь 12 квадратных единиц, в нашем случае квадратных сантиметров: S2 = 12 см2

Сравним площади фигур: так как S1 =

12 см2 и S2 = 12 см2, значит, площади фигур №1 и №2 равны.

У меня есть дополнительная информация к этой части урока!

Закрыть