Построение окружности по уравнению: Уравнение окружности — урок. Алгебра, 9 класс.

Уравнение окружности

Прежде всего, давайте вспомним, формулу расстояния между двумя точками и еще, повторим, что уравнение с двумя переменными x и y называется уравнением линии l, если этому уравнению удовлетворяют координаты любой точки линии l и не удовлетворяют координаты никакой точки, не лежащей на этой линии.

Сегодня на уроке мы попробуем по геометрическим свойствам линии найти ее уравнение.

В качестве линии рассмотрим окружность радиуса  с центром в точке .

Пусть центр окружности имеет координаты . Возьмем на окружности произвольную точку . Запишем формулу расстояния между точками C и M. Мы знаем, что длина отрезка, который соединяет любую точку на окружности с центром окружности – это радиус. Поэтому можно записать, что MC равно r. Возведем MC в квадрат и получим уравнение MC2 = r2. Заменим MC2 квадрат на выражение  и получим, что если точка лежит на окружности с радиусом r и центром в точке C, то координаты этой точки удовлетворяют уравнению .

Если точка не лежит на окружности, то расстояние от этой точки до центра окружности не равно радиусу, поэтому координаты таких точек не будут удовлетворять полученному уравнению. Поэтому можно сказать, что в прямоугольной системе координат уравнение окружности радиуса r с центром в точке C с координатами  имеет вид: .

Задача. Записать уравнение окружности с радиусом  и центром в начале координат.

Решение.

Начало координат имеет координаты (0;0). Подставим их в уравнение окружности и получим, что уравнение окружности с радиусом r и центром в начале координат имеет вид

 

.

Задача. Начертить окружность, заданную уравнением .

Решение.

Запишем общее уравнение окружности и проанализируем исходное уравнение. Прежде всего, определимся с координатами центра окружности. Это будут числа 5 и 3. Теперь давайте определим величину радиуса окружности.

Поскольку в правой части формулы стоит квадрат радиуса, то для того, чтобы найти радиус надо извлечь квадратный корень из 4. Получим 2.

 Значит наша формула задает окружность с центром в точке с координатами пять три и радиусом равным двум.

Задача. Начертить окружность, заданную уравнением .

Решение.

Запишем общее уравнение окружности и проанализируем исходное уравнение. Прежде всего определимся с координатами центра окружности.

Это будут числа -4 и 2. Теперь давайте определим величину радиуса окружности.

Задача. Начертить окружность, заданную уравнением .

Решение. Уравнениями такого типа описываются окружности с центром в начале координат. Теперь давайте определим величину радиуса окружности. Поскольку в правой части формулы стоит квадрат радиуса, то для того, чтобы найти радиус надо извлечь квадратный корень из 9.

Значит наша формула задает окружность с центром в точке с координатами (0;0) и радиусом равным 3.

Теперь давайте попробуем решить задачу обратную данным.

Задача. Составить уравнение окружности, которая показана на рисунке.

Как и в предыдущих задачах мы начнем с определения координат центра окружности. Сделать это нетрудно. Центр этой окружности совпадает с началом координат, поэтому центр окружности имеет координаты (0;0).

Нетрудно заметить, что радиус окружности равен 4.

Запишем уравнение окружности и подставим найденные значения.

 

 

 

Ответ: .

Решим еще одну задачу.

Задача. Составить уравнение окружности, которая показана на рисунке.

Решение.

 – центр окружности

 – радиус окружности

Ответ:.

Задача. Составить уравнение окружности, которая показана на рисунке.

Решение.

 – центр окружности

 – радиус окружности

 

 

 

Ответ:.

Решая задачи, мы с вами выполняли один и тоже порядок действий. Давайте еще раз повторим этот порядок.

Для того, что бы составить уравнение окружности и построить ее надо:

1. Найти координаты центра окружности.

2. Найти длину радиуса этой окружности.

3. Записать уравнение окружности.

4. Подставить полученные значения в уравнение окружности.

5. Построить окружность, если это требуется для решения задачи.

Рассмотрим еще одну задачу.

Написать уравнение окружности с диаметром эм эн, если точка эн имеет координаты два три, точка эм имеет координаты шесть три.

Задача. Написать уравнение окружности с диаметром , если , .

Решение.

Найдем координаты центра окружности. Центр окружности является серединой диаметра. Воспользуемся формулами для нахождения координат середины отрезка.

 

Получим, что центр окружности имеет координаты .

Теперь определим радиус окружности. Для этого найдем расстояние от центра окружности до концов диаметра.

 

 

Запишем общее уравнение окружности и подставим в него найденные значения. Тогда получим, что уравнение данной окружности имеет вид:

Ответ: .

Подведем итоги урока.

На сегодняшнем уроке мы познакомились с формулой, которая задает окружность с центром в точке С (x0; y0) и радиусом r.

Также мы познакомились с формулой, которая задает окружность с центром в начале координат и радиусом r.

Мы рассмотрели задачи на составление уравнения окружности по рисунку и на построение окружности по заданному уравнению.

Mathway | Популярные задачи

1Найти точное значениеsin(30)
2Найти точное значениеsin(45)
3
Найти точное значение
sin(30 град. )
4Найти точное значениеsin(60 град. )
5Найти точное значениеtan(30 град. )
6Найти точное значениеarcsin(-1)
7Найти точное значениеsin(pi/6)
8Найти точное значениеcos(pi/4)
9Найти точное значениеsin(45 град. )
10Найти точное значениеsin(pi/3)
11Найти точное значениеarctan(-1)
12Найти точное значениеcos(45 град. )
13Найти точное значениеcos(30 град. )
14Найти точное значениеtan(60)
15Найти точное значениеcsc(45 град. )
16Найти точное значениеtan(60 град. )
17Найти точное значениеsec(30 град. )
18Найти точное значениеcos(60 град. )
19Найти точное значениеcos(150)
20Найти точное значениеsin(60)
21Найти точное значениеcos(pi/2)
22Найти точное значениеtan(45 град.
)
23Найти точное значениеarctan(- квадратный корень из 3)
24Найти точное значениеcsc(60 град. )
25Найти точное значениеsec(45 град. )
26Найти точное значениеcsc(30 град. )
27Найти точное значениеsin(0)
28Найти точное значениеsin(120)
29Найти точное значениеcos(90)
30Преобразовать из радианов в градусыpi/3
31Найти точное значениеtan(30)
32Преобразовать из градусов в радианы45
33Найти точное значениеcos(45)
34Упроститьsin(theta)^2+cos(theta)^2
35Преобразовать из радианов в градусыpi/6
36Найти точное значениеcot(30 град. )
37Найти точное значениеarccos(-1)
38Найти точное значениеarctan(0)
39Найти точное значениеcot(60 град. )
40Преобразовать из градусов в радианы30
41Преобразовать из радианов в градусы(2pi)/3
42Найти точное значениеsin((5pi)/3)
43Найти точное значениеsin((3pi)/4)
44Найти точное значениеtan(pi/2)
45Найти точное значениеsin(300)
46Найти точное значениеcos(30)
47Найти точное значениеcos(60)
48Найти точное значениеcos(0)
49Найти точное значениеcos(135)
50Найти точное значениеcos((5pi)/3)
51Найти точное значениеcos(210)
52Найти точное значениеsec(60 град. )
53Найти точное значениеsin(300 град. )
54Преобразовать из градусов в радианы135
55Преобразовать из градусов в радианы150
56Преобразовать из радианов в градусы(5pi)/6
57Преобразовать из радианов в градусы(5pi)/3
58Преобразовать из градусов в радианы89 град.
59Преобразовать из градусов в радианы60
60Найти точное значениеsin(135 град. )
61Найти точное значениеsin(150)
62Найти точное значениеsin(240 град. )
63Найти точное значениеcot(45 град. )
64Преобразовать из радианов в градусы(5pi)/4
65Найти точное значениеsin(225)
66Найти точное значениеsin(240)
67Найти точное значениеcos(150 град. )
68Найти точное значениеtan(45)
69Вычислитьsin(30 град. )
70Найти точное значениеsec(0)
71Найти точное значениеcos((5pi)/6)
72Найти точное значениеcsc(30)
73Найти точное значениеarcsin(( квадратный корень из 2)/2)
74Найти точное значениеtan((5pi)/3)
75Найти точное значениеtan(0)
76Вычислитьsin(60 град. )
77Найти точное значениеarctan(-( квадратный корень из 3)/3)
78Преобразовать из радианов в градусы(3pi)/4
79Найти точное значениеsin((7pi)/4)
80Найти точное значениеarcsin(-1/2)
81Найти точное значениеsin((4pi)/3)
82Найти точное значениеcsc(45)
83Упроститьarctan( квадратный корень из 3)
84Найти точное значениеsin(135)
85Найти точное значениеsin(105)
86Найти точное значениеsin(150 град. )
87Найти точное значениеsin((2pi)/3)
88Найти точное значениеtan((2pi)/3)
89Преобразовать из радианов в градусыpi/4
90Найти точное значениеsin(pi/2)
91Найти точное значениеsec(45)
92Найти точное значениеcos((5pi)/4)
93Найти точное значениеcos((7pi)/6)
94Найти точное значениеarcsin(0)
95Найти точное значениеsin(120 град. )
96Найти точное значениеtan((7pi)/6)
97Найти точное значениеcos(270)
98Найти точное значениеsin((7pi)/6)
99Найти точное значениеarcsin(-( квадратный корень из 2)/2)
100Преобразовать из градусов в радианы88 град.

Уравнение окружности | Brilliant Math & Science Wiki

Праншу Габа, Эндрю Эллинор, Тарун Сингх, и

способствовал

Содержимое
  • Общее уравнение окружности
  • Стандартное уравнение окружности 92 + 2gx + 2fy + c = 0. 2\) .

    Если у нас есть точка \(O=(a,b)\) на плоскости и радиус \(r\), то мы можем построить единственный круг.

    Мы находим геометрическое место точки, которая движется таким образом, что ее расстояние \(r\) от другой точки (\(a,b\)) всегда постоянно. Теперь, если \(P=(h,k)\) является любой точкой уникальной окружности с центром \(O\) и радиусом \(r\), расстояние от \(O=(a,b)\) до \(P=(h,k)\) должно быть \(r\).

    Локус P 92. \]

    Сравнивая со стандартным уравнением, мы видим, что \(a=b=0.\) Следовательно, центр окружности является началом координат , а его радиус равен \(5\)! \(_\квадрат\)

    Каково значение \(k\) на рисунке ниже?

    Рисунок


    Поскольку это круг и он касается как оси \(x\), так и оси \(y\), его расстояние от обеих осей должно быть одинаковым. Поскольку он находится в \(3\) единицах от оси \(x\), он должен быть в \(3\)-единицах от оси \(y\). Следовательно,

    \[k = 3.\ _\квадрат\]

    Другим способом выражения уравнения окружности является диаметральная форма.

    Предположим, что на окружности есть две точки \((x_1, y_1)\) и \((x_2, y_2)\), такие, что они лежат на противоположных концах одного и того же диаметра, тогда уравнение окружности можно записывается как

    \[(x-x_1)(x-x_2) + (y-y_1)(y — y_2) = 0.\]

    Предположим, что 2 точки на окружности \(A= (x_1, y_1)\) и \(B= (x_2, y_2)\) диаметрально противоположны, тогда для любой точки \(C= (x, y)\) на круг, \(\треугольник ABC\) будет прямоугольным треугольником с прямым углом в \(C\). Отсюда следует

    \[\начать {выравнивание} AC &\perp BC\\ (m_{AC}) \cdot (m_{BC}) &= -1\\ \left(\dfrac{y — y_1}{x — x_1}\right) \cdot \left( \dfrac{y — y_2}{x — x_2}\right)&= -1. \конец{выравнивание}\]

    Так как \(x\) может быть равно \(x_1\) и \(x_2\),

    \[\начать {выравнивание} (y-y_1)(y — y_2 ) &= — (x — x_1) (x- x_2)\\ (x-x_1)(x-x_2) + (y-y_1)(y — y_2) &= 0. \ _\квадрат \конец{выравнивание}\]

    Найдите уравнение наименьшей возможной окружности, проходящей через точки \((2,6)\) и \((-4, 3).\)


    Круг был бы наименьшим, если бы две точки были конечными точками диаметра круга.

    Мы можем использовать диаметральную форму, чтобы получить

    \[\начать {выравнивание} (х — 2) (х — (-4)) + (у — 6) (у — 3) &=0\\ (х — 2)(х + 4) + (у — 6)(у — 3) &=0. \ _\квадрат \конец{выравнивание}\]

    Процитировать как: Уравнение круга. Brilliant.org . Извлекаются из https://brilliant.org/wiki/conics-circle-standard-equation/

    Уравнение окружности (примеры вопросов)

    Окружность — это множество всех точек на плоскости, равноудаленных от центральной точки. Радиус окружности — это отрезок, концы которого находятся в центре и в любой точке на окружности окружности.

    Примеры вопросов по уравнениям окружности

    Окружность на координатной плоскости имеет радиус 5 единиц, а ее центр находится в точке (0, 0).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *