ОглавлениеВВЕДЕНИЕЧасть первая. Глава I. ДЕЙСТВИТЕЛЬНЫЕ И КОМПЛЕКСНЫЕ ЧИСЛА 2. Простые и составные числа. Признаки делимости. 3. Наибольший общий делитель и наименьшее общее кратное. 4. Целые числа. Рациональные числа. 5. Десятичные дроби. Представление рациональных чисел десятичными дробями. 6. Иррациональные числа. Действительные числа. 7. Действия с приближенными числами. 8. Числовая ось. Координаты точки на плоскости. § 2. Степени и корни 9. Степени с натуральными показателями. 10. Степени с целыми показателями. 11. Корни. 12. Степени с рациональными показателями. Степени с действительными показателями. 13. Алгоритм извлечения квадратного корня. § 3. Комплексные числа 14. Основные понятия и определения. 15. Рациональные действия с комплексными числами. 16. Геометрическое изображение комплексных чисел. Тригонометрическая форма комплексного числа. 17. Действия с комплексными числами, заданными в тригонометрической форме. Формула Муавра. 18. Извлечение корня из комплексного числа. Глава II. ТОЖДЕСТВЕННЫЕ ПРЕОБРАЗОВАНИЯ 19. Алгебраические выражения. Одночлены и многочлены. 20. Формулы сокращенного умножения. 21. Бином Ньютона. 22. Разложение многочлена на множители. 23. Дробные алгебраические выражения. § 2. Иррациональные алгебраические выражения 24. Радикалы из алгебраических выражений. 25. Освобождение от иррациональности в знаменателе дроби. Глава III. ЛОГАРИФМЫ 26. Определение и свойства логарифмов. 27. Логарифмы по различным основаниям. Модуль перехода. § 2. Десятичные логарифмы 28. Характеристика и мантисса десятичного логарифма. 29. Применение десятичных логарифмов к вычислениям. Глава IV. ФУНКЦИИ И ГРАФИКИ 30. Величина. Числовые множества. 31. Определение функции. 32. График функции. Способы задания функций. 34. Сложная функция. 35. Обратная функция. 36. n. 41. Обратная пропорциональная зависимость. Степенная функция с рациональным показателем степени. 42. Показательная функция. 43. Логарифмическая функция. § 3. Преобразование графиков 44. Параллельный сдвиг графика. 45. График квадратного трех члена. 46. График дробно-линейной функции. 47. Преобразование симметрии. Сжатие и растяжение графика. 48. Построение графиков функций. 49. Сложение графиков. § 4. Некоторые сведения о рациональных функциях 50. Целые и дробные рациональные функции. Деление многочленов. 51. Схема Горнера. Теорема Безу. 52. Нули многочлена. Разложение многочлена на множители. Глава V. УРАВНЕНИЯ 53. Уравнение. Корни уравнения. 54. Равносильные уравнения. 55. Системы уравнений. 56. Графическое решение уравнений. §. 2. Алгебраические уравнения с одной неизвестной 57. Число и кратность корней. 58. Уравнения первой степени (линейные уравнения). 59. Уравнения второй степени (квадратные уравнения). 60. Формулы Виета. Разложение квадратного трехчлена на множители. 61. Исследование квадратного уравнения. 62. Уравнения высших степеней. Целые корни. 63. Двучленные уравнения. 64. Уравнения, сводящиеся к квадратным. 65. Возвратные уравнения. § 3. Системы алгебраических уравнений 66. Линейные системы. 67. Определители второго порядка. Исследование линейных систем двух уравнений с двумя неизвестными. 68. Системы, состоящие из уравнения второй степени и линейного уравнения. 69. Примеры систем двух уравнений второй степени. Системы уравнений высших степеней. 70. Иррациональные уравнения. 71. Показательные уравнения. 72. Логарифмические уравнения. 73. Разные уравнения. Системы уравнений. Глава VI. НЕРАВЕНСТВА 74. Свойства неравенств. Действия над неравенствами. 75. Алгебраические неравенства. § 2. Решение неравенств 76. Множество решений неравенства. Равносильные неравенства. 77. Графическое решение неравенств. 79. Квадратные неравенства. 80. Неравенства высших степеней. Неравенства, содержащие дробные рациональные функции от х. 81. Иррациональные, показательные и логарифмические неравенства. 82. Неравенства с двумя неизвестными. Глава VII. ПОСЛЕДОВАТЕЛЬНОСТИ 83. Числовая последовательность. 84. Предел числовой последовательности. 85. Бесконечно малые. Правила предельного перехода. § 2. Арифметическая прогрессия 86. Арифметическая прогрессия. Формула общего члена. 87. Свойства арифметической прогрессии. 88. Формула для суммы n членов арифметической прогрессии. § 3. Геометрическая прогрессия 89. Геометрическая прогрессия. Формула общего члена. 90. Свойства геометрической прогрессии. 91. Формулы для суммы n членов геометрической прогрессии. 92. Бесконечно убывающая геометрическая прогрессия. Глава VIII. ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ УГЛА (ДУГИ) 93. Вектор, проекция вектора. 94. Положительные углы и дуги, меньшие 360°. 95. Углы и дуги, большие 360°. 96. Отрицательные углы. Сложение и вычитание углов. § 2. Тригонометрические функции произвольного угла 97. Определение основных тригонометрических функций. 98. Изменение основных тригонометрических функций при изменении угла от 0 до 2pi. § 3. Соотношения между тригонометрическими функциями одного и того же угла 100. Вычисление значений тригонометрических функций по значению одной из них. 101. Значения тригонометрических функций некоторых углов. § 4. Четность, нечетность и периодичность тригонометрических функций 102. Четность и нечетность. 103. Понятие периодической функции. 104. Периодичность тригонометрических функций. § 5. Формулы приведения 105. Зависимость между тригонометрическими функциями дополнительных углов. 106. Формулы приведения. Глава IX. ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ ЧИСЛОВОГО АРГУМЕНТА И ИХ ГРАФИКИ § 1. Тригонометрические функции числового аргумента 108. Области определения и области изменения значений тригонометрических функций. 109. Некоторые неравенства и их следствия. § 2. Графики тригонометрических функций 110. Первоначальные сведения о таблицах тригонометрических функций. 111. Основные графики. 112. Примеры построения графиков некоторых других тригонометрических функций. 113. Дальнейшие примеры построения графиков функций. Глава X. ПРЕОБРАЗОВАНИЕ ТРИГОНОМЕТРИЧЕСКИХ ВЫРАЖЕНИЙ 114. Расстояние между двумя точками на плоскости. 115. Косинус суммы и разности двух аргументов. 116. Синус суммы и разности двух аргументов. 117. Тангенс суммы и разности двух аргументов. 118. О формулах сложения для нескольких аргументов. § 2. Формулы для двойного и половинного аргумента. Выражение sin na и cos na через степени sin a и cos a 119. Тригонометрические функции двойного аргумента. 120. Выражение sin na и cos na через степени sin a и cos a при натуральном числе n. 121. Тригонометрические функции половинного аргумента. 122. Выражение основных тригонометрических функций аргумента а через tg(a/2). § 4. Преобразование в произведение сумм вида § 5. Преобразование некоторых выражений в произведения с помощью введения вспомогательного аргумента 127. Преобразование в произведение выражения a•sina + b•cosa. 128. Преобразование в произведение выражений a•sina+b и a•cosa+b 129. Преобразование в произведение выражения a•tga+b. Глава XI. ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ И ИХ ГРАФИКИ 130. Функция у = arcsin x (арксинус). 131. Функция y = arccos x (арккосинус). 132. Функция y = arctg x (арктангенс). 133. Функция y = arcctg x (арккотангенс). 134. Пример. § 2. Операции над обратными тригонометрическими функциями 135. Тригонометрические операции. 136. Операции сложения (вычитания). § 3. Обратные тригонометрические операции над тригонометрическими функциями 137. Функция у = arcsin (sin x). 138. Функция y = arctg (tg x). Глава XII. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА 139. Уравнение sin х = а. 140. Уравнение cos х = a. 141. Уравнение tg x = a. 142. Уравнение ctg x = a. 143. Некоторые дополнения. § 2. Способ приведения к одной функции одного и того же аргумента 145. Некоторые типы уравнений, приводящихся к уравнениям относительно функции одного аргумента. 146. Способ разложения на множители. 147. Решение рациональных тригонометрических уравнений с помощью универсальной тригонометрической подстановки tg(x/2) = t. § 3. Некоторые частные приемы решения тригонометрических уравнений и систем 148. Введение вспомогательного аргумента. 149. Преобразование произведения в сумму или разность. 150. Переход к функциям удвоенного аргумента. 151. Решение уравнения типа… 152. Применение подстановок sinx ± соsx = y. 154. Простейшие тригонометрические неравенства. 155. Примеры тригонометрических неравенств, сводящихся к простейшим. Часть вторая. ГЕОМЕТРИЯ 156. Точка. Прямая. Луч. Отрезок. 157. Плоскость. Фигуры и тела. 160. Равенство фигур. Движение. 161. Равенство тел. § 2. Измерение геометрических величин 162. Сложение отрезков. Длина отрезка. 163. Общая мера двух отрезков. 164. Сравнительная длина отрезков и ломаных. 165. Измерение углов. 166. Радианная мера угла. 167. Измерение площадей. 168. Площадь прямоугольника. Объем прямоугольного параллелепипеда. Глава XIV. ПЕРПЕНДИКУЛЯРНЫЕ И ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ. ЗАДАЧИ НА ПОСТРОЕНИЕ 169. Перпендикуляр и наклонные. 170. Свойство перпендикуляра, проведенного к отрезку в его середине. 171. Параллельные прямые. 172. Углы, образованные двумя параллельными прямыми и секущей. 173. Углы с параллельными или перпендикулярными сторонами. § 2. Геометрические места точек. Окружность 174. Геометрическое место точек. 175. Свойство биссектрисы угла. 176. Окружность. 177. Взаимное расположение прямой и окружности. Касательная и секущая. 178. Хорда и диаметр. Сектор и сегмент. 179. Взаимное расположение двух окружностей. § 3. Основные задачи на построение 181. Деление отрезка пополам. Построение перпендикуляров. 182. Построение углов. 183. Другие задачи на построение. Глава XV. ТРЕУГОЛЬНИКИ, ЧЕТЫРЕХУГОЛЬНИКИ 184. Стороны и углы треугольника. 185. Биссектрисы треугольника. Вписанная окружность. 186. Оси симметрии сторон треугольника. Описанная окружность. 187. Медианы и выcоты треугольника. 188. Равенство треугольников. 189. Построение треугольников. 190. Равнобедренные треугольники. 191. Прямоугольные треугольники. § 2. Параллелограммы 192. Четырехугольники. 193. Параллелограмм и его свойства. 194. Прямоугольник. § 3. Трапеция 196. Трапеция. 197. Средняя линия треугольника. 198. Средняя линия трапеции. 199. Деление отрезка на равные части. § 4. Площади треугольников и четырехугольников 200. Площадь параллелограмма. 201. Площадь треугольника. 202. Площадь трапеции. Глава XVI. ПОДОБИЕ ГЕОМЕТРИЧЕСКИХ ФИГУР 203. Пропорциональные отрезки. 204. Свойства биссектрис внутреннего и внешнего углов треугольника. § 2. Подобное преобразование фигур (гомотетия) 205. Определение гомотетичных фигур. 206. Свойства преобразования подобия. § 3. Общее подобное соответствие фигур 207. Подобные фигуры. 208. Периметры и площади подобных треугольников. 209. Применение подобия к решению задач на построение. Глава XVII. МЕТРИЧЕСКИЕ СООТНОШЕНИЯ В ТРЕУГОЛЬНИКЕ И КРУГЕ 210. Углы с вершиной на окружности. 211. Углы с вершиной внутри и вне круга. 212. Угол, под которым виден данный отрезок. 213. Четырехугольники, вписанные в окружность. 214. Пропорциональные отрезки в круге. 215. Задачи на построение. § 2. Метрические соотношения в треугольнике 216. Пропорциональные отрезки в прямоугольном треугольнике. Теорема Пифагора. 218. Теорема синусов. Формула Герона. 217. Квадрат стороны, лежащей против острого или тупого утла и треугольнике. Теорема косинусов. 218. Теорема синусов. Формула Герона. 219. Радиусы вписанной и описанной окружностей. § 3. Решение треугольников 220. Таблицы функций. 221. Решение треугольников. Сводка основных формул. 222. Решение прямоугольных треугольников. 223. Решение косоугольных треугольников. Глава XVIII. ПРАВИЛЬНЫЕ МНОГОУГОЛЬНИКИ. ДЛИНА окружности И ПЛОЩАДЬ КРУГА 224. Выпуклые многоугольники. 225. Правильные многоугольники. 226. Соотношения между стороной, радиусом и апофемой. 227. Периметр и площадь правильного n-угольника. 228. Удвоение числа сторон правильного многоугольника. § 2. Длина окружности. Площадь круга и его частей 229. Длина окружности. 230. Площадь круга и его частей. Глава XIX. ПРЯМЫЕ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ 231. Взаимное расположение двух прямых в пространстве. 232. Взаимное расположение прямой линии и плоскости. 233. Взаимное расположение двух плоскостей. 234. Свойства параллельных прямых и плоскостей. 235. Построения в стереометрии. § 2. Перпендикулярность прямых и плоскостей 236. Перпендикуляр к плоскости. 237. Перпендикуляр и наклонные. 238. Угол между прямой и плоскостью. 239. Связь между перпендикулярностью и параллельностью прямых и плоскостей. 240. Общий перпендикуляр двух скрещивающихся прямых. § 3. Двугранные и многогранные углы 241. Двугранный угол. 242. Взаимно перпендикулярные плоскости. 243. Трехгранные углы. 244. Многогранные углы. § 4. Многогранники 245. Многогранники. 246. Правильные многогранники. Глава XX. МНОГОГРАННИКИ И КРУГЛЫЕ ТЕЛА 247. Цилиндры и призмы. 248. Параллелепипеды. 249. Объемы призм и цилиндров. 250. Площадь боковой поверхности призмы. 251. Площадь поверхности цилиндра. § 2. Пирамида. Конус 252. Свойства пирамиды и конуса. 253. Объем пирамиды и конуса. 254. Площадь боковой поверхности правильной пирамиды и конуса. 255. Усеченный конус и усеченная пирамида. § 3. Шаровая поверхность. Шар 256. Шар и шаровая поверхность. 257. Объем шара и его частей. 258. Площадь поверхности шара и ее частей. 259. Понятие телесного угла. Ответы к упражнениям Приложения |
1 | Найти объем | сфера (5) | |
2 | Найти площадь | окружность (5) | |
3 | Найти площадь поверхности | сфера (5) | |
4 | Найти площадь | окружность (7) | |
5 | Найти площадь | окружность (2) | |
6 | Найти площадь | окружность (4) | |
7 | Найти площадь | окружность (6) | |
8 | Найти объем | сфера (4) | |
9 | Найти площадь | окружность (3) | |
10 | Вычислить | (5/4(424333-10220^2))^(1/2) | |
11 | Разложить на простые множители | 741 | |
12 | Найти объем | сфера (3) | |
13 | Вычислить | 3 квадратный корень из 8*3 квадратный корень из 10 | |
14 | Найти площадь | окружность (10) | |
15 | Найти площадь | окружность (8) | |
16 | Найти площадь поверхности | сфера (6) | |
17 | Разложить на простые множители | 1162 | |
18 | Найти площадь | окружность (1) | |
19 | Найти длину окружности | окружность (5) | |
20 | Найти объем | сфера (2) | |
21 | Найти объем | сфера (6) | |
22 | Найти площадь поверхности | сфера (4) | |
23 | Найти объем | сфера (7) | |
24 | Вычислить | квадратный корень из -121 | |
25 | Разложить на простые множители | 513 | |
26 | Вычислить | квадратный корень из 3/16* квадратный корень из 3/9 | |
27 | Найти объем | прямоугольный параллелепипед (2)(2)(2) | |
28 | Найти длину окружности | окружность (6) | |
29 | Найти длину окружности | окружность (3) | |
30 | Найти площадь поверхности | сфера (2) | |
31 | Вычислить | 2 1/2÷22000000 | |
32 | Найти объем | прямоугольный параллелепипед (5)(5)(5) | |
33 | Найти объем | прямоугольный параллелепипед (10)(10)(10) | |
34 | Найти длину окружности | окружность (4) | |
35 | Перевести в процентное соотношение | 1. 2-4*-1+2 | |
45 | Разложить на простые множители | 228 | |
46 | Вычислить | 0+0 | |
47 | Найти площадь | окружность (9) | |
48 | Найти длину окружности | окружность (8) | |
49 | Найти длину окружности | окружность (7) | |
50 | Найти объем | сфера (10) | |
51 | Найти площадь поверхности | сфера (10) | |
52 | Найти площадь поверхности | сфера (7) | |
53 | Определить, простое число или составное | 5 | |
54 | Перевести в процентное соотношение | 3/9 | |
55 | Найти возможные множители | 8 | |
56 | Вычислить | (-2)^3*(-2)^9 | |
57 | Вычислить | 35÷0. 2 | |
60 | Преобразовать в упрощенную дробь | 2 1/4 | |
61 | Найти площадь поверхности | сфера (12) | |
62 | Найти объем | сфера (1) | |
63 | Найти длину окружности | окружность (2) | |
64 | Найти объем | прямоугольный параллелепипед (12)(12)(12) | |
65 | Сложение | 2+2= | |
66 | Найти площадь поверхности | прямоугольный параллелепипед (3)(3)(3) | |
67 | Вычислить | корень пятой степени из 6* корень шестой степени из 7 | |
68 | Вычислить | 7/40+17/50 | |
69 | Разложить на простые множители | 1617 | |
70 | Вычислить | 27-( квадратный корень из 89)/32 | |
71 | Вычислить | 9÷4 | |
72 | Вычислить | 2+ квадратный корень из 21 | |
73 | Вычислить | -2^2-9^2 | |
74 | Вычислить | 1-(1-15/16) | |
75 | Преобразовать в упрощенную дробь | 8 | |
76 | Оценка | 656-521 | |
77 | Вычислить | 3 1/2 | |
78 | Вычислить | -5^-2 | |
79 | Вычислить | 4-(6)/-5 | |
80 | Вычислить | 3-3*6+2 | |
81 | Найти площадь поверхности | прямоугольный параллелепипед (5)(5)(5) | |
82 | Найти площадь поверхности | сфера (8) | |
83 | Найти площадь | окружность (14) | |
84 | Преобразовать в десятичную форму | 11/5 | |
85 | Вычислить | 3 квадратный корень из 12*3 квадратный корень из 6 | |
86 | Вычислить | (11/-7)^4 | |
87 | Вычислить | (4/3)^-2 | |
88 | Вычислить | 1/2*3*9 | |
89 | Вычислить | 12/4-17/-4 | |
90 | Вычислить | 2/11+17/19 | |
91 | Вычислить | 3/5+3/10 | |
92 | Вычислить | 4/5*3/8 | |
93 | Вычислить | 6/(2(2+1)) | |
94 | Упростить | квадратный корень из 144 | |
95 | Преобразовать в упрощенную дробь | 725% | |
96 | Преобразовать в упрощенную дробь | 6 1/4 | |
97 | Вычислить | 7/10-2/5 | |
98 | Вычислить | 6÷3 | |
99 | Вычислить | 5+4 | |
100 | Вычислить | квадратный корень из 12- квадратный корень из 192 |
Площадь круга от диаметра
Инструкции: Используйте этот калькулятор, чтобы вычислить площадь круга по его диаметру. Пожалуйста, укажите диаметр в форме ниже.
Вычисление площади кругов по диаметру
Этот калькулятор позволит вам вычислить площадь круга, если вы укажете диаметр. Предусмотренный диаметр должно быть любым допустимым положительным выражением. Это может быть число, например «2», это может быть дробь, например, «3/4», или это может быть выражение, включающее квадратные корни, например ‘3sqrt(3)’.
После указания действительного диаметра площадь круга будет рассчитана с указанием всех шагов после нажатия кнопки «Рассчитать». 92}{4}\)
Например, если диаметр измеряется в см, то площадь измеряется в см 2 .
Теперь вас может заинтересовать обратная задача, где вы хотите вычислить диаметр круга по его площади.
Радиус и диаметр
Интересно, что радиус и диаметр широко используются, хотя может показаться, что радиус более популярен. Геометрически говоря, это диаметр, который, возможно, является естественным выбором для формул окружности по умолчанию, но это не так.
У вас всегда есть возможность перейти от заданного диаметра к радиусу, просто разделив диаметр на 2, и использовать все формулы по умолчанию которые вместо этого используют радиус.
Почему вы используете диаметр вместо радиуса?
Разные причины, возможно концептуально не очень важные. Но все же, рассматривая как диаметр круга по формуле , мы увидим что \(C = \pi d\), или, другими словами, отношение между длиной окружности и диаметром для любой окружности постоянно, и эта константа называется \(\pi\). 92}{4} = \displaystyle \pi \cdot \frac{(16}{4} = 4\pi \]
, что означает, что вы фактически «можете» вычислить площадь для отрицательного диаметра. Вопрос «должен ли ты»? Ответ НЕТ, потому что это не имеют геометрический смысл иметь круг с отрицательным диаметром (пока).
Другие полезные калькуляторы кругов
Круги буквально являются одними из самых важных объектов в математике. От вычисления площади круга до вычислив его окружность, мы имеем различные формулы, которые помогают нам с этими задачами.
Идея площадей и окружностей в основном геометрическая, так как нам не нужно знать уравнение окружности, чтобы вычислить их.
Нахождение площади круга с помощью Excel — учебник по Excel
Опубликовано Кристофер Сирали
Find-the-Area-of-a-CircleDownload File
Площадь круга — это протяженность двумерной поверхности, заключенной в пределах окружности круга. Измеряется в квадратных единицах. Мы можем найти площадь круга, используя функции Excel.
В этом уроке мы будем использовать три примера, чтобы объяснить, как найти площадь круга с помощью Excel. Формулы, которые будут использоваться в примерах, получены из формул, используемых в алгебре для вычисления площади круга.
Сначала мы опишем части круга, а затем объясним три алгебраические формулы, используемые для вычисления площади круга.
Части круга
Круг состоит из трех частей: радиуса, диаметра и длины окружности.
- Радиус . Это длина отрезка между центром и окружностью круга. Обычно в формулах обозначается буквой «r».
- Диаметр . Это длина прямой линии, проходящей через центр окружности и соединяющей две точки на окружности. Это в два раза больше длины радиуса окружности. В формулах он обычно обозначается буквой «d».
- Окружность . Это длина замкнутой кривой окружности. Обычно в формулах обозначается буквой «С».
Если известна любая из трех частей круга, площадь круга можно легко вычислить в Excel с помощью формул.
Формулы, используемые в алгебре для вычисления площади круга
Мы можем вычислить площадь круга, используя следующие формулы, используемые в алгебре:
- Площадь = πr 2 , где Pi (π) равно 22/7 или 3,14, а «r» — радиус окружности. Пи (π) — математическая константа, обозначающая отношение длины окружности к диаметру любого круга. Мы используем эту формулу для вычисления площади круга по его радиусу.
- Площадь = ¼ πd 2 , где «d» — диаметр окружности. Мы используем эту формулу для вычисления площади круга по его диаметру.
- Площадь = C 2 /4π , где «C» — длина окружности. Мы используем эту формулу, чтобы вычислить площадь круга, зная его длину окружности.
Примеры вычисления площади круга с помощью Excel
Мы приведем три примера, чтобы объяснить, как мы можем найти площадь круга в Excel.
Пример 1: Расчет площади круга по его радиусу
В этом примере мы находим площадь круга, радиус которого равен 10 единицам.
Мы используем следующие шаги:
- Выберите ячейку B2 и введите следующую формулу:
=ПИ()*МОЩНОСТЬ(A2,2)
=ПИ()*МОЩНОСТЬ(A2,2) |
- Нажмите клавишу Enter.
- Выберите ячейку B2 и нажмите Главная >> Число >> Несколько раз уменьшите десятичное число , чтобы отобразить меньше знаков после запятой.
В этом случае мы уменьшили результат до двух знаков после запятой:
Пояснение к формуле
=PI()*POWER(A2,2)
=ПИ()*МОЩНОСТЬ(A2,2) |
- Эта формула получена из алгебраической формулы Площадь = πr 2 .
- В этой формуле используются функции PI и POWER для вычисления площади круга.
- Функция PI не имеет аргументов и возвращает математическую константу Pi с точностью до 15 цифр.
- Функция СТЕПЕНЬ возвращает результат возведения числа в степень. Его синтаксис: POWER(число, мощность) . Аргумент number r является обязательным и является базовым числом. Аргумент 90 126 в степени 90 127 является обязательным, и это показатель степени, до которого возводится базовое число.
- В этом случае функция СТЕПЕНЬ возвращает результат 10, возведенный в степень 2. Затем результат умножается на математическую константу числа Пи. Возвращаемое значение представляет собой площадь круга.
Пример 2: Расчет площади круга по его диаметру
В этом примере мы находим площадь круга диаметром 20 единиц.
Мы используем следующие шаги:
- Выберите ячейку B2 и введите формулу:
=(PI()*POWER(A2,2))/4
=(ПИ()*МОЩНОСТЬ(A2,2))/4 |
- Нажмите клавишу Enter.
- При необходимости уменьшите результат, чтобы отображалось меньше знаков после запятой, как описано в примере 2.
Объяснение формулы
=(PI()*POWER(A2,2))/4
=(ПИ()*МОЩНОСТЬ(A2,2))/4 |
- Эта формула получена из алгебраической формулы Площадь = ¼ πd 2 .
- Функция СТЕПЕНЬ возвращает значение диаметра, возведенного в степень 2. Этот результат умножается на число Пи, а затем произведение делится на четыре. Возвращаемый результат является площадью круга.
Пример 3: Расчет площади круга по длине окружности
В этом примере мы находим площадь круга, длина окружности которого составляет 62,83 единицы.
Действуем следующим образом:
- Выберите ячейку B2 и введите формулу:
=МОЩНОСТЬ(A2,2)/(PI()*4)
=МОЩНОСТЬ(A2,2)/(PI()*4) |
- Нажмите клавишу Enter.
- При необходимости уменьшите результат, чтобы отображалось меньше знаков после запятой, как описано в примере 2
Объяснение формулы
=СТЕПЕНЬ(A2,2)/(PI()*4)
=МОЩНОСТЬ(A2,2)/(PI()*4) |
- Эта формула получена из алгебраической формулы Площадь = C 2 /4π .