Решение матрицы способом обратной матрицы: Метод обратной матрицы онлайн

Mathway | Популярные задачи

Популярные задачи

Элемент. математикаОсновы алгебрыАлгебраТригонометрияОсновы мат. анализаМатематический анализКонечная математикаЛинейная алгебраХимияPhysics

РейтингТемаЗадачаФорматированная задача
1Решить, используя обратную матрицуx+2y=1 , 4x+5y=13 ,
2Перемножить матрицы[[1/( квадратный корень из 17),-4/( квадратный корень из 17)]][[1/( квадратный корень из 17)],[-4/( квадратный корень из 17)]]
3Найти область определенияx+y=3
4Найти область определенияx-y=3
5Найти область определенияy=-2x+3
6Найти область определенияy=2x+1
7Записать в виде векторного равенстваx=x^2+9x+3 , x=x+2 ,
8Найти область определенияy=2x
9Найти область определенияy=-3x
10Найти область определенияy=3x-2
11Найти область определенияy=4x
12Найти область определения3x+2y=6
13Trovare la 5×5 Matrice Identità5
14Trovare la 6×6 Matrice Identità6
15Trovare la 4×4 Matrice Identità4
16Решить, используя обратную матрицу2x+y=-2 , x+2y=2 ,
17Решить, используя обратную матрицу4x+4=y , y=6x ,
18Решить, используя обратную матрицу4x+2=5y-3 , y=3x-1 ,
19Найти степенное множество(3,4)
20Вычислитькубический корень из 216
21Найти степенное множество (1,3)
22Найти область определения3x-2y=12
23Найти область определенияy=5x+2
24Найти область определенияy=2x-3
25Найти область определенияy=2x-4
26Найти область определенияy=2x+5
27Найти область определенияy=1/2x
28Найти область определенияy=1/2x-3
29Найти область определенияy=2/3x-2
30Найти область определенияx=2y
31Найти область определенияx-2y=2
32Найти область определенияx-2y=6
33Найти область определения2y+x
34Найти область определения2x+y=0
35Найти область определенияy=5x+6
36Найти область определенияy=x+3
37Solve Using a Matrix by Eliminationy=4x+3x-2 , y=6 ,
38Проверить линейную зависимостьB={[[-10,2],[5,-2. 5]]}
39Сложение[[2,4],[6,-4]]+[[-3,-7],[20,10]]
40Проверить линейную зависимостьB={[[-1,2],[0,-2.5]]}
41Перемножить матрицы[[0,0,1,1],[1,0,1,0],[0,0,0,1],[0,1,0,0]][[0,0,1,1],[1,0,1,0],[0,0,0,1],[0,1,0,0]]
42Найти область определенияy=5x
43Найти область определенияy=7x
44Найти область определенияy=-x-2
45Найти область определенияy=x-2
46Найти область определенияy=x-3
47Привести матрицу к ступенчатому виду по строкам[[4,-3,1,0],[1,0,-2,0],[-2,1,1,0]]
48Записать в виде векторного равенстваx+y+z=2 , 4x+5y+z=12 , 2x=-4 , ,
49Найти определитель[[0,-1,a],[3,-a,1],[1,-2,3]]
50Найти область определенияy=-x+2
51Найти определитель[[2,5,0],[1,0,-3],[2,-1,2]]
52Найти определитель[[7,5,0],[4,5,8],[0,-1,5]]
53Найти обратный элемент[[1,-3,0,-2],[3,-12,-2,-6],[-2,10,2,5],[-1,6,1,3]]
54Найти обратный элемент[[1,2,3],[2,5,7],[3,7,9]]
55Привести матрицу к ступенчатому виду по строкам[[0,1,5,-4],[1,4,3,-2],[2,7,1,-2]]
56Привести матрицу к ступенчатому виду по строкам[[1,1,0],[1,0,1],[1,0,1],[2,1,0],[2,1,0]]
57Привести матрицу к ступенчатому виду по строкам[[1,2,3],[4,5,6],[7,8,9]]
58Привести матрицу к ступенчатому виду по строкам[[7,8]]
59Найти область определения2x+y=1
60Записать в виде векторного равенства2x+y=-2 , x+2y=2 ,
61Найти область определенияx-2y=4
62Найти область определенияx-y=-1
63Найти область определенияx+y=5
64Найти область определенияx=-3y-8
65Найти область определенияx=-2y-8
66Найти область определенияx+y=6
67Найти область определенияx+y=4
68
Найти область определения
x+2y=4
69Найти область определенияx+y
70Найти область определенияy=7x+9
71Найти область определенияy=1/2x-5
72Найти область определенияy=1/2x+2
73Найти область определенияy=1/2x+3
74Найти область определенияx-y=-3
75Найти область определения x-y=4
76Найти область определенияy=-2x
77Найти область определенияy=-2x+1
78Найти область определенияy=2^(x+9)
79Найти область определенияy=10-x^2
80Найти область определенияy=2x-6
81Найти область определенияy=-2x-3
82Найти область определенияy=3x-8
83Найти область определенияy=3x
84Найти область определенияy=-3x+1
85Найти область определенияy=4x+3
86Найти область определенияy=3x-4
87Найти область определенияy=4x-2
88Найти область определенияy=-6x
89Найти область определенияy=x-4
90Найти область определения7 корень четвертой степени из 567y^4
91Найти область определенияc=5/9*(f-32)
92Найти область определенияf=9/5c+32
93Вычислитьквадратный корень из 4
94Привести матрицу к ступенчатому виду по строкам[[-6,7],[2,6],[-4,1]]
95Найти собственные значения[[2,1],[3,2]]
96Найти собственные значения[[4,0,1],[2,3,2],[49,0,4]]
97Найти степенное множествоA=(2,3,4,5)
98Найти мощность(2,1)
99Решить, используя обратную матрицу-3x-4y=2 , 8y=-6x-4 ,
100Решить, используя обратную матрицу2x-5y=4 , 3x-2y=-5 ,

10.

Обратная матрица и правило Крамера

Преподавание, линейная алгебра WNE UW

м_корч

Проблемы, решения.

Теперь воспользуемся определителями и попутно введем понятие обратной матрицы.

Обратная матрица

Матрица является обратной к матрице , если , где – единичная матрица (матрица с единицами по диагонали и нулями везде). Обратная матрица обозначается как . Поскольку и , мы видим, что . Это означает, что только матрицы с ненулевыми определителями могут иметь свои обратные. Поэтому мы называем такие матрицы обратимыми.

Как вычислить обратную заданную матрицу? Недавно мы упоминали, что операции над строками матрицы, приводящие к сокращению «лесенки» for, на самом деле являются умножением на матрицу. Представьте, что мы преобразуем матрицу, состоящую из матрицы вместе с единичной матрицей, в редуцированную «ступенчатую» форму. Так как это квадратная матрица с ненулевым определителем, мы получим единичную матрицу в левой части: . Но заметьте, что если это матрица операций со строками, то . Поэтому и . Из первого уравнения следует, что . Второй то. Таким образом, мы получаем обратную матрицу справа после этих операций!

Напр. вычислим обратную следующую матрицу:

   

Итак:

   

   

И поэтому:

   

Определение одного элемента обратной матрицы

Если вам нужна не вся матрица, а только некоторые элементы, следующий способ кажется полезным. Он использует сопряженную матрицу к заданной. Сопряженной матрицей называется матрица, в которой в -й строке и -м столбце стоит определитель матрицы (матрица без -й строки и -го столбца, здесь нет ошибки, здесь играет роль перестановка), умноженная на . Выполняется следующее равенство:

   

Следовательно, если мы хотим вычислить значение во второй строке и первом столбце из предыдущего примера, мы вычеркнем второй столбец и первую строку и вычислим определители, и получим:

   

что согласуется с результатом, полученным первым методом!

Правило Крамера

Имея систему уравнений с переменными, мы можем попытаться решить ее с помощью правила Крамера.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *