Вам могут также быть полезны следующие сервисы |
Калькуляторы (Теория чисел) |
Калькулятор со скобками |
Калькулятор разложения числа на простые множители |
Калькулятор НОД и НОК |
Калькулятор НОД и НОК по алгоритму Евклида |
Представление многозначных чисел в виде суммы разрядных слагаемых |
Калькулятор деления числа в данном отношении |
Калькулятор процентов |
Калькулятор перевода числа с Е в десятичное |
Калькулятор нахождения факториала числа |
Калькулятор нахождения логарифма числа |
Калькулятор квадратных уравнений |
Калькулятор остатка от деления |
Калькулятор корней с решением |
Калькулятор нахождения периода десятичной дроби |
Дроби |
Калькулятор интервальных повторений |
Учим дроби наглядно |
Калькулятор сокращения дробей |
Калькулятор преобразования неправильной дроби в смешанную |
Калькулятор преобразования смешанной дроби в неправильную |
Калькулятор сложения, вычитания, умножения и деления дробей |
Калькулятор возведения дроби в степень |
Калькулятор перевода десятичной дроби в обыкновенную |
Калькулятор перевода обыкновенной дроби в десятичную |
Калькулятор сравнения дробей |
Калькуляторы (тригонометрия) |
Калькулятор синуса угла |
Калькулятор косинуса угла |
Калькулятор тангенса угла |
Калькулятор котангенса угла |
Калькулятор секанса угла |
Калькулятор косеканса угла |
Калькуляторы систем счисления |
Калькулятор перевода чисел из арабских в римские и из римских в арабские |
Калькулятор перевода чисел в различные системы счисления |
Системы счисления теория |
N2 | Двоичная система счисления |
N3 | Троичная система счисления |
N4 | Четырехичная система счисления |
N5 | Пятеричная система счисления |
N6 | Шестеричная система счисления |
N7 | Семеричная система счисления |
N8 | Восьмеричная система счисления |
N9 | Девятеричная система счисления |
N11 | Одиннадцатиричная система счисления |
N12 | Двенадцатеричная система счисления |
N13 | Тринадцатеричная система счисления |
N14 | Четырнадцатеричная система счисления |
N15 | Пятнадцатеричная система счисления |
N16 | Шестнадцатеричная система счисления |
N17 | Семнадцатеричная система счисления |
N18 | Восемнадцатеричная система счисления |
N19 | Девятнадцатеричная система счисления |
N20 | Двадцатеричная система счисления |
N21 | Двадцатиодноричная система счисления |
N22 | Двадцатидвухричная система счисления |
N23 | Двадцатитрехричная система счисления |
N24 | Двадцатичетырехричная система счисления |
N25 | Двадцатипятеричная система счисления |
N26 | Двадцатишестеричная система счисления |
N27 | Двадцатисемеричная система счисления |
N28 | Двадцативосьмеричная система счисления |
N29 | Двадцатидевятиричная система счисления |
N30 | Тридцатиричная система счисления |
N31 | Тридцатиодноричная система счисления |
N32 | Тридцатидвухричная система счисления |
N33 | Тридцатитрехричная система счисления |
N34 | Тридцатичетырехричная система счисления |
N35 | Тридцатипятиричная система счисления |
N36 | Тридцатишестиричная система счисления |
Калькуляторы площади геометрических фигур |
Площадь квадрата |
Площадь прямоугольника |
Калькуляторы (Комбинаторика) |
Калькулятор нахождения числа перестановок из n элементов |
Калькулятор нахождения числа сочетаний из n элементов |
Калькулятор нахождения числа размещений из n элементов |
Калькуляторы линейная алгебра и аналитическая геометрия |
Калькулятор сложения и вычитания матриц |
Калькулятор умножения матриц |
Калькулятор транспонирование матрицы |
Калькулятор нахождения определителя (детерминанта) матрицы |
Калькулятор нахождения обратной матрицы |
Длина отрезка. Онлайн калькулятор расстояния между точками |
Онлайн калькулятор нахождения координат вектора по двум точкам |
Калькулятор нахождения модуля (длины) вектора |
Калькулятор сложения и вычитания векторов |
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами |
Калькулятор скалярного произведения векторов через координаты |
Калькулятор векторного произведения векторов через координаты |
Калькулятор смешанного произведения векторов |
Калькулятор умножения вектора на число |
Калькулятор нахождения угла между векторами |
Калькулятор проверки коллинеарности векторов |
Калькулятор проверки компланарности векторов |
Генератор Pdf с примерами |
Тренажёры решения примеров |
Тренажер сложения |
Тренажёр вычитания |
Тренажёр умножения |
Тренажёр деления |
Тренажёр таблицы умножения |
Тренажер счета для дошкольников |
Тренажер счета на внимательность для дошкольников |
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ. |
Тренажер решения примеров с разными действиями |
Тренажёры решения столбиком |
Тренажёр сложения столбиком |
Тренажёр вычитания столбиком |
Тренажёр умножения столбиком |
Тренажёр деления столбиком с остатком |
Калькуляторы решения столбиком |
Калькулятор сложения, вычитания, умножения и деления столбиком |
Калькулятор деления столбиком с остатком |
Калькуляторы (физика) |
Механика |
Калькулятор вычисления скорости, времени и расстояния |
Калькулятор вычисления ускорения, скорости и перемещения |
Калькулятор вычисления времени движения |
Калькулятор времени |
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения. |
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния. |
Импульс тела. Калькулятор вычисления импульса, массы и скорости |
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы. |
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения |
Оптика |
Калькулятор отражения и преломления света |
Электричество и магнетизм |
Калькулятор Закона Ома |
Калькулятор Закона Кулона |
Калькулятор напряженности E электрического поля |
Калькулятор нахождения точечного электрического заряда Q |
Калькулятор нахождения силы F действующей на заряд q |
Калькулятор вычисления расстояния r от заряда q |
Калькулятор вычисления потенциальной энергии W заряда q |
Калькулятор вычисления потенциала φ электростатического поля |
Калькулятор вычисления электроемкости C проводника и сферы |
Конденсаторы |
Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе |
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе |
Калькулятор вычисления энергии W заряженного конденсатора |
Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов |
Калькуляторы по астрономии |
Вес тела на других планетах |
Ускорение свободного падения на планетах Солнечной системы и их спутниках |
Генераторы |
Генератор примеров по математике |
Генератор случайных чисел |
Генератор паролей |
Порядок арифметических действий, скобки | Формулы и расчеты онлайн
Если несколько действий выполняются одно за другим, то результат, зависит от порядка действий.
Например,
\[ 4 — 2 + 1 = 3 \]
Если производить действия в порядке их записи.
Если же сначала сложить 2 и 1 и вычесть полученную сумму из 4, то получим 1.
Чтобы указать, в каком порядке нужно выполнять действия (в тех случаях, когда результат зависит от порядка действий), пользуются скобками. Действия, заключенные в скобки, выполняются раньше других. В нашем случае:
\[ (4 — 2) + 1 = 3 \]
\[ 4 — (2 + 1) = 1 \]
Пример 1:
\[ (2 + 4) · 5 = 6 · 5 = 30 \]
\[ 2 + (4 · 5) = 2 + 20 = 22 \]
Чтобы не загромождать чрезмерно записи, условились не писать скобок:
- в том случае, когда действия сложения и вычитания, следуя друг за другом, должны выполняться в том порядке, в каком они записаны;
- в том случае, когда внутри скобок производятся действия умножения или деления; например, вместо 2 + (4 · 5) = 22 пишут 2 + 4 · 5 = 22.
При вычислении таких выражений, которые либо совсем не содержат скобок, либо содержат лишь такие скобки, внутри которых больше нет скобок, нужно производить действия в таком порядке:
- сначала выполняются действия, заключенные в скобки; при этом умножение и деление делаются в порядке из следования, но раньше, чем сложение и вычитание;
- затем выполняются остающиеся действия, причем опять умножение и деление делаются в порядке из следования, но раньше сложения и вычитания.
Пример 2:
\[ 2 · 5 — 3 · 3 \]
Сначала выполняем умножения:
2 · 5 = 10
3 · 3 = 9
затем вычитание:
10 — 9 = 1
Пример 3:
\[ 9 + 16 : 4 — 2 · (16 — 2 · 7 + 4) + 6 · (2 + 5) \]
Сначала выполняем действия в скобках:
16 — 2 · 7 + 4 = 16 — 14 + 4 = 6
2 + 5 = 7
Теперь выполняем остающиеся действия:
9 + 16 : 4 — 2 · 6 + 6 · 7 =
= 9 + 4 — 12 + 42 =
= 43
Часто для указания порядка действий необходимо заключать в скобки такие выражения, которые сами уже содержат скобки. Тогда, кроме обычных (круглых), применяют скобки иной формы, например квадратные []. Если в скобки нужно заключить выражение, содержащее уже круглые и квадратные скобки, пользуются фигурными скобками {}. Вычисление подобных выражений производится в следующем порядке: сначала производятся вычисления внутри всех круглых скобок в вышеуказанной последовательности. Затем — вычисления внутри всех квадратных скобок по тем же правилам. Далее — вычисления внутри фигурных скобок и т.д.. Наконец, выполняются остающиеся действия.
Пример 4:
\[ 5 + 2 · [14 — 3 · (8 — 6)] + 32 : (10 — 2 · 3) \]
Выполняем действия в круглых скобках, имеем:
8 — 6 = 2
10 — 2 · 3 = 10 — 6 = 4
действия в квадратных скобках дают:
14 — 3 · 2 = 8
выполняя остающиеся действия скобках находим:
5 + 2 · 8 + 32 : 4 = 5 + 16 + 8 = 29
Пример 5:
\[ {100 — [35 — (30 — 20)]}· 2 \]
Порядок действий:
30 — 20 = 10
35 — 10 = 25
100 — 25 = 75
75 · 2 = 150
В помощь студенту
Порядок арифметических действий, скобки |
стр. 19 |
---|
Примеры со скобками, урок с тренажерами. — Kid-mama
Мы рассмотрим в этой статье три варианта примеров:
1. Примеры со скобками (действия сложения и вычитания)
2. Примеры со скобками (сложение, вычитание, умножение, деление)
3. Примеры, в которых много действий
1 Примеры со скобками (действия сложения и вычитания)
Рассмотрим три примера. В каждом из них порядок действий обозначен цифрами красного цвета:
Мы видим, что порядок действий в каждом примере будет разный, хотя числа и знаки одинаковые. Это происходит потому, что во втором и третьем примере есть скобки.
Запомните правило:
|
*Это правило для примеров без умножения и деления. Правила для примеров со скобками, включающих действия умножения и деления мы рассмотрим во второй части этой статьи.
Чтобы не запутаться в примере со скобками, можно превратить его в обычный пример, без скобок. Для этого результат, полученный в скобках, записываем над скобками, далее переписываем весь пример, записывая вместо скобок этот результат, и далее выполняем все действия по порядку, слева направо:
В несложных примерах можно все эти операции производить в уме. Главное — сначала выполнить действие в скобках и запомнить результат, а затем считать по порядку, слева направо.
А теперь — тренажеры!
1) Примеры со скобками в пределах до 20. Онлайн тренажер.
Перейти на страницу с тренажером
2) Примеры со скобками в пределах до 100. Онлайн тренажер.
Перейти на страницу с тренажером
3) Примеры со скобками. Тренажер №2
Перейти на страницу с тренажером
4) Вставь пропущенное число — примеры со скобками. Тренажер
Перейти на страницу с тренажером
2 Примеры со скобками (сложение, вычитание, умножение, деление)
Теперь рассмотрим примеры, в которых кроме сложения и вычитания есть умножение и деление.
Сначала рассмотрим примеры без скобок:
Запомните правило:
|
Есть одна хитрость, как не запутаться при решении примеров на порядок действий. Если нет скобок, то выполняем действия умножения и деления, далее переписываем пример, записывая вместо этих действий полученные результаты. Затем выполняем сложение и вычитание по порядку:
Если в примере есть скобки, то сначала нужно избавиться от скобок: переписать пример, записывая вместо скобок полученный в них результат. Затем нужно выделить мысленно части примера, разделенные знаками «+» и «-«, и посчитать каждую часть отдельно. Затем выполнить сложение и вычитание по порядку:
3 Примеры, в которых много действий
Если в примере много действий, то удобнее будет не расставлять порядок действий во всем примере, а выделить блоки, и решить каждый блок отдельно. Для этого находим свободные знаки «+» и «–» (свободные — значит не в скобках, на рисунке показаны стрелочками).
Эти знаки и будут делить наш пример на блоки:
Выполняя действия в каждом блоке не забываем про порядок действий, приведенный выше в статье. Решив каждый блок, выполняем действия сложения и вычитания по порядку.
А теперь закрепляем решение примеров на порядок действий на тренажерах!
1. Примеры со скобками в пределах чисел до 100, действия сложения, вычитания, умножения и деления. Онлайн тренажер.
Перейти на страницу с тренажером
Перейти на страницу с тренажером
3. Порядок действий (расставляем порядок и решаем примеры)
Перейти на страницу с тренажером
Порядок выполнения действий без скобок и со скобками
Для правильного вычисления значений числовых выражений, в которых нужно произвести более одного действия, необходимо знать установленный порядок выполнения арифметических действий.
Порядок действий без скобок
Установленный порядок арифметических действий без скобок:
- Если выражение содержит только действия на сложение и вычитание, то они выполняются в порядке следования — слева направо:
- Если выражение содержит только действия на умножение и деление, то действия выполняются в порядке следования — слева направо:
- Если в выражении присутствуют и умножение с делением, и сложение с вычитанием, то сначала выполняются умножение и деление в порядке их следования (слева направо), а затем сложение и вычитание в порядке их следования (слева направо):
Порядок действий со скобками
Если выражение содержит скобки, то сначала выполняются все действия внутри скобок, а затем все действия, находящиеся за скобками.
В числовых выражениях со скобками порядок выполнения арифметических действий такой же, как и в выражениях без скобок.
Скобки применяются для обозначения действий, которые нужно произвести раньше остальных. Скобки не влияют на порядок остальных действий в выражении, остальные действия выполняются в указанном порядке.
Дробная черта
Дробная черта в выражении может быть заменена на знак деления, в этом случае, всё что было над и под дробной чертой надо взять в скобки. Например:
13 + 2 | = (13 + 2) : (10 — 7). |
10 — 7 |
Знак деления в выражении можно заменить дробной чертой только в том случае, если это не нарушает порядок действий. Например, выражение:
20 : 4(2 + 3)
нельзя заменить на
потому что такая замена нарушит порядок действий в данном выражении.
20 : 4(2 + 3) ≠ | 20 | ; |
4(2 + 3) |
20 | = 20 : (4(2 + 3)). |
4(2 + 3) |
Дробная черта в выражении заменяет скобки и означает, что надо вычислить отдельно выражение, стоящее в числителе, и отдельно выражение, стоящее в знаменателе, и первый результат разделить на второй.
Зубодробительная задачка с очень простой математикой
В интернете много споров про такие примеры, поэтому мы решили разобраться, какие ошибки совершают чаще всего и почему многие считают неправильно. Для решения нам понадобятся три математических правила:
- То, что в скобках, выполняется в первую очередь. Если скобок несколько, они выполняются слева направо.
- При отсутствии скобок математические действия выполняются слева направо, сначала умножение и деление, потом — сложение и вычитание.
- Между множителем и скобкой (или двумя скобками) может опускаться знак умножения.
Разберём подробнее, что это значит в нашем случае.
1. То, что в скобках, выполняется в первую очередь. То есть в нашем примере, вне зависимости от чего угодно, сначала схлопнутся скобки:
8 / 2(2 + 2) → 8 / 2(4)
2. Между числом и скобкой можно опустить знак умножения. У нас перед скобкой двойка, то есть можно сделать такую замену:
8 / 2(4) → 8 / 2 × 4
3. Математические действия при отсутствии скобок выполняются слева направо: как при чтении, сначала умножение и деление, потом — сложение и вычитание. Умножение и деление имеют одинаковый приоритет. Нет такого, что сначала всегда делается умножение, затем деление, или наоборот. Со сложением и вычитанием то же самое.
Некоторые считают, что раз множители были написаны близко друг к другу (когда там стояли скобки), то оно выполняется в первую очередь, ссылаясь при этом на разные методические пособия. На самом деле это не так, и нет такого скрытого умножения, которое имеет приоритет над другим умножением или делением. Это такое же умножение, как и остальные, и оно делается в общем порядке — как и принято во всём математическом мире.
Получается, что нам сначала надо сложить 2 + 2 в скобках, потом 8 разделить на 2, и полученный результат умножить на то, что в скобках:
8 / 2 × (2 + 2) = 8 / 2 × 4 = 4 × 4 = 16
Кстати, если на айфоне записать это выражение точно так же, как в условии, телефон тоже даст правильный ответ.
А инженерный калькулятор на Windows 10 так записывать не умеет и пропускает первую двойку-множитель. Попробуйте сами 🙂
Тут в тред врываются математики и с воплями «Шустеф!» поясняют криком:
«В АЛГЕБРЕ ТОТ ЖЕ ПОРЯДОК ДЕЙСТВИЙ, ЧТО И В АРИФМЕТИКЕ, но есть исключение: в алгебре знак умножения связывает компоненты действия сильнее, чем знак деления, поэтому знак умножения опускается. Например, a:b·c= a: (b·c)».
Этот текст из «Методики преподавания алгебры», курс лекций, Шустеф М. Ф., 1967 год. (стр. 43)
Раз в спорном примере знак умножения опущен, то спорный пример алгебраический, а значит, сначала умножаем 2 на 4, а потом 8 делим на 8!
Та самая цитата.
А вот как на это отвечают те, кто действительно в теме и не ленится полностью посмотреть первоисточник:
«Для устранения недоразумений В. Л. Гончаров указывает, что предпочтительнее пользоваться в качестве знака деления чертой и ставить скобки [87]. П. С. Александров и А. Н. Колмогоров [59] предложили изменить порядок действий в арифметике и решать, например, так: 80:20×2=80:40=2 вместо обычного: 80:20×2=4×2=8. Однако это предложение не нашло поддержки».
Если апеллировать к Фриде Максовне Шустеф, то выходит, что:
- В. Л. Гончаров говорит так: «Ребята, используйте черту и ставьте скобки, чтобы ни у кого не было вопросов про приоритет».
- Если у нас всё же битва арифметики и алгебры, то, по П. С. Александрову и А. Н. Колмогорову, пример нужно решать слева направо, как обычно. Они, конечно, предложили решать такое по-другому, но научное сообщество их не поддержало.
Самое интересное, что дальше в примерах Фрида Максовна пользуется как раз правильным порядком действий, объясняя решение. Даже там, где есть умножение на скобку с опущенным знаком, она выполняет действия слева направо.
Полная цитата из Шустеф, которая, оказывается, имеет в виду совсем не то.
Порядок выполнения действий / Справочник по математике для начальной школы
- Главная
- Справочники
- Справочник по математике для начальной школы
- Порядок выполнения действий
В данном разделе мы познакомимся с порядком действий, с выражениями со скобками и без них.
1) Если тебе нужно выполнить только сложение и вычитание или только умножение и деление, то все действия выполняют по порядку слева направо.
Например,
В числовом выражении 3 арифметических действия: сложение, вычитание и вычитание.
Определим порядок действий и запишем их над арифметическими знаками: так как нет ни умножения ни деления, действия выполняют по порядку слева направо:
Вычисляем:
1) 10 + 15 = 25
2) 25 — 6 = 19
3) 19 — 8 = 11
Полностью пример записываем так:
10 + 15 — 6 — 8 = 25 — 6 — 8 = 19 — 8 = 11
Например,
В числовом выражении 3 арифметических действия: деление, умножение и деление.
Определим порядок действий и запишем их над арифметическими знаками: так как нет ни сложения ни вычитания, действия выполняют по порядку слева направо:
Вычисляем:
1) 15 : 5 = 3
2) 3 • 4 = 12
3) 12 : 6 = 2
Полностью пример записываем так:
15 : 5 • 4 : 6 = 3 • 4 : 6 = 12 : 6 = 2
2) Если тебе нужно выполнить несколько арифметических действий (сложение, вычитание, умножение и деление), то сначала выполняют умножение и деление по порядку слева направо, а затем сложение и вычитание по порядку слева направо.
Например,
В числовом выражении 4 арифметических действия: вычитание, деление, сложение и умножение.
Определим порядок действий и запишем их над арифметическими знаками: сначала производим деление, потом умножение, затем вычитание и сложение.
1)15 : 3 = 5
2) 6 • 8 = 48
3) 10 — 5 = 5
4) 5 + 48 = 53
Полностью пример записываем так:
10 — 15 : 3 + 6 • 8 = 10 — 5 + 6 • 8 = 10 — 5 + 48 = 5 + 48 = 53
3) Если в выражении есть скобки, то сначала выполняют действия в скобках, но обязательно учитывать первое и второе правила.
Например,
В числовом выражении 4 арифметических действия: вычитание, деление, сложение и умножение.
Определим порядок действий и запишем их над арифметическими знаками: сначала производим вычитание в скобках, затем деление, потом умножение и сложение.
1) 25 — 10 = 15
2) 15 : 3 = 5
3) 6 • 8 = 48
4) 5 + 48 = 53
Полностью пример записываем так:
(25 — 10) : 3 + 6 • 8 = 15 : 3 + 6 • 8 = 5 + 6 • 8 = 5 + 48 = 53
Например,
В числовом выражении 4 арифметических действия: сложение, деление, сложение и деление.
Определим порядок действий и запишем их над арифметическими знаками: сначала производим действия в скобках (деление, затем сложение), затем деление, потом сложение.
1) 12 : 4 = 3
2) 6 + 3 = 9
3) 18 : 9 = 2
4) 42 + 2 = 44
Полностью пример записываем так:
42 + 18 : (6 + 12 : 4) = 42 + 18 : (6 + 3) = 42 + 18 : 9 = 42 + 2 = 44
Вывод:
Поделись с друзьями в социальных сетях:
Советуем посмотреть:
Скобки
Правило встречается в следующих упражнениях:
2 класс
Страница 18, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
Страница 35, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
Страница 44, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
Страница 48, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
Страница 60, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
Страница 61, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
Страница 77, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
Страница 91, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
Страница 98, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
Страница 68, Моро, Волкова, Рабочая тетрадь, 2 часть
3 класс
Страница 24, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть
Страница 32, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть
Страница 47, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть
Страница 48, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть
Страница 37, Моро, Волкова, Рабочая тетрадь, 1 часть
Страница 46, Моро, Волкова, Рабочая тетрадь, 1 часть
Страница 57, Моро, Волкова, Рабочая тетрадь, 1 часть
Страница 77, Моро, Волкова, Рабочая тетрадь, 1 часть
Страница 31, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
Страница 51, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
4 класс
Страница 29, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть
Страница 47, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть
Страница 13, Моро, Волкова, Рабочая тетрадь, 1 часть
Страница 24, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
Страница 34, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
Страница 49, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
Страница 55, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
Страница 84, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
Страница 93, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть
Страница 70, Моро, Волкова, Рабочая тетрадь, 2 часть
5 класс
Задание 98, Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 191, Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Упражнение 163, Мерзляк, Полонский, Якир, Учебник
Упражнение 259, Мерзляк, Полонский, Якир, Учебник
Упражнение 4, Мерзляк, Полонский, Якир, Учебник
Упражнение 516, Мерзляк, Полонский, Якир, Учебник
Упражнение 554, Мерзляк, Полонский, Якир, Учебник
Упражнение 596, Мерзляк, Полонский, Якир, Учебник
Упражнение 4, Мерзляк, Полонский, Якир, Учебник
Упражнение 968, Мерзляк, Полонский, Якир, Учебник
6 класс
Задание 73, Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 92, Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 378, Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 400, Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 411, Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 413, Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 417, Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 425, Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 445, Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 454, Виленкин, Жохов, Чесноков, Шварцбург, Учебник
© budu5.com, 2020
Пользовательское соглашение
Copyright
Примеры по математике со скобками
Выполнение тех или иных операций предполагает определённый порядок действий.
4
– 2
+ 1
= 3
Если производить действия в порядке их записи, четыре минус два плюс один, результат будет равен трём. Если же вначале сложить 2
и 1
и вычесть данную сумму из 4
, то получится цифра 1
.
Чтобы указать, в каком порядке нужно выполнять действия применяют скобки.
Действия, заключенные в скобки, выполняются раньше других.
Пример:
(4
– 2
) + 1
= 3
5
– (3
+ 1
) = 1
(3
+ 4
) × 5
= 7
× 5
= 35
4
+ (4
× 5
) = 4
+ 20
= 24
Скобки не ставятся в тех случаях если:
1
. действия сложения и вычитания, исполняются в последовательности, как они записаны:
вместо (6
– 2
) + 1
= 5
пишут 6
– 2
+ 1
= 5
2
. внутри скобок совершаются операции умножения или деления:
вместо 2
+ (2
× 8
) = 18
пишут 2
+ 2
× 8
= 18
При расчёте таких выражений, которые либо вовсе не содержат разделительных скобок, либо имеют такие скобки, внутри которых не содержится других скобок, следует производить действия в следующем порядке:
1
. вначале выполняются операции с цифрами заключенными в скобки, при этом действия умножения и деления делаются в порядке их следования, но ранее, чем сложение и вычитание.
2
. Затем, исполняются остающиеся действия, причем опять умножение и деление производятся в порядке их следования, но ранее сложения и вычитания.
Пример:
2
× 5
– 3
× 3
сначала выполняется умножения
2
× 5
= 10
3
× 3
= 9
затем выполняется вычитание
10
– 9
= 1
Пример:
22
+ 16
: 4
– 4
× (17
– 2
× 7
+ 3
) + 7
× (3
+ 4
)
выполнение действий в скобках:
17
– 2
× 7
+ 4
= 17
– 14
+ 3
= 6
3
+ 4
= 7
выполнение остающихся действий:
22
+ 16
: 4
– 4
× 6
+ 7 × 7
= 22
+ 4
– 24
+ 49
= 51
Зачастую для указания порядка действий, необходимо применять дополнительные скобки.
Тогда, кроме простых круглых скобок, используют скобки иной формы:
[ ]
– квадратные скобки
{ }
– фигурные скобки
Вычисление этих выражений реализуется в следующем порядке:
Вначале операции вычисления производятся внутри всех круглых скобок
затем – вычисления внутри всех квадратных скобок
далее – вычисления внутри фигурных скобок
после выполняются остающиеся действия
Пример:
5
+ 2
× [14
– 4
× (7
– 5
) ] + 36
: (12
– 2
× 3
)
выполнение действий в круглых скобках:
7
– 5
= 2
12
– 2
× 3
= 12
– 6
= 6
действия в квадратных скобках:
14
– 4
× 2
= 6
выполнение остающихся действий:
5
+ 2
× 6
+ 36
: 6
= 5
+ 12
+ 6
= 23
Пример:
{100
– [40
– (35
– 25
)]} × 2
Порядок действий:
35
– 25
= 10
40
– 10
= 30
100
– 30
= 70
70
× 2
= 140
скобок () [] | Написание
Скобки — это символы, которые мы используем, чтобы содержать «дополнительную информацию» или информацию, которая не является частью основного содержания. Скобки всегда идут парами — «открывающая» скобка перед дополнительной информацией и «закрывающая» скобка после нее. Есть два основных типа скобок: круглые () и квадратные []. Британский английский и американский английский определяют их по-разному, как вы видите ниже.
Круглые скобки или круглые скобки
Британский английский
() = круглых скобок или скобок
Американский английский
() = круглых скобок
Круглые скобки в основном используются для добавления дополнительной информации к предложению.Посмотрите на эти примеры:
- пояснить или уточнить
- Тони Блэр (бывший премьер-министр Великобритании) ушел в отставку в 2007 году.
- Пожалуйста, оставьте ваш мобильный телефон (а) у двери.
- Многие люди любят вечеринки (а я нет).
- Решение по делу принимает МОК (Международный олимпийский комитет).
Некоторые грамматики считают, что (по возможности) следует использовать запятые.
Некоторые грамматики считают, что по возможности следует использовать запятые.
Помните, что точка, восклицательный или вопросительный знак ставятся после последней квадратной скобки (если скобки не содержат полного предложения). Посмотрите на эти примеры:
- Моя машина в подъезде (с открытым окном).
- Я только что попал в аварию с нашей новой машиной. (Шшш! Мой муж еще не знает.)
- Погода чудесная. (Если бы так было всегда!)
- Вечеринка была фантастической (как всегда)!
- Вы помните Джонни (друга моего брата)?
- Джонни тоже пришел. (Вы помните Джонни?) Мы прекрасно провели время.
Квадратные скобки или скобки
Британский английский
[] = квадратных скобок
Американский английский
[] = квадратных скобок
Обычно мы используем квадратные скобки, когда хотим изменить слова другого человека .Здесь мы хотим прояснить, что изменение было сделано нами, а не первоначальным автором. Например:
- , чтобы добавить пояснения:
- Свидетель сказал: «Он [милиционер] ударил меня».
- для добавления информации:
- Две команды в финале первого чемпионата мира по футболу ФИФА были из Южной Америки [Уругвая и Аргентины].
- , чтобы добавить пропущенные слова:
- для добавления редакционного или авторского комментария:
- Они будут , а не [выделено мной].
- для изменения прямого предложения:
- Он «любит водить машину». (Изначально слова были «Я люблю водить».)
Мы также иногда используем квадратные скобки для вложенности, например:
- Квадратные скобки также могут быть вложены (используя квадратные скобки [подобные этим] внутри круглых скобок).
Решение уравнений в скобках (2) Рабочий лист
Начни бесплатно Меню- Учиться
Учиться
Математика
- Ключевой этап 1
- Год 1 | Год 2 |
- Ключевой этап 2
- Год 3 | 4 год | 5-й год | 6-й год |
- Ключевой этап 3
- Год 7 | Год 8 | Год 9 |
- GCSE
- Математика |
Английский
- Ключевой этап 1
- Год 1 | Год 2 |
- Ключевой этап 2
- Год 3 | 4 год | 5-й год | 6-й год |
- Ключевой этап 3
- Год 7 | Год 8 | Год 9 |
- GCSE
- Литература по английскому языку | Английский язык |
Наука
- Ключевой этап 1
- Год 1 | Год 2 |
- Ключевой этап 2
- Год 3 | 4 год | 5-й год | 6-й год |
- Ключевой этап 3
- Год 7 | Год 8 | Год 9 |
- GCSE
- Биология | Химия | Физика |
11+
- Вербальное рассуждение
- 3-й год | 4 год | 5-й год |
- Невербальные рассуждения
- 3-й год | 4 год | 5-й год |
- Математика и числовые рассуждения
- 3-й год | 4 год | 5-й год |
- английский
- 3-й год | 4 год | 5-й год |
Математические темы
- Дополнение | Алгебра | Площадь | Дивизия | Дроби |
Английские темы
- Прилагательные | Наречия | Алфавит | Грамматика | Существительные |
Научные темы
- Биология | Химия | Электричество | Здоровое питание | Человеческое тело |