6 класс. Математика. Никольский. Учебник. Ответы к стр. 34
Отношения, пропорции, проценты
Задачи на перебор всех возможных вариантов
Ответы к стр. 34
144. Запишите все двузначные числа, в записи которых используются цифры:
а) 1, 3, 9 без повторения; б) 1, 3, 9 с повторением;
в) 2, 4, 6 без повторения; г) 2, 4, 6 с повторением.
а) На первое место можно поставить любую из трёх цифр, на второе место можно поставить только одну из двух оставшихся цифр, то есть имеется 3 • 2 = 6 возможных вариантов записи двузначного числа: 13, 19, 31, 39, 91, 93;
б) На первое место можно поставить любую из трёх цифр, на второе место можно поставить также одну из трёх цифр, то есть имеется 3 • 3 = 9 возможных вариантов записи двузначного числа: 11, 13, 19, 31, 33, 39, 91, 93, 99;
в) На первое место можно поставить любую из трёх цифр, на второе место можно поставить только одну из двух оставшихся цифр, то есть имеется 3 • 2 = 6 возможных вариантов записи двузначного числа: 24, 26, 42, 46, 62, 64;
г) На первое место можно поставить любую из трёх цифр, на второе место можно поставить также одну из трёх цифр, то есть имеется 3 • 3 = 9 возможных вариантов записи двузначного числа: 22, 24, 26, 42, 44, 46, 62, 64, 66.
145. Запишите все двузначные числа, в записи которых используются цифры 0, 1, 5: а) без повторения; б) с повторением.
а) На первое место можно поставить любую из трёх цифр, кроме нуля (то есть любую из двух цифр), на второе место можно поставить только одну из двух оставшихся цифр, то есть имеется 2 • 2 = 4 возможных вариантов записи двузначного числа: 10, 15, 50, 51;
б) На первое место можно поставить любую из трёх цифр, кроме нуля (то есть любую из двух цифр), на второе место можно поставить также одну из трёх цифр, то есть имеется 2 • 3 = 6 возможных вариантов записи двузначного числа: 10, 11, 15, 50, 51, 55.
146. Сколько двузначных чисел можно записать цифрами 9, 8, 7: а) с повторением цифр; б) без повторения цифр?
а) На первое место можно поставить любую из трёх цифр, на второе место можно поставить также одну из трёх цифр, то есть имеется 3 • 3 = 9 возможных вариантов записи двузначного числа: 77, 78, 79, 87, 88, 89, 97, 98, 99.
б) На первое место можно поставить любую из трёх цифр, на второе место можно поставить только одну из двух оставшихся цифр, то есть имеется 3 • 2 = 6 возможных вариантов записи двузначного числа: 78, 79, 87, 89, 97, 98.
147. Сколько двузначных чисел можно записать цифрами 0, 2, 4, 6: а) с повторением цифр; б) без повторения цифр?
а) На первое место можно поставить любую из четырёх цифр, кроме нуля (то есть любую из трёх цифр), на второе место можно поставить также одну из четырёх цифр, то есть имеется 3 • 4 = 12 возможных вариантов записи двузначного числа: 20, 22, 24, 26, 40, 42, 44, 46, 60, 62, 64, 66;
б) На первое место можно поставить любую из четырёх цифр, кроме нуля (то есть любую из трёх цифр), на второе место можно поставить только одну из трёх оставшихся цифр, то есть имеется 3 • 3 = 9 возможных вариантов записи двузначного числа: 20, 24, 26, 40, 42, 46, 60, 62, 64.
148. Четыре подружки купили 4 билета в кино. Сколькими различными способами они могут занять свои места в зрительном зале?
Первая девочка может сесть на одно из четырёх мест, вторая девочка может выбрать себе одно из трёх оставшихся мест, третья девочка может выбрать себе одно из двух оставшихся мест, четвертая девочка может выбрать себе одно оставшееся место, то есть 4 • 3 • 2 • 1 = 24 способа занять места.
149. Сколько двузначных; трёхзначных; четырёхзначных чисел можно составить, используя цифры 1, 2, 3, 4, 5 без повторения?
На первое место можно поставить любую из пяти цифр, на второе место можно поставить только одну из четырёх оставшихся цифр, то есть имеется 5 • 4 = 20 возможных вариантов записи двузначного числа.
На первое место можно поставить любую из пяти цифр, на второе место можно поставить только одну из четырёх оставшихся цифр, на третье место можно поставить только одну из трёх оставшихся цифр, то есть имеется 5 • 4 • 3 = 60 возможных вариантов записи трёхзначного числа.
На первое место можно поставить любую из пяти цифр, на второе место можно поставить только одну из четырёх оставшихся цифр, на третье место можно поставить только одну из трёх оставшихся цифр, на четвёртое место можно поставить только одну из двух оставшихся цифр, то есть имеется 5 • 4 • 3 • 2 = 120 возможных вариантов записи четырёхзначного числа.
150. Сколько двузначных; трёхзначных; четырёхзначных чисел можно составить, используя цифры 1, 2, 3, 4, 5 с повторением?
На первое место можно поставить любую из пяти цифр, на второе место можно поставить также любую из пяти цифр, то есть имеется 5 • 5 = 25 возможных вариантов записи двузначного числа.
На первое место можно поставить любую из пяти цифр, на второе и третье место можно поставить также любую из пяти цифр, то есть имеется 5 • 5 • 5 = 125 возможных вариантов записи трёхзначного числа.
На первое место можно поставить любую из пяти цифр, на второе, третье и четвёртое место можно поставить также любую из пяти цифр, то есть имеется 5 • 5 • 5 • 5 = 625 возможных вариантов записи четырёхзначного числа.
151. а) Все четырёхзначные числа, записанные цифрами 1, 2, 3, 4 без повторения, занумеровали в порядке возрастания чисел. Какой номер имеет число 4312?
б) Все пятизначные числа, записанные цифрами 1, 2, 3, 4, 5 без повторения, занумеровали в порядке возрастания чисел. Какой номер имеет число 54 312?
в) Все пятизначные числа, записанные цифрами 1, 2, 3, 4, 5 без повторения, выписывают в порядке возрастания. Сколько чисел в этом списке? Каким по счету в этом списке будет число 54 231?
а) На первое место можно поставить любую из четырёх цифр, на второе место можно поставить только одну из трёх оставшихся цифр, на третье место можно поставить только одну из двух оставшихся цифр, на четвёртое место можно поставить только одну последнюю оставшеюся цифру, то есть имеется 4 • 3 • 2 • 1 = 24 возможных вариантов записи четырёхзначного числа. Число 4321 является наибольшим, а значит имеет 24 порядковый номер. Число 4312 идёт перед ним, следовательно, оно имеет 23 порядковый номер.
б) На первое место можно поставить любую из пяти цифр, на второе место можно поставить только одну из четырёх оставшихся цифр, на третье место можно поставить только одну из трёх оставшихся цифр, на четвёртое место можно поставить только одну из двух оставшихся цифр, на пятое место можно поставить только одну последнюю оставшеюся цифру, то есть имеется 5 • 4 • 3 • 2 • 1 = 120 возможных вариантов записи пятизначного числа. Число 54 321 является наибольшим, а значит имеет 120 порядковый номер. Число 54 312 идёт перед ним, следовательно, оно имеет 119 порядковый номер.
в) На первое место можно поставить любую из пяти цифр, на второе место можно поставить только одну из четырёх оставшихся цифр, на третье место можно поставить только одну из трёх оставшихся цифр, на четвёртое место можно поставить только одну из двух оставшихся цифр, на пятое место можно поставить только одну последнюю оставшеюся цифру, то есть имеется 5 • 4 • 3 • 2 • 1 = 120 возможных вариантов записи пятизначного числа. Число 54 321 является наибольшим, а значит имеет 120 порядковый номер. Число 54 312 идёт перед ним, следовательно, оно имеет 119 порядковый номер. А затем идёт число 54 231 под 118 порядковым номером.
Ответы по математике. 6 класс. Учебник. Никольский С.М., Потапов М.К., Решетников Н.Н., Шевкин А.В.
Математика. 6 класс
Таблица разрядов и классов чисел в математике
Научим называть и записывать многозначные числа без ошибок
Начать учиться
Хорошо, когда все на своих местах: кастрюли в шкафу, зубная щетка — в ванной. У цифр при записи чисел тоже есть свое место. В этой статье раскроем тему разрядов и классов.
Числа и цифры
Числа — это единицы счета. С помощью чисел можно сосчитать количество предметов и определить различные величины.
Для записи чисел используются специальные знаки — цифры. Всего их десять: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.
Натуральные числа — это числа, которые мы используем при счете. Вот они: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …
- Единица (1) — самое маленькое число, а самого большого числа не существует.
- Ноль (0) означает, что предмета нет. Ноль не является натуральным числом.
От количества цифр в числе зависит его название.
Число, которое состоит из одного знака, называется
Число, которое состоит из двух знаков цифр, называется двузначным. Наименьшее двузначное — 10, наибольшее — 99.
Числа, которые записаны с помощью двух, трех, четырех и более цифр, называются двузначными, трехзначными, четырехзначными или многозначными. Наименьшее трехзначное — 100, наибольшее — 999.
Каждая цифра в записи многозначного числа занимает определенное место — позицию.
Реши домашку по математике на 5.
Подробные решения помогут разобраться в самой сложной теме.
Классы чисел
Цифры в записи многозначных чисел разбивают справа налево на группы по три цифры в каждой. Эти группы называют классами. В каждом классе цифры справа налево обозначают единицы, десятки и сотни этого класса.
Таблица классов:
Названия классов многозначных чисел справа налево:
- первый — класс единиц,
- второй — класс тысяч,
- третий — класс миллионов,
- четвертый — класс миллиардов,
- пятый — класс триллионов,
- шестой — класс квадриллионов,
- седьмой — класс квинтиллионов,
- восьмой — класс секстиллионов.
Чтобы читать запись многозначного числа было удобно, между классами оставляют небольшой пробел. Например, чтобы прочитать число 125911723296, удобно сначала выделить в нем классы:
- 125 911 723 296.
А теперь прочитаем число единиц каждого класса слева направо:
- 125 миллиардов 911 миллионов 723 тысячи 296.
Когда читаем класс единиц, добавлять слово «единиц» в конце не нужно.
Разряды чисел
От позиции, на которой стоит цифра в записи числа, зависит ее значение. Например:
- 1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу.
Можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен, а 1 служит значением разряда тысяч.
Проясним, что такое разряд в математике. Разряд — это позиция или место расположения цифры в записи натурального числа.
У каждого разряда есть свое название. Слева всегда живут старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.
Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.
Низший (младший) разряд многозначного натурального числа — разряд единиц.
Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.
Разрядные единицы обозначают так:
- Единицы — единицами первого разряда (или простыми единицами) и пишут на первом месте справа.
- Десятки — единицами второго разряда и записывают в числе на втором месте справа.
- Сотни — единицами третьего разряда и записывают на третьем месте справа.
- Единицы тысяч — единицами четвертого разряда и записывают на четвертом месте справа.
- Десятки тысяч — единицами пятого разряда и записывают на пятом месте справа.
- Сотни тысяч — единицами шестого разряда и записывают в числе на шестом месте справа и так далее.
Каждые три разряда, следующие друг за другом, составляют класс. Первые три разряда: единицы десятки и сотни — образуют класс единиц (первый класс). Следующие три разряда: единицы тысяч, десятки тысяч и сотни тысяч — образуют класс тысяч (второй класс). Третий класс будут составлять единицы, десятки и тысячи миллионов и так далее.
Чтобы легче понимать математику — записывайтесь на наши курсы по математике! |
Потренируемся
Пример 1. Записать цифрами число, в котором содержится:
- 55 единиц второго класса и 100 единиц первого класса;
- 110 единиц второго класса и 5 единиц первого класса;
- 7 единиц второго класса и 13 единиц первого класса.
Ответ:
- 55 100;
- 110 005;
- 7 013.
Все разрядные единицы, кроме простых единиц, называют составными единицами
- 10 единиц равны 1 десятку;
- 10 десятков равны 1 сотне;
- 10 сотен равны 1 тысяче;
- 10 тысяч равны 1 десятку тысяч;
- 10 десятков тысяч равны 1 сотне тысяч;
- 10 сотен тысяч равны 1 миллиону.
Чтобы узнать, сколько в числе заключается всех единиц какого-либо разряда, нужно отбросить все цифры, обозначающие единицы низших разрядов и прочитать число, которое выражено оставшимися цифрами.
Пример 2. Сколько сотен содержится в числе 6284?
Как рассуждаем:
В числе 6284 на третьем месте в классе единиц стоит цифра 2, значит, в числе есть две сотни.
Следующая цифра слева — 6, означает тысячи. Так как в каждой тысяче содержится 10 сотен то, в 6 тысячах их заключается 60.
Значит, в данном числе содержится 62 сотни.
Цифра 0 в любом разряде означает отсутствие единиц в данном разряде.
Проще говоря, цифра 0 в разряде десятков означает отсутствие десятков, в разряде сотен — отсутствие сотен и т. д. В том разряде, где стоит 0, при чтении числа ничего не произносится:
- 11 627 — одиннадцать тысяч шестьсот двадцать семь.
- 31 502 — тридцать одна тысяча пятьсот два.
Чтобы проще освоить эту тему, можно распечатать таблицу классов и разрядов для учащихся 4 класса и обращаться к ней, если возникнут сложности.
Шпаргалки для родителей по математике
Все формулы по математике под рукой
Лидия Казанцева
Автор Skysmart
К предыдущей статье
Многочлен стандартного вида
К следующей статье
148.4K
Теорема синусов
Получите план обучения, который поможет понять и полюбить математику
ПремиумНа вводном уроке с методистом
Выявим пробелы в знаниях и дадим советы по обучению
Определим уровень и подберём курс
Расскажем, как
проходят занятия
Математическая задача: двузначное число 7410 — практическая математическая задача, комбинаторика
Сколько двузначных чисел можно записать, используя число 0,2,6? Мы также можем повторять цифры в числе.
Правильный ответ:
Нашли ошибку или неточность? Не стесняйтесь
пишите нам. Спасибо!
Советы по использованию связанных онлайн-калькуляторов
Хотите подсчитать количество комбинаций?
Чтобы решить эту математическую задачу со словами, вам необходимо знать следующие знания: 9
арифметика 0019 числаУровень словесной задачи:
- практика для 12-летних
- практика для 13-летних
- Сколько
Сколько двузначных чисел больше 30 можно составить из цифр 0, 1, 2, 3, 4 и 5? Мы не можем повторять числа в двузначном числе. - Вычислить 5792
Вычислить сумму всех двузначных чисел, составленных из цифр 0, 1 и 3. Мы можем повторять цифры в созданном числе. - Двузначное число 17103
Сколько двузначных чисел можно составить из цифр 1, 2, 3, 4, 5 и 6, если мы можем повторять цифры в числе? - Трехзначное число 35271
Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 и 6, если мы не должны повторять цифры? - Делится на пять
Сколько различных трехзначных чисел, делящихся на пять, можно составить из цифр 2, 4 и 5? Мы можем повторять цифры в созданном номере. - Двузначное число 71134
Сколько натуральных двузначных чисел можно составить из цифр 0, 1, 2 и 3, если цифры в этих числах не повторяются? - Четырехзначный 16463
Сколько можно составить четырехзначных чисел, цифры которых могут повторяться из цифр 0,1,2,3,…, 9? - 6-значный 35541
Сколько 6-значных чисел можно составить из числа 1,2,3,4,5,6, если числа не должны повторяться? - Пятизначный 8357
Сколько пятизначных чисел можно составить из чисел 1,2,3,4,5,6, если 1 и 2 всегда должны стоять рядом? Мы не можем повторять цифры. - Трехзначное число
Сколько трехзначных натуральных чисел можно составить из цифр 0, 1 и 2, если числительные в этих числах могут повторяться? - Трехзначные 4791
Сколько трехзначных чисел, делящихся на четыре, можно составить из чисел 1, 2; 3; и пять, если мы не можем повторить цифры в числе? - Пятизначный 63424
Сколько пятизначных чисел можно составить из цифр 2,3,4,6,7,9, если они могут повторяться вместе с цифрами? - Двузначное число 5457
Из скольких цифр можно составить двадцатидвухзначное число, в котором цифры не повторяются? - Цифры
Сколько пятизначных чисел можно составить из чисел 0,3,4, 5 и 7, разделенных на 10, причем цифры повторяются? - Проценты 67364
Создайте все четырехзначные числа, в которых цифры 0, 2, 5 и 9не повторяй. А) Сколько таких чисел? Вы решаете, используя древовидную диаграмму. Б) Какой процент из них четные? - Неповторяющийся 30101
1. Сколько существует различных вариантов обмена банкноты в десять евро на купюры в один евро, два евро и пять евро? а) 5 б) 8 в) 14 г) 10 2. Сколько неповторяющихся трехзначных чисел можно записать, используя нечетные цифры? a) 999 b) 225 c) 60 d) 25 - Двузначное число 62944
Найдите количество всех двузначных чисел, составленных из цифр 1, 2, 3, 4 и 5, которые больше 24. Мы можем повторить цифры.
Числа до 3 цифр — определение, разрядное значение, расширенная форма
3-значные числа начинаются с 100 и заканчиваются на 999. Эти номера состоят из 3 цифр, в которых первая цифра должна быть 1 или больше 1 а оставшиеся 3 цифры могут быть любым числом от 0 до 9. Изучение трехзначных чисел является строительным блоком для более высоких цифр. Давайте узнаем больше о важности, формировании и значении чисел до 3 цифр.
1. | Что такое трехзначные числа? |
2. | Разрядное значение трехзначных чисел |
3. | Расширенная форма трехзначных чисел |
4. | Общие ошибки чисел до 3 цифр |
5. | Операции с числами до 3 цифр |
6. | Часто задаваемые вопросы о числах до 3 цифр |
Что такое трехзначные числа?
Трехзначные числа — это те числа, которые состоят только из трех цифр. Они начинаются со 100 и продолжаются до 999. Например, 673, 104, 985 — трехзначные числа. Следует отметить, что первая цифра трехзначного числа не может быть нулем, потому что в этом случае оно становится двузначным числом. Например, 045 становится 45.
Разрядное значение трехзначных чисел
Значение каждого трехзначного числа можно найти, проверив разрядное значение каждой цифры. Рассмотрим число 243. Говорят, что первая крайняя правая цифра стоит на месте единиц, поэтому она будет умножена на 1. Следовательно, произведение равно 3 × 1 = 3. Тогда второе число равно 4, а поскольку оно стоит на
Разложение трехзначного числа : В трехзначном числе используются три разряда – сотни, десятки и единицы. Давайте возьмем один пример, чтобы понять это лучше. Здесь 465 — это трехзначное число и оно раскладывается в виде суммы трех чисел. Так как 5 на разряде единиц, 60 на разряде десятков и 400 на разряде сотен.
Значение нуля в трехзначных числах: Число ноль не вносит никакого вклада в трехзначное число, если оно расположено в позиции, где слева от него нет других ненулевых чисел. Так чем же 303 отличается от 033 или даже 003? В 033 значения равны (0 × 100) + (3 × 10) + (3 × 1) = 0 + 30 + 3 = 33, что означает, что число на самом деле становится двузначным числом, т. е. 33, или в в случае 003 оно становится однозначным числом, т. е. 3. В этих двух примерах ноль не вносит никакого вклада в число, поэтому числа также могут быть выражены как 33 или 3.
Расширенная форма трехзначных чисел
Расширенная форма трехзначного числа может быть выражена и записана тремя различными способами. Рассмотрим трехзначное число 457. Число 457 можно записать в одной форме как 457 = (4 × сотни) + (5 × десятки) + (7 × единицы). Вторым способом число 457 можно записать как 457 = (4 × 100) + (5 × 10) + (7 × 1). И, наконец, число 457 можно разложить в виде 457 = 400 + 50 + 7. Все три способа записи чисел в развернутом виде верны. Запись трехзначного числа в развернутой форме помогает узнать составные части числа.
В основном разделение или расширение трехзначного числа помогает нам лучше понять трехзначное число. Разделив, мы узнаем количество сотен, десятков и единиц, доступных в трехзначном числе.
Важные примечания о трехзначных числах
- 100 — наименьшее трехзначное число, а 999 — наибольшее трехзначное число.
- Трехзначное число не может начинаться с 0.
- 10 десятков составляют 1 сотню, которая является наименьшим трехзначным числом, а 10 сотен составляют тысячу, которая является наименьшим 4-значным числом.
- Трехзначное число также может иметь два нуля, но два нуля должны стоять на десятках, а единицы на разряде, например, 100, 200, 300, 400. Следует отметить, что нули не могут стоять на сотнях. место, потому что в этом случае он становится двузначным числом. Например, 067 становится 67.
Общие ошибки чисел до 3 цифр
Некоторые распространенные ошибки наблюдаются при записи или чтении трехзначного числа. Эти ошибки в чтении и интерпретации трехзначного числа часто понимаются как какое-то другое число. В процессе чтения, записи и интерпретации трехзначного числа необходимо правильно интерпретировать разрядное значение цифр. Ниже мы перечислили три распространенные ошибки, которые часто допускают дети при написании трехзначных чисел.
- Заблуждение 1 : Дети делают ошибки в определении чисел, когда в разряде единиц или десятков стоит ноль. Пример: Когда учащихся просят прочитать 130 и 103, они могут запутаться. Это помогает им моделировать числа с помощью блоков Base-10. Таким образом, они могут явно видеть значение разряда десятков и единиц.
- Заблуждение 2 : Когда студентов просят написать «сто двадцать три», ученики часто сначала пишут 100, а затем добавляют к нему 23, в результате чего получается число «10023» Факт: Это заблуждение возникает из-за поверхностного понимания разрядных значений. Используя блоки с основанием 10 или счеты, покажите детям, что цифра имеет разные значения в зависимости от ее положения.
- Заблуждение 3 : Иногда, когда детей просят составить наименьшее трехзначное число из трех цифр, содержащих ноль, дети помещают ноль в крайнее левое положение. Факт: Это неверно. Ноль не может находиться в разряде сотен, если мы создаем трехзначное число. Например: самое маленькое трехзначное число, в котором используются все цифры 5, 0 и 7, — это 507, а не 057 9.0022
Операции с числами до 3 цифр
Четыре арифметические операции сложения, вычитания, умножения и деления удобно выполнять над трехзначными числами. В процессе выполнения этих арифметических действий должно правильно совпадать разрядное значение соответствующего числа. Ошибка в сопоставлении разрядного значения может привести к неправильным ответам. Здесь мы рассмотрим простое упражнение с использованием трехзначных чисел, чтобы помочь нам понять закономерность изменения каждой из цифр сотого разряда, разряда десятков и разряда единиц. Эта деятельность должна помочь в лучшем понимании обучения, необходимого для трехзначных чисел.
Предложите учащимся пропустить счет до 10 и 100, чтобы улучшить беглость с трехзначными числами . Сначала начните со 100. Затем начните с любого случайного трехзначного числа, например 136.
Помогите детям заметить закономерность: при пропуске счета до 10 цифра в разряде единиц не меняется. Точно так же при пропуске счета на 100 цифры в разряде единиц и разряде десятков не меняются .
Используйте сетку из 100 квадратов для развития беглости речи . Пусть учащиеся заметят, что перемещение на одну строку вверх или вниз равнозначно пропуску счета на 10. Перемещение столбцов (влево или вправо) увеличивает или уменьшает числа на 1.
Часто детям дают трехзначное число и просят найти наибольшее и наименьшее трехзначное число, используя все цифры. Хитрость здесь заключается в том, чтобы расположить все цифры в порядке убывания, чтобы найти наибольшее число.
Чтобы найти наименьшее число, расположите все цифры в порядке возрастания . Но имейте в виду, что если ноль является одной из цифр, его нельзя ставить слева. Например. Используя цифры 7, 3 и 6, самое большое число — 763 (цифры в порядке убывания), а наименьшее число — 367 (цифры в порядке возрастания). Используя цифры 4, 0 и 8, наибольшее число будет 840, а наименьшее трехзначное число — 408, а не 048.
Наименьшее трехзначное число
Наименьшее трехзначное число — 100, потому что предшествующее ему число — 99, двузначное число. Трехзначные числа начинаются со 100 и заканчиваются на 999.
Наибольшее трехзначное число
Наибольшее трехзначное число — 999, потому что за ним следует 1000, четырехзначное число. Трехзначные числа начинаются со 100 и заканчиваются на 999.
Пример 1: Сколько существует трехзначных чисел? Решение: Всего 900 трехзначных чисел. Это можно рассчитать, используя следующий метод. Пример 2: Решите головоломку: сложите наименьшее двузначное число с наименьшим однозначным числом. Вычтите сумму из на единицу меньше, чем наибольшее трехзначное число. Решение: Наименьшее двузначное число = 10. Наименьшее однозначное число = 1. Сумма этих двух чисел равна 10 + 1 = 11. На единицу меньше, чем наибольшее трехзначное число, равно 998. Вычтя 11 из 998, получим. 998 — 11 = 987. Пример 3: Найдите наибольшее трехзначное число, которое является полным квадратом. Решение: Наибольшее трехзначное число, являющееся полным квадратом, равно 961, потому что 31 2 = 961. перейти к слайдуперейти к слайдуперейти к слайду Помогите ребенку наглядно представить, как работают числа! Наша методология основана на визуальном обучении. Почувствуйте разницу, которую создают более 5000 визуализаций. Записаться на бесплатный пробный урок перейти к слайдуперейти к слайду Примеры трехзначных чисел
Практические вопросы по числам до 3 цифр
Часто задаваемые вопросы о номерах до 3 цифр
Сколько существует трехзначных чисел?
Всего имеется 900 трехзначных чисел. К ним относятся от наименьшего трехзначного числа — 100 до самого большого трехзначного числа — 999. Числа за пределами этих трехзначных чисел являются четырехзначными числами, а числа меньше трехзначных чисел являются двузначными числами.
Какое самое большое трехзначное число?
Самое большое трехзначное число — 999. Если к нему добавить еще 1, оно станет четырехзначным, то есть 1000.
Какова сумма трех самых больших трехзначных чисел?
Три самых больших трехзначных числа — это 997, 998, 999. Их сумма равна 2994, т. е. 997 + 998 + 999 = 2994.
Какое самое маленькое трехзначное число?
Число 100 — наименьшее трехзначное число. Если из него вычесть 1, получится двузначное число. Всего существует 900 трехзначных чисел, из которых число 100 является наименьшим трехзначным числом.
Сколько существует четных трехзначных чисел?
Всего имеется 900 трехзначных чисел. Из них половина — четные числа, а оставшаяся половина — нечетные числа. Следовательно, есть 900/2 = 450 четных трехзначных чисел.
Может ли трехзначное число иметь два нуля?
В трехзначном числе может быть два нуля. Два нуля должны быть в разряде десятков и разряде единиц. Некоторыми примерами трехзначных чисел с двумя нулями являются 100, 200, 300 и 400. Следует отметить, что разряд сотен в трехзначном числе не может иметь число 0, потому что это сделает его двузначным.