Дифференциальное и интегральное исчисления для втузов, т.2
Дифференциальное и интегральное исчисления для втузов, т.2
ОглавлениеПРЕДИСЛОВИЕ К ДЕВЯТОМУ ИЗДАНИЮГЛАВА XIII. ![]() § 18. Некоторые типы дифференциальных уравнений второго порядка, приводимых к уравнениям первого порядка. Задача о второй космической скорости § 19. Графический метод интегрирования дифференциального уравнения второго порядка § 20. Линейные однородные уравнения. Определения и общие свойства § 21. Линейные однородные уравнения второго порядка с постоянными коэффициентами § 22. Линейные однородные уравнения n-го порядка с постоянными коэффициентами § 23. Неоднородные линейные уравнения второго порядка § 24. Неоднородные линейные уравнения второго порядка с постоянными коэффициентами § 25. Неоднородные линейные уравнения высших порядков § 26. Дифференциальное уравнение механических колебаний § 27. Свободные колебания. Векторное и комплексное изображение гармонических колебаний § 28. Вынужденные колебания § 29. Системы обыкновенных дифференциальных уравнений § 30. Системы линейных дифференциальных уравнений с постоянными коэффициентами § 31. ![]() § 32. Приближенное решение дифференциальных уравнений первого порядка методом Эйлера § 33. Разностный метод приближенного решения дифференциальных уравнений, основанный на применении формулы Тейлора.. Метод Адамса § 34. Приближенный метод интегрирования систем дифференциальных уравнений первого порядка Упражнения к главе XIII ГЛАВА XIV. КРАТНЫЕ ИНТЕГРАЛЫ § 2. Вычисление двойного интеграла § 3. Вычисление двойного интеграла (продолжение) § 4. Вычисление площадей и объемов с помощью двойных интегралов § 5. Двойной интеграл в полярных координатах § 6. Замена переменных в двойном интеграле (общий случай) § 9. Момент инерции площади плоской фигуры § 10. Координаты центра масс площади плоской фигуры § 11. Тройной интеграл § 12. Вычисление тройного интеграла § 13. Замена переменных в тройном интеграле § 14. ![]() § 15. Вычисление интегралов, зависящих от параметра Упражнения к главе XIV ГЛАВА XV. КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ И ИНТЕГРАЛЫ ПО ПОВЕРХНОСТИ § 2. Вычисление криволинейного интеграла § 3. Формула Грина § 4. Условия независимости криволинейного интеграла от пути интегрирования § 5. Поверхностный интеграл § 6. Вычисление поверхностного интеграла § 7. Формула Стокса § 9. Оператор Гамильтона. Некоторые его применения Упражнения к главе XV ГЛАВА XVI. РЯДЫ § 1. Ряд. Сумма ряда § 2. Необходимый признак сходимости ряда § 3. Сравнение рядов с положительными членами § 4. Признак Даламбера § 5. Признак Коши § 6. Интегральный признак сходимости ряда § 7. Знакочередующиеся ряды. Теорема Лейбница § 8. Знакопеременные ряды. Абсолютная и условная сходимость § 9. Функциональные ряды § 10. Мажорируемые ряды § 11. Непрерывность суммы ряда § 12. Интегрирование и дифференцирование рядов § 13. ![]() § 14. Дифференцирование степенных рядов § 15. Ряды по степеням x-a § 16. Ряды Тейлора и Маклорена § 17. Примеры разложения функций в ряды § 18. Формула Эйлера § 19. Биномиальный ряд § 20. Разложение функции ln(1+x) в степенной ряд. Вычисление логарифмов § 21. Вычисление определенных интегралов с помощью рядов § 22. Интегрирование дифференциальных уравнений с помощью рядов § 24. Ряды с комплексными членами § 25. Степенные ряды с комплексной переменной § 26. Решение дифференциального уравнения первого порядка методом последовательных приближений (метод итераций) § 27. Доказательство существования решения дифференциального уравнения. Оценка погрешности при приближенном решении § 28. Теорема единственности решения дифференциального уравнения Упражнения к главе XVI ГЛАВА XVII. РЯДЫ ФУРЬЕ § 2. Примеры разложения функций в ряды Фурье § 3. Одно, замечание о разложении периодической функции в ряд Фурье § 4. ![]() § 5. Ряд Фурье для функции с периодом 2l § 6. О разложении непериодической функции в ряд Фурье § 7. Приближение в среднем заданной функции с помощью тригонометрического многочлена § 8. Интеграл Дирихле § 9. Сходимость ряда Фурье в данной точке § 10. Некоторые достаточные условия сходимости ряда Фурье § 11. Практический гармонический анализ § 12. Ряд Фурье в комплексной форме § 13. Интеграл Фурье § 14. Интеграл Фурье в комплексной форме § 15. Ряд Фурье по ортогональной системе функций § 16. Понятие о линейном функциональном пространстве. Аналогия между разложением функций в ряд Фурье и разложением векторов Упражнения к главе XVII ГЛАВА XVIII. УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ § 1. Основные типы уравнений математической физики § 2. Вывод уравнения колебаний струны. Формулировка краевой задачи. Вывод уравнений электрических колебаний в проводах § 3. Решение уравнения колебаний струны методом разделения переменных (методом Фурье) § 4. ![]() § 5. Распространение тепла в пространстве § 6. Решение первой краевой задачи для уравнения теплопроводности методом конечных разностей § 8. Задачи, приводящие к исследованию решений уравнения Лапласа. Формулировка краевых задач § 9. Уравнение Лапласа в цилиндрических координатах. Решение задачи Дирихле для кольца с постоянными значениями искомой функции на внутренней и внешней окружностях § 10. Решение задачи Дирихле для круга § 11. Решение задачи Дирихле методом конечных разностей Упражнения к главе XVIII ГЛАВА XIX. ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ И НЕКОТОРЫЕ ЕГО ПРИЛОЖЕНИЯ § 1. Начальная функция и ее изображение § 2. Изображение функций … § 3. Изображение функции с измененным масштабом независимой переменной. Изображение функций sin at, cos at § 4. Свойство линейности изображения § 5. Теорема смещения § 6. Изображение функций … § 7. ![]() § 8. Изображение производных § 9. Таблица некоторых изображений § 10. Вспомогательное уравнение для данного дифференциального уравнения § 11. Теорема разложения § 12. Примеры решения дифференциальных уравнений и систем дифференциальных уравнений операционным методом § 13. Теорема свертывания § 14. Дифференциальные уравнения механических колебаний. Дифференциальные уравнения теории электрических цепей § 15. Решение дифференциального уравнения колебаний § 16. Исследование свободных колебаний § 17. Исследование механических и электрических колебаний в случае периодической внешней силы § 18. Решение уравнения колебаний в случае резонанса § 19. Теорема запаздывания § 20. Дельта-функция и ее изображение Упражнения к главе XIX ГЛАВА XX. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ § 1. Случайное событие. Относительная частота случайного события. Вероятность события. Предмет теории вероятностей ![]() § 3. Сложение вероятностей. Противоположные случайные события § 4. Умножение вероятностей независимых событий § 5. Зависимые события. Условная вероятность. Полная вероятность § 6. Вероятность гипотез. Формула Байеса § 7. Дискретная случайная величина. Закон распределения дискретной случайной величины § 8. Относительная частота и вероятность относительной частоты при повторных испытаниях § 9. Математическое ожидание дискретной случайной величины § 10. Дисперсия. Среднеквадратичное отклонение. Понятие о моментах § 11. Функции от случайных величин § 12. Непрерывная случайная величина. Плотность распределения непрерывной случайной величины. Вероятность попадания случайной величины в заданный интервал § 13. Функция распределения, или интегральный закон распределения. Закон равномерного распределения вероятностей § 14. Числовые характеристики непрерывной случайной величины § 15. ![]() § 16. Дисперсия и среднеквадратичное отклонение случайной величины, подчиненной нормальному закону распределения § 17. Вероятность попадания значения случайной величины в заданный интервал. Функция Лапласа. Интегральная функция распределения для нормального закона § 18. Вероятное (срединное) отклонение или срединная ошибка § 19. Выражение нормального закона распределения через срединное отклонение. Приведенная функция Лапласа § 20. Правило трех сигм. Шкала вероятностей распределения ошибок § 21. Среднеарифметическая ошибка § 22. Мера точности. Соотношение между характеристиками распределения ошибок § 23. Двумерная случайная величина § 24. Нормальный закон распределения на плоскости § 26. Вероятность попадания двумерной случайной величины в эллипс рассеивания § 27. ![]() § 28. Статистический ряд. Гистограмма § 29. Определение подходящего значения измеряемой величины § 30. Определение параметров закона распределения. Теорема Ляпунова. Теорема Лапласа Упражнения к главе XX ГЛАВА XXI. МАТРИЦЫ. МАТРИЧНАЯ ЗАПИСЬ СИСТЕМ И РЕШЕНИЙ СИСТЕМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ § 1. Линейные преобразования. Матрица § 2. Общие определения, связанные с понятием матрицы § 3. Обратное преобразование § 4. Действия над матрицами. Сложение матриц § 5. Преобразование вектора в другой вектор с помощью матрицы § 6. Обратная матрица § 7. Нахождение матрицы, обратной данной § 8. Матричная запись системы линейных уравнений § 9. Решение системы линейных уравнений матричным методом § 10. Ортогональные отображения. Ортогональные матрицы § 11. Собственный вектор линейного преобразования § 12. Матрица линейного преобразования, при котором базисные векторы являются собственными векторами § 13. ![]() § 14. Квадратичные формы и их преобразования § 15. Ранг матрицы. Существование решений системы линейных уравнений § 16. Дифференцирование и интегрирование матриц § 17. Матричная запись системы дифференциальных уравнений и решений системы дифференциальных уравнений с постоянными коэффициентами § 18. Матричная запись линейного уравнения n-го порядка § 19. Решение систем линейных дифференциальных уравнений с переменными коэффициентами методом последовательных приближений с использованием матричной записи Упражнения к главе XXI ПРИЛОЖЕНИЯ |
Найти сумму чисел от 1 до 15. Занимательная математика: правило Гаусса
помогите пожалуйста!! вычислите сумму натуральных чисел от 1+2+3+4+…+97+98+99+100. и получил лучший ответ
Ответ от Александр Хейнонен[гуру]
Выдающегося немецкого математика Карла Фридриха Гаусса (1777-1855) современники называли «королём математики» .
Ещё в раннем детстве он проявлял незаурядные математические способности. В возрасте трех лет Гаусс уже исправлял счета отца.
Рассказывают, что в начальной школе, где учился Гаусс (6 лет) , учитель, чтобы занять класс на продолжительное время самостоятельной работой, дал задание ученикам — вычислить сумму всех натуральных чисел от 1 до 100. Маленький Гаусс ответил на вопрос почти мгновенно, чем невероятно удивил всех и, прежде всего, учителя.
Давайте попробуем устно решить задачу о нахождении суммы указанных выше чисел. Для начала возьмём сумму чисел от 1 до 10: 1 +2 + 3 + 4 + 5 + 6 + +7 + 8 + 9 + 10.
Гаусс обнаружил, что 1 + 10 = 11, и 2 + 9 = 11, и так далее. Он определил, что при сложений натуральных чисел от 1 до 10 получается 5 таких пар, и что 5 раз по 11 равно 55.
Гаусс увидел, что сложение чисел всего ряда следует проводить попарно, и составил алгоритм быстрого сложения чисел от 1 до 100.
1 2 3 4 5 6 7 8 …49 50 51 52 …94 95 96 97 98 99 100
1. Необходимо подсчитать количество пар чисел в последовательности от 1 до 100. Получаем 50 пар.
2. Складываем первое и последнее числа всей последовательности. В нашем случае это 1 и 100. Получаем 101.
3. Умножаем количество пар чисел в последовательности на полученную в пункте 2 сумму. Получаем 5050.
Таким образом, сумма натуральных чисел от 1 до 100 равна 5050.
Простая формула: сумма чисел от 1 до n = n * (n+1) : 2. Вместо n подставляйте последнее число и вычисляйте.
Проверьте! Это работает!
Ответ от Ђаня Фертикова [новичек]
5050
Ответ от Михаил Медведев [активный]
5050
Ответ от Павел соломенников [новичек]
5050
Ответ от Алевтина башкова [новичек]
5050
Ответ от Ђигр Тихомирова [активный]
5050
Ответ от Мария дубровина [новичек]
5050
Ответ от Ѐавил Бадиров [новичек]
5050
Ответ от Дмитрий [активный]
5050
Ответ от Евгений Саяпов [активный]
5050
Ответ от 2 ответа [гуру]
Содержимое:
Целые числа – это числа, не содержащие дробную или десятичную часть. Если в задаче требуется сложить определенное количество целых чисел от 1 до заданного значения N, то их не нужно складывать вручную. Вместо этого воспользуйтесь формулой (N(N+1))/2, где N — наибольшее число ряда.
Шаги
- 1 Определите наибольшее целое число (N). Суммируя целые числа от 1 до любого заданного числа N, вы должны определить значение N (N не может быть десятичным числом или дробью или отрицательным числом).
- Пример. Найдите сумму всех целых чисел от 1 до 100. В этом случае N=100, так как это наибольшее (и конечное) число данного вам числового ряда.
- 2 Умножьте N на (N +1) и разделите результат умножения на 2. Когда вы определили целое значение N, подставьте его в формулу (N(N+1))/2 и вы найдете сумму всех целых чисел от 1 до N.
- Пример. Подставьте N=100 и получите (100(100+1))/2.
- 3 Запишите ответ. Окончательный ответ есть сумма всех целых чисел от 1 до данного N.
- Пример.
- (100(100+1))/2 =
- (100(101))/2 =
- (10100)/2 = 5050
- Сумма всех целых чисел от 1 до 100 равна 5050.
- Пример.
- 4 Вывод формулы (N(N+1))/2. Еще раз рассмотрим вышеописанный пример. Мысленно разделите ряд 1 + 2 + 3 + 4 + … + 99 + 100 на два ряда — первый от 1 до 50, а второй от 51 до 100. Если вы сложите первое число (1) первого ряда и последнее число (100) второго ряда, то вы получите 101. Вы также получите 101, если сложите 2 и 99, 3 и 98, 4 и 97, и так далее. Если каждое число первой группы сложить с соответствующим числом второй группы, то в итоге мы получим 50 чисел, каждое из которых равно 101. Поэтому 50*101 = 5050 — сумма чисел от 1 до 100. Обратите внимание, что 50 = 100/2 и 101 = 100 + 1. На самом деле это справедливо для суммы любых положительных целых чисел: их суммирование можно разбить на два этапа с двумя рядами чисел, причем соответствующие числа в каждом ряду могут быть сложены друг с другом, а результат сложения будет одинаковым.
- Можно сказать, что сумма целых чисел от 1 до N равна (N/2)(N+1). Упрощенная запись этой формулы есть формула (N(N+1))/2.
- Можно сказать, что сумма целых чисел от 1 до N равна (N/2)(N+1). Упрощенная запись этой формулы есть формула (N(N+1))/2.
Вычисление суммы чисел, расположенных между двумя числами, посредством суммы от 1 до N
- 1 Определите вариант суммирования (включительно или нет). Часто в задачах вместо того, чтобы найти сумму чисел от 1 до заданного числа N, просят найти сумму целых чисел от N 1 до N 2 , где N 2 > N 1 и оба числа > 1. Вычислить такую сумму довольно просто, но, прежде чем приступать к вычислениям, вы должны определить, включаются ли данные числа в N 1 и N 2 в конечную сумму или нет.
- 2
Чтобы найти сумму целых чисел между двумя числами N 1 and N 2 , отдельно найдите сумму до N 1 , отдельно найдите сумму до N 2 и вычтите их друг из друга (вычтите сумму до меньшего значения N из суммы до большего значения N).
При этом важно знать, суммировать ли включительно или нет. При суммировании включительно вы должны вычесть 1 из данного значения N 1 ; в противном случае вы должны вычесть 1 из данного значения N 2 .
- Пример. Найдем сумму («включительно») целых чисел от N 1 = 75 до N 2 = 100.
Другими словами, мы должны найти 75 + 76 + 77 + … + 99 + 100. Чтобы решить задачу, мы должны найти сумму целых чисел от 1 до N 1 -1, а затем вычесть ее от суммы чисел от 1 до N 2 (запомните: при суммировании включительно мы вычитаем 1 из N 1):
- (N 2 (N 2 + 1))/2 — ((N 1 -1)((N 1 -1) + 1))/2 =
- (100(100 + 1))/2 — (74(74 + 1))/2 =
- 5050 — (74(75))/2 =
- 5050 — 5550/2 =
- 5050 — 2775 = 2275. Сумма чисел от 75 до 100 («включительно») равна 2275.
- Теперь найдем сумму чисел без включения данных чисел (другими словами, мы должны найти 76 + 77 + … + 99). В этом случае мы вычитаем 1 из N 2:
- ((N 2 -1)((N 2 -1) + 1))/2 — (N 1 (N 1 + 1))/2 =
- (99(99 +1))/2 — (75(75 + 1))/2 =
- (99(100))/2 — (75(76))/2 =
- 9900/2 — 5700/2 =
- 4950 — 2850 = 2100. Сумма чисел от 75 до 100 (без включения этих чисел) равна 2100.
- Пример. Найдем сумму («включительно») целых чисел от N 1 = 75 до N 2 = 100.
- 3 Уясните процесс. Представьте себе сумму целых чисел от 1 до 100 как 1 + 2 + 3 +.
.. + 98 + 99 + 100 и сумму целых чисел от 1 до 75 как 1 + 2 + 3 + … + 73 + 74 + 75. Сумма целых чисел от 75 до 100 («включительно») есть вычисление: 75 + 76 + 77 + … + 99 + 100. Сумма чисел от 1 до 75 и сумма чисел от 1 до 100 равны до числа 75, но сумма чисел от 1 до 100 после числа 75 продолжается: … + 76 + 77 + … + 99 + 100. Таким образом, вычитая сумму чисел от 1 до 75 из суммы чисел от 1 до 100 мы «изолируем» сумму целых чисел от 75 до 100.
- Если мы суммируем включительно, мы должны использовать сумму от 1 до 74, а не на сумму от 1 до 75, чтобы включить число 75 в конечную сумму.
- Аналогично, если мы суммируем без включения данных чисел, мы должны использовать сумму от 1 до 99, а не на сумму от 1 до 100, чтобы исключить число 100 из конечной суммы. Мы можем использовать сумму от 1 до 75, так как ее вычитание из суммы от 1 до 99 исключает число 75 из конечной суммы.
- В результате вычисления суммы всегда получается целое число, потому что либо N, либо N +1 – четное число, которое делится на 2 без остатка.
- Сумма = Сумма – Сумма.
- Другими словами: Сумма = n(n+1)/2
Предупреждения
- Хотя распространить этот метод на отрицательные числа не очень сложно, в данной статье рассматриваются только любые положительные целые числа N, где N больше или равно 1.
Цикл «Занимательная математика» посвящен деткам увлекающимся математикой и родителям, которые уделяют время развитию своих детей, «подкидывая» им интересные и занимательные задачки, головоломки.
Первая статья из этого цикла посвящена правилу Гаусса.
Немного истории
Известный немецкий математик Карл Фридрих Гаусс (1777-1855) с раннего детства отличался от своих сверстников. Несмотря на то, что он был из небогатой семьи, он достаточно рано научился читать, писать, считать. В его биографии есть даже упоминание того, что в возрасте 4-5 лет он смог скорректировать ошибку в неверных подсчетах отца, просто наблюдая за ним.
Одно из первых его открытий было сделано в возрасте 6 лет на уроке математики. Учителю было необходимо увлечь детей на продолжительное время и он предложил следующую задачку:
Найти сумму всех натуральных чисел от 1 до 100.
Юный Гаусс справился с этим заданием достаточно быстро, найдя интересную закономерность, которая получила большое распространение и применяется по сей день при устном счете.
Давайте попробуем решить эту задачку устно. Но для начала возьмем числа от 1 до 10:
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
Посмотрите внимательно на эту сумму и попробуйте догадаться, что же необычного смог разглядеть Гаусс? Для ответа необходимо хорошо представлять себе состав чисел.
Гаусс сгруппировал числа следующим образом:
(1+10) + (2+9) + (3+8) + (4+7) + (5+6)
Таким образом маленький Карл получил 5 пар чисел, каждая из которых в отдельности в сумме дает 11. Тогда, чтобы вычислить сумму натуральных чисел от 1 до 10 необходимо
Вернемся к первоначальной задаче. Гаусс заметил, что перед суммированием необходимо группировать числа в пары и тем самым изобрел алгоритм, благодаря которому можно быстро сложить числа от 1 до100:
1 + 2 + 3 + 4 + 5 + … + 48 + 49 + 50 + 51 + 52 + 53 + … + 96 + 97 + 98 + 99 + 100
Находим количество пар в ряде натуральных чисел. В данном случае их 50.
Суммируем первое и последнее числа данного ряда. В нашем примере — это 1 и 100. Получаем 101.
Умножаем полученную сумму первого и последнего члена ряда на количество пар этого ряда. Получаем 101 * 50 = 5050
Следовательно, сумма натуральных чисел от 1 до 100 равна 5050.
Задачи на использование правила Гаусса
А сейчас вашему вниманию предлагаются задачи, в которых в той или иной степени используется правило Гаусса. Эти задачки вполне способен понять и решить четвероклассник.
Можно дать возможность ребенку порассуждать самому, чтобы он сам «изобрел» это правило. А можно разобрать вместе и посмотреть как он сможет его применить. Среди ниже приведенных задач есть примеры, в которых нужно понять как модифицировать правило Гаусса, чтобы его применить к данной последовательности.
В любом случае, чтобы ребенок мог оперировать этим в своих вычислениях необходимо понимание алгоритма Гаусса, то есть умение разбить правильно по парам и посчитать.
Важно! Если будет заучена формула без понимания, то это очень быстро будет забыто.
Задача 1Найти сумму чисел:
- 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10;
- 1 + 2 + 3 + … + 14 + 15 + 16;
- 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9;
- 1 + 2 + 3 + 4 + 5 + … + 48 + 49 + 50 + 51 + 52 + 53 + … + 96 + 97 + 98 + 99 + 100.
Решение.
Вначале можно дать возможность ребенку самому решить первый пример и предложить найти способ, при котором это сделать легко в уме. Далее разобрать этот пример вместе с ребенком и показать как это сделал Гаусс. Лучше всего для наглядности записать ряд и соединить линиями пары чисел, дающие в сумме одинаковое число. Важно, чтобы ребенок понял как образуются пары — берем самое маленькое и самое большое из оставшихся чисел при условии, что количество чисел в ряду четно.
- 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = (1 + 10) + (2 + 9) + (3 + 8) + (4 + 7) + (5 + 6) = (1 + 10) * 5;
- 1 + 2 + 3 + … + 14 + 15 + 16 = (1 + 16) + (2 + 15) + (3 + 14) + (4 + 13) + (5 + 12) + (6 + 11) + (7 + 10) + (8 + 9) = (1 + 16) * 8 = 136;
- 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = (1 + 8) + (2 + 7) + (3 + 6) + (4 + 5) + 9 = (1+ 8) * 4 + 9 = 45;
- 1 + 2 + 3 + 4 + 5 + … + 48 + 49 + 50 + 51 + 52 + 53 + … + 96 + 97 + 98 + 99 + 100 = (1 + 100) * 50 = 5050
Имеется 9 гирь весом 1г, 2г, 3г, 4г, 5г, 6г, 7г, 8г, 9г. Можно ли разложить эти гири на три кучки с равным весом?
Решение.
С помощью правила Гаусса находим сумму всех весов:
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = (1 + 8) * 4 + 9 = 45 (г)
Значит, если мы сможем сгруппировать гири так, чтобы в каждой кучке были гири суммарным весом 15г, то задача решена.
Один из вариантов:
- 9г, 6г
- 8г, 7г
- 5г, 4г, 3г, 2г, 1г
Другие возможные варианты найдите сами с ребенком.
Обратите внимание ребенка на то, что когда решаются подобные задачи лучше всегда начинать группировать с большего веса (числа).
Задача 3Можно ли разделить циферблат часов прямой линией на две части так, чтобы суммы чисел в каждой части были равны?
Решение.
Для начала к ряду чисел 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 применим правило Гаусса: найдем сумму и посмотрим, делится ли она на 2:
Значит разделить можно. Теперь посмотрим как.
Следовательно, надо провести линию на циферблате так, чтобы 3 пары попали в одну половину, а три в другую.
Ответ: линия пройдет между числами 3 и 4, а затем между числами 9 и 10.
Задача 4Можно ли провести на циферблате часов две прямые линией так, чтобы в каждой части сумма чисел была одинаковой?
Решение.
Для начала к ряду чисел 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 применим правило Гаусса: найдем сумму и посмотрим делиться ли она на 3:
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 = (1 + 12) * 6 = 78
78 делиться на 3 без остатка, значит разделить можно. Теперь посмотрим как.
По правилу Гаусса у нас получается 6 пар чисел, каждая из которых в сумме дает 13:
1 и 12, 2 и 11, 3 и 10, 4 и 9, 5 и 8, 6 и 7.
Следовательно, надо провести линии на циферблате так, чтобы в каждую часть попали по 2 пары.
Ответ: первая линия пройдет между числами 2 и 3, а затем между числами 10 и 11; вторая линия — между числами 4 и 5, а затем между 8 и 9.
Задача 5Летит стая птиц. Впереди одна птица (вожак), за ней две, потом три, четыре и т. д. Сколько птиц в стае, если в последнем ряду их 20?
Решение.
Получаем, что нам необходимо сложить числа от 1 до 20. А к вычислению такой суммы можно применить правило Гаусса:
1 + 2 + 3 + 4 + 5 + … + 15 + 16 + 17 + 18 + 19 + 20 = (20 + 1) * 10 = 210.
Задача 6Как рассадить 45 кроликов в 9 клеток так, чтобы во всех клетках было разное количество кроликов?
Решение.
Если ребенок решил и с пониманием разобрал примеры из задания 1, то тут же вспоминается, что 45 это сумма чисел от 1 до 9. Следовательно, сажаем кроликов так:
- первая клетка — 1,
- вторая — 2,
- третья — 3,
- восьмая — 8,
- девятая — 9.
Но если ребенок сразу не может сообразить, то попробуйте натолкнуть его на мысль о том, что подобные задачи можно решить перебором и надо начинать с минимального числа.
Задача 7Вычислить сумму, используя прием Гаусса:
- 31 + 32 + 33 + … + 40;
- 5 + 10 + 15 + 20 + … + 100;
- 91 + 81 + … + 21 + 11 + 1;
- 1 + 2 + 3 + 4 + … + 18 + 19 + 20;
- 1 + 2 + 3 + 4 + 5 + 6;
- 4 + 6 + 8 + 10 + 12 + 14;
- 4 + 6 + 8 + 10 + 12;
- 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11.
Решение.
- 31 + 32 + 33 + … + 40 = (31 + 40) * 5 = 355;
- 5 + 10 + 15 + 20 + … + 100 = (5 + 100) * 10 = 1050;
- 91 + 81 + … + 21 + 11 + 1 = (91 + 1) * 5 = 460;
- 1 + 2 + 3 + 4 + … + 18 + 19 + 20 = (1 + 20) * 10 =210;
- 1 + 2 + 3 + 4 + 5 + 6 = (1 + 6) * 3 = 21;
- 4 + 6 + 8 + 10 + 12 + 14 = (4 + 14) * 3 = 54;
- 4 + 6 + 8 + 10 + 12 = (4 + 10) * 2 + 12 = 40;
- 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 = (1 + 10) * 5 + 11 = 66.
Имеется набор из 12 гирек массой 1г, 2г, 3г, 4г, 5г, 6г, 7г, 8г, 9г, 10г, 11г, 12г. Из набора убрали 4 гирьки, общая масса которых равна трети общей массы всего набора гирек. Можно ли оставшиеся гирьки расположить на двух чашках весов по 4 штуки на каждой чашке так, чтобы они оказались в равновесии?
Решение.
Применяем правило Гаусса, чтобы найти общую массу гирек:
1 + 2 + 3 + … + 10 + 11 + 12 = (1 + 12) * 6 = 78 (г)
Вычисляем массу гирек, которые убрали:
Следовательно, оставшиеся гирьки (общей массой 78-26 = 52г) надо расположить по 26 г на каждую чашу весов, чтобы они оказались в равновесии.
Нам не известно какие гирьки были убраны, значит мы должны рассмотреть все возможные варианты.
Применяя правило Гаусса можно разбить гирьки на 6 пар с равным весом (по 13г):
1г и 12г, 2г и 11г, 3г и 10, 4г и 9г, 5г и 8г, 6г и 7г.
Тогда лучший вариант, когда при убирании 4 гирек уберутся две пары из приведенных выше. В этом случае у нас останутся 4 пары: 2 пары на одну чашу весов и 2 пары на другую.
Худший вариант — это когда 4 убранные гирьки разобьют 4 пары. У нас останутся 2 неразбитые пары общим весом 26г, значит их помещаем на одну чашу весов, а оставшиеся гирьки можно поместить на другую чашу весов и они тоже будут 26г.
Удачи в развитии Ваших детей.
Чему равна сумма первых 100 целых чисел?
Привет Джо,
Вопрос, который вы задали, относится к известному математику Гауссу. В начальной школе в конце 1700-х годов Гаусса попросили найти сумму чисел от 1 до 100. Учитель поставил этот вопрос как «занятая работа», но Гаусс довольно быстро нашел ответ, обнаружив закономерность. Его наблюдение было следующим:
1 + 2 + 3 + 4 + … + 98 + 99 + 100
Гаусс заметил, что если бы он разбил числа на две группы (от 1 до 50 и от 51 до 100), он мог бы сложить их по вертикали, чтобы получить сумму 101.
1 + 2 + 3 + 4 + 5 + … + 48 + 49 + 50
100 + 99 + 98 + 97 + 96 + … + 53 + 52 + 51
1 + 100 = 101
2 + 99 = 101
3 + 98 = 101
.
.
.
48 + 53 = 101
49 + 52 = 101
50 + 51 = 101
Тогда Гаусс понял, что его окончательная сумма будет 50(101) = 5050.
Последовательность чисел (1, 2, 3, …, 100) является арифметической, и когда мы ищем сумму последовательности, мы называем ее рядом. Благодаря Гауссу существует специальная формула, по которой мы можем найти сумму ряда:
.
S — сумма ряда, а n — количество членов ряда, в данном случае 100.
Надеюсь, это поможет!
Есть и другие способы решить эту проблему. Можно, например, запомнить формулу
Это арифметический ряд, для которого используется следующая формула:
S = n[2a+(n-1)d]/2
где a — первый член, d — разница между членами, n — количество членов .
Для суммы первых 100 целых чисел:
a = 1, d = 1 и n = 100
Следовательно, подставим в формулу:
S = 100[2(1)+(100-1)(1)]/2 = 100[101]/2 = 5050
Вы также можете использовать специальные свойства конкретной последовательности, которая у вас есть.
Преимущество использования метода Гаусса состоит в том, что вам не нужно запоминать формулу, но что вы будете делать, если нужно добавить нечетное количество терминов, чтобы вы не могли разделить их на две группы, например, «что сумма первых 21 целых чисел?» Снова пишем последовательность «вперед и назад», но используя всю последовательность.
1 + 2 + 3 + … + 19 + 20 + 21
21 + 20 + 19 + … + 3 + 2 + 1
Теперь, если добавить по вертикали, получится
.22 + 22 + 22 + … + 22 + 22 + 22 = 21(22) = 462
Но это в два раза больше суммы первых 21 целых чисел, поэтому
1 + 2 + 3 + … + 19 + 20 + 21 = 462/2 = 231
Наташа, Пол и Пенни
Видео-вопрос: нахождение суммы заданного числа членов арифметической последовательности при заданном условии
Найдите сумму первых 21 члена арифметической прогрессии, если 𝑎_(41) + 𝑎_(9) = −232 и 𝑎_(27) = −130.
Расшифровка видеозаписи
Найдите сумму первых 21 членов арифметической прогрессии, учитывая, что 𝑎 41 плюс 𝑎 девять равно отрицательному числу 232, а 𝑎 27 равно отрицательному числу 130.
Чтобы вычислить сумму первых 𝑛 членов, мы используем формулу 𝑆 числа 𝑛 равно 𝑛 по двум, умноженным на два 𝑎 плюс 𝑛 минус один, умноженный на 𝑑. В этом вопросе мы хотим найти сумму первых 21 слагаемых. Следовательно, 𝑆 из 21 равно 21, делённому на два, умноженному на два 𝑎 плюс 20𝑑. Следовательно, чтобы ответить на вопрос, нам нужно вычислить значение 𝑎 и значение 𝑑.
𝑎 — первый член последовательности, а 𝑑 — общая разность. Значение 𝑛-го члена 𝑎 𝑛 равно 𝑎 плюс 𝑛 минус единица, умноженная на 𝑑. Нам говорят, что 27-й член 𝑎 27 равен минус 130. Это означает, что 𝑎 плюс 26𝑑 равно минус 130. Мы назовем это уравнение единицей. Нам также говорят, что 41-й член плюс девятый член равен минус 232. Это означает, что 𝑎 плюс 40𝑑 плюс 𝑎 плюс восемь 𝑑 равно минус 232.
Упрощение этого выражения путем группировки или сбора одинаковых членов дает нам два 𝑎 плюс 48𝑑 равно минус 232. Мы можем разделить обе части этого уравнения на два. Два 𝑎 разделить на два равно 𝑎, а 48 𝑑 разделить на два равно 24𝑑. В правой части минус 232, деленный на два, равен минусу 116. Мы назовем это уравнение двумя. Теперь у нас есть пара одновременных уравнений, которые мы можем решить методом исключения.
Когда мы вычтем уравнение два из уравнения один, 𝑎 исчезнет. 26𝑑 минус 24𝑑 равно двум 𝑑. Отрицательное 130 минус отрицательное 116 равно отрицательному 130 плюс 116. Это равно минусу 14. Разделив обе части этого уравнения на два, мы получим 𝑑 равно минус семь. Теперь мы можем подставить это значение обратно в первое или второе уравнение. Подстановка в уравнение один дает нам 𝑎 плюс 26, умноженное на минус семь, равно минус 130. 26, умноженное на минус семь, равно минус 182. Упрощение этого уравнения дает нам 𝑎 минус 182 равно минус 130. Добавление 182 к обеим частям этого нового уравнение дает нам 𝑎 равно 52,
Первый член нашей арифметической последовательности равен 52, а общая разность равна минус семи. Затем мы можем подставить эти значения в нашу формулу для 𝑆 от 21. 21 разделить на два равно 10,5.