Метод возведения обеих частей уравнения в одну и ту же степень
Продолжаем изучать методы решения уравнений. Сейчас мы в деталях разберем метод возведения обеих частей уравнения в одну и ту же степень. Начнем с теории: рассмотрим, для решения каких уравнений применяется метод, опишем, в чем он состоит, приведем теоретическое обоснование метода возведения обеих частей уравнения в одну и ту же степень, запишем соответствующие алгоритмы решения уравнений. После этого сосредоточимся на практике и рассмотрим разнообразные примеры решения уравнений методом возведения обеих частей уравнения в одну и ту же степень.
Для решения каких уравнений применяется
Метод возведения обеих частей уравнения в одну и ту же степень в первую очередь применяется для решения иррациональных уравнений. Это объясняется тем, что возведение в натуральную и большую единицы степень позволяет избавляться от корней. Например, возведение в степень позволяет избавляться от корней при решении следующих уравнений:
-
, C≥0, в частности, , и т.
- , например, , и др. В первом случае избавиться от корня позволяет возведение обеих частей уравнения в квадрат, а во втором случае – в куб.
- и , таких как , и подобные им. Для первого уравнения напрашивается возведение его обеих частей в квадрат, для второго – в шестую степень.
- уравнений с двумя, тремя корнями в записи, например, и . В таких случаях для избавления от знаков радикалов к возведению обеих частей уравнения в одну и ту же степень приходится обращаться дважды: первый раз в самом начале, второй раз – после преобразований и уединения радикала.
- уравнений, в которых под знаком корня находятся другие корни, к примеру, . Здесь также к возведению обеих частей уравнения в одну и ту же степень приходится прибегать два раза.
- и это не весь список.
Метод возведения обеих частей уравнения в одну и ту же степень используется и для решения некоторых уравнений, в которых переменная находится в основаниях степеней с дробными показателями. Например, уравнение можно решить методом возведения его обеих частей в дробную степень 6/11.
Также метод возведения частей уравнения в степень применяется при решении некоторых степенных уравнений, в которых фигурируют иррациональные показатели. В пример приведем два уравнения и . Возведение их обеих частей в одну и ту же степень (в первом случае в степень , во втором – в степень ) позволяет избавиться от степеней с иррациональными показателями и перейти к сравнительно простым уравнениям.
К началу страницы
В чем состоит метод возведения обеих частей уравнения в одну и ту же степень
Метод состоит в переходе к уравнению, которое получается из исходного путем возведения его обеих частей в одну и ту же степень, и нахождении решения исходного уравнения по решению полученного уравнения.
На практике наиболее часто прибегают к возведению обеих частей уравнения в одну и ту же натуральную степень, большую единицы, то есть, в квадрат, куб и т.д. Делается это на базе следующего утверждения:
Утверждение
Возведение обеих частей уравнения в одну и ту же четную натуральную степень дает уравнение-следствие, а возведение обеих частей уравнения в одну и ту же нечетную натуральную степень, большую единицы, дает равносильное уравнение (см. равносильные уравнения и уравнения-следствия).
Реже приходится обращаться к возведению обеих частей уравнения в другие степени, в частности, в дробные рациональные и иррациональные. В этих случаях отталкиваются от такого утверждения:
Утверждение
Уравнение A(x)=B(x), на области допустимых значений переменной x для которого A(x)>0 или A(x)≥0, B(x)>0 или B(x)≥0, равносильно уравнению Ar(x)=Br(x), где r – положительное действительное число.
К началу страницы
Обоснование метода
Обоснованием метода возведения обеих частей уравнения в одну и ту же степень является доказательство утверждений из предыдущего пункта. Приведем эти доказательства.
Утверждение
Возведение обеих частей уравнения в одну и ту же четную натуральную степень дает уравнение-следствие, а возведение обеих частей уравнения в одну и ту же нечетную натуральную степень дает равносильное уравнение.
Доказательство
Докажем его для уравнений с одной переменной. Для уравнений с несколькими переменными принципы доказательства те же.
Пусть A(x)=B(x) – исходное уравнение и x0 – его корень. Так как x0 является корнем этого уравнения, то A(x0)=B(x0) – верное числовое равенство. Мы знаем такое свойство числовых равенств: почленное умножение верных числовых равенств дает верное числовое равенство.
Умножим почленно 2·k, где k – натуральное число, верных числовых равенств A(x0)=B(x0), это нам даст верное числовое равенство A2·k(x0)=B2·k(x0). А полученное равенство означает, что x0 является корнем уравнения A2·k(x)=B2·k(x), которое получено из исходного уравнения путем возведения его обеих частей в одну и ту же четную натуральную степень 2·k.Для обоснования возможности существования корня уравнения A2·k(x)=B2·k(x), который не является корнем исходного уравнения A(x)=B(x), достаточно привести пример. Рассмотрим иррациональное уравнение , и уравнение , которое получено из исходного путем возведением его обеих частей в квадрат. Несложно проверить, что нуль является корнем уравнения , действительно, , что то же самое 4=4 — верное равенство. Но при этом нуль является посторонним корнем для уравнения , так как после подстановки нуля получаем равенство , что то же самое 2=−2, которое неверное.
Так доказано, что возведение обеих частей уравнения в одну и ту же четную натуральную степень приводит к уравнению-следствию.
Остается доказать, что возведение обеих частей уравнения в одну и ту же нечетную натуральную степень дает равносильное уравнение.
Покажем, что каждый корень уравнения является корнем уравнения, полученного из исходного путем возведения его обеих частей в нечетную степень, и обратно, что каждый корень уравнения, полученного из исходного путем возведения его обеих частей в нечетную степень, является корнем исходного уравнения.
Пусть перед нами уравнение A(x)=B(x). Пусть x0 – его корень. Тогда является верным числовое равенство A(x0)=B(x0). Изучая свойства верных числовых равенств, мы узнали, что верные числовые равенства можно почленно умножать. Почленно умножив 2·k+1, где k – натуральное число, верных числовых равенств A(x0)=B(x0) получим верное числовое равенство A2·k+1(x0)=B2·k+1(x0), которое означает, что x0 является корнем уравнения A2·k+1(x)=B2·k+1(x). Теперь обратно. Пусть x0 – корень уравнения A2·k+1(x)=B2·k+1(x). Значит числовое равенство A2·k+1(x0)=B2·k+1(x0) — верное. В силу существования корня нечетной степени из любого действительного числа и его единственности будет верным и равенство . Оно в свою очередь в силу тождества , где a – любое действительное число, которое следует из свойств корней и степеней, может быть переписано как A(x
Так доказано, что возведение обеих частей иррационального уравнения в нечетную степень дает равносильное уравнение.
Доказанное утверждение пополняет известный нам арсенал, использующийся для решения уравнений, еще одним преобразованием уравнений – возведением обеих частей уравнения в одну и ту же натуральную степень. Возведение в одну и ту же четную степень обеих частей уравнения является преобразованием, приводящим к уравнению-следствию, а возведение в нечетную степень – равносильным преобразованием. На этом преобразовании базируется метод возведения обеих частей уравнения в одну и ту же степень.
Утверждение, касающееся возведения обеих частей уравнения в одну и ту же положительную действительную степень, доказывается аналогично с опорой на единственность степени положительного числа с действительным показателем.
К началу страницы
Алгоритмы решения уравнений методом возведения частей в одну и ту же степень
Есть смысл записать три алгоритма решения уравнений методом возведения обеих частей уравнения в одну и ту же степень: первый – для возведения в нечетную степень, второй – для возведения в четную степень, третий – для возведения в ненатуральную положительную степень.
Алгоритм решения уравнений методом возведения обеих частей в одну и ту же нечетную степень:
- Обе части уравнения возводятся в одну и ту же нечетную степень 2·k+1.
- Решается полученное уравнение. Его решение есть решение исходного уравнения.
Алгоритм решения уравнений методом возведения обеих частей в одну и ту же четную степень:
- Обе части уравнения возводятся в одну и ту же четную степень 2·k.
- Решается полученное уравнение.
- Если полученное уравнение не имеет корней, то делается вывод об отсутствии корней у исходного уравнения.
- Если полученное уравнение имеет корни, то проводится отсеивание посторонних корней любым методом, не завязанным на области допустимых значений, например, через проверку подстановкой.
Обратите внимание: этот алгоритм, в отличие от предыдущего, содержит пункт, касающийся отсеивания посторонних корней. Это связано с тем, что возведение обеих частей уравнения в одну и ту же нечетную степень приводит к равносильному уравнению, а возведение обеих частей уравнения в четную степень в общем случае приводит к уравнению-следствию. Поэтому, в результате возведения в нечетную степень посторонние корни не возникают, а при возведении в четную степень посторонние корни могут появиться. Таким образом, при возведении частей уравнения в четную степень возникает необходимость в отсеивании посторонних корней. Почему отсеивание посторонних корней в этом случае нужно проводить методом, не использующим ОДЗ? Потому что возведение обеих частей уравнения в четную степень может приводить к появлению посторонних корней в пределах ОДЗ, и отсеять их по ОДЗ или по условиям ОДЗ невозможно.
Наконец, запишем алгоритм решения уравнений методом возведения обеих частей в одну и ту же положительную дробную рациональную или иррациональную степень:
- Убеждаемся, что выражения в левой и правой части уравнения не принимают отрицательных значений на ОДЗ для решаемого уравнения.
- Возводим обе части уравнения в одну и ту же положительную степень.
- Решаем полученное уравнение. Его решение дает искомое решение исходного уравнения.
К началу страницы
Примеры решения уравнений методом возведения обеих частей уравнения в одну и ту же степень
Большое количество попадающих под разбираемую тему примеров с подробными решениями приведено в статье решение иррациональных уравнений методом возведения обеих частей в одну и ту же степень. В добавление к этим примерам стоит разобрать решение уравнения через возведение обеих частей уравнения в одну и ту же степень, не являющуюся натуральным числом.
Пример
Решите уравнение
Решение
Решать заданное уравнение можно несколькими разными методами. Например, можно провести решение методом логарифмирования. Также можно преобразовать уравнение к виду и перейти к уравнению на основании метода освобождения от внешней функции, или, сославшись на единственность степени с данным основанием и данным показателем. Но в рамках текущей статьи нас интересует решение уравнения методом возведения его обеих частей в одну и ту же степень, поэтому, проведем решение именно этим методом.
Учитывая свойство степени в степени (см. свойства степеней), несложно догадаться, что избавиться от иррациональных показателей позволяет возведение обеих частей уравнения в степень . Здесь мимоходом заметим, что — положительное число (при необходимости смотрите сравнение чисел), и при этом не натуральное. Мы вправе осуществить задуманное возведение частей уравнения в положительную ненатуральную степень, так как степени, находящиеся в левой и правой части исходного уравнения, на ОДЗ для исходного уравнения не принимают отрицательных значений. При этом мы получим равносильное уравнение, что было обосновано в одном из предыдущих пунктов текущей статьи.
Итак, проводим возведение обеих частей уравнения в одну и ту же степень . Имеем . Это уравнение равносильно исходному, значит, решив его, мы будем иметь интересующее нас решение.
Решаем полученное уравнение:
Так мы пришли к кубическому уравнению x3−x2+2=0. Один его корень x=−1 легко подбирается. Разделив многочлен x3−x2+2 на двучлен x+1, получаем возможность представить кубическое уравнение в виде (x+1)·(x2−2·x+2)=0. Квадратное уравнение x2−2·x+2=0 не имеет решений, так как его дискриминант отрицательный. Из этого заключаем, что уравнение x3−x2+2=0 имеет единственный корень x=−1.
В процессе решения мы дважды отмечали, что нам будет необходимо сделать проверку найденных корней. Сейчас пришло это время. Проверку выполним через подстановку найденного корня x=−1 в исходное уравнение , имеем
Ответ:
−1.
возведение уравнения в четную степень. 11-й класс
Продолжительность: 2 урока.
Цель урока:
- (для учителя) формирование у учащихся целостного представления о методах решения иррациональных уравнений.
- (для учащихся) Развитие умения наблюдать, сравнивать, обобщать, анализировать математические ситуации (слайд 2). Подготовка к ЕГЭ.
План первого урока (слайд 3)
- Актуализация знаний
- Разбор теории: Возведение уравнения в чётную степень
- Практикум по решению уравнений
План второго урока
- Дифференцированная самостоятельная работа по группам «Иррациональные уравнения на ЕГЭ»
- Итог уроков
- Домашнее задание
Цель: повторить понятия, необходимые для успешного освоения темы урока.
Фронтальный опрос.
– Какие два уравнения называются равносильными?
– Какие преобразования уравнения называют равносильными?
– Данное уравнение заменить равносильным с пояснением применённого преобразования: (слайд 4)
а) х+ 2х +1; б) 5 = 5; в) 12х = -3; г) х = 32; д) = -4.
– Какое уравнение называют уравнением-следствием исходного уравнения?
– Может ли уравнение-следствие иметь корень, не являющийся корнем исходного уравнения? Как называются эти корни?
– Какие преобразования уравнения приводят к уравнениям-следствиям?
– Что называется арифметическим квадратным корнем?
Остановимся сегодня более подробно на преобразовании «Возведение уравнения в чётную степень».
II. Разбор теории: Возведение уравнения в чётную степеньОбъяснение учителя при активном участии учащихся:
Пусть 2m (mN) – фиксированное чётное натуральное число. Тогда следствием уравнения f(x) = g(x) является уравнение (f(x)) = (g(x)).
Очень часто это утверждение применяется при решении иррациональных уравнений.
Определение. Уравнение, содержащее неизвестное под знаком корня, называется иррациональным.
При решении иррациональных уравнений используют следующие методы: (слайд 5)
-
Переход к равносильной системе:
а) = или
Из двух систем решают ту, которая проще.
б) = а, аR
если а ≥ 0, то = а f(x) = а;
если а < 0, то уравнение не имеет корней
в) = g(x) -
Метод возведения обеих частей уравнения в одну и ту же степень
-
Метод введения новых переменных.
Внимание! Методы 2 и 3 требуют обязательной проверки.
ОДЗ не всегда помогает устранить посторонние корни.
Вывод: при решении иррациональных уравнений важно пройти три этапа: технический, анализ решения, проверка(слайд 6).
III. Практикум по решению уравненийРешить уравнение:
а) х + 1 =
После обсуждения способа решения уравнения возведением в квадрат, решить переходом к равносильной системе.
Вывод: решение простейших уравнений с целыми корнями можно провести любым знакомым методом.
б) = х – 2
Решая методом возведения обеих частей уравнения в одну и ту же степень, учащиеся получают корни х = 0, х= 3 — , х= 3 + , проверить которые подстановкой сложно и трудоёмко. (Слайд 7). Переход к равносильной системе
позволяет быстро избавиться от посторонних корней. Условию х ≥ 2 удовлетворяет только х.
Ответ: 3 +
Вывод: иррациональные корни проверять лучше переходом к равносильной системе.
в) = х – 3
В процессе решения этого уравнения получаем два корня: 1 и 4. Оба корня удовлетворяют левой части уравнения, но при х = 1 нарушается определение арифметического квадратного корня. ОДЗ уравнения не помогает устранить посторонние корни. Переход к равносильной системе даёт правильный ответ.
Вывод: хорошее знание и понимание всех условий определения арифметического квадратного корня помогает перейти к выполнению равносильных преобразований.
г) — 4 =
Возведя обе части уравнения в квадрат, получим уравнение
х + 13 — 8 + 16 = 3 + 2х — х, уединив радикал в правую часть, получаем
26 – х + х = 8. Применение дальнейших действий по возведению в квадрат обеих частей уравнения, приведёт к уравнению 4-й степени. Переход к ОДЗ уравнения даёт хороший результат:
Решение:
найдём ОДЗ уравнения:
х = 3.
Проверка: — 4 = , 0 = 0 верно.
Ответ: 3.
Вывод: иногда возможно провести решение с помощью определения ОДЗ уравнения, но обязательно сделать проверку.
д) =
Решение: ОДЗ уравнения: -2 – х ≥ 0 х ≤ -2.
При х ≤ -2, < 0, а ≥ 0.
Следовательно, левая часть уравнения отрицательна, а правая – неотрицательна; поэтому исходное уравнение корней не имеет.
Ответ: корней нет.
Вывод: сделав правильные рассуждения по ограничению в условии уравнения, можно без труда найти корни уравнения, или установить, что их нет.
е) + = 7
На примере решения этого уравнения показать двукратное возведение уравнения в квадрат, объяснить смысл фразы «уединение радикалов» и необходимость проверки найденных корней.
ж) 4 — 5 = 8;
з) + = 1.
Решение этих уравнения провести методом замены переменной до момента возвращения к исходной переменной. Закончить решение предложить тем, кто раньше справится с заданиями следующего этапа.
Контрольные вопросы
- Как решать простейшие иррациональные уравнения?
- Что необходимо помнить при возведении уравнения в чётную степень? (могут появиться посторонние корни)
- Как лучше проверять иррациональные корни? (с помощью ОДЗ и условий совпадения знаков обеих частей уравнения)
- Для чего необходимо уметь анализировать математические ситуации при решении иррациональных уравнений? (Для правильного и быстрого выбора способа решения уравнения).
Класс разбивается на группы (по 2-3 человека) по уровням обученности, каждая группа выбирает себе вариант с заданием, обсуждает и решает выбранные задания. По мере необходимости обращается к учителю за консультацией. После выполнения всех заданий своего варианта и проверки ответов учителем, участники группы индивидуально заканчивают решение уравнений ж) и з) предыдущего этапа урока. Для 4 и 5 вариантов (после проверки ответов и решения учителем) на доске записаны дополнительные задания, которые выполняются индивидуально.
Все индивидуальные решения в конце уроков сдаются учителю на проверку.
Вариант 1
Решите уравнения:
а) = 6;
б) = 2;
в) = 2 – х;
г) (х + 1) (5 – х) (+ 2 = 4.
Вариант 2
Решите уравнения:
а) = 4;
б) = 2;
в) = 1 – х;
г) (х + 1) (5 – х) (+ 2 = 4.
Вариант 3
Решите уравнения:
а) = 3;
б) = 4х;
в) — = 1;
г) + = + 3.
Вариант 4
1. Решите уравнение:
а) = 4;
б) = 3 – 2х;
2. Решить систему уравнений:
Вариант 5
1. Решите уравнение:
а) = ;
б) = 3 – 2х;
2. Решить систему уравнений:
Дополнительные задания:
- Решить относительно х уравнение: · = а;
- Решить уравнение: + = 4 – х.
V.
Итог уроковКакие трудности испытывали при выполнении заданий ЕГЭ? Что необходимо для устранения этих трудностей?
VI. Домашнее заданиеПовторить теорию решения иррациональных уравнений, прочитать пункт 8.2 в учебнике (обратить внимание на пример 3).
Решить № 8.8 (а, в), № 8.9 (а, в), № 8.10 (а).
Литература:
- Никольский С.М., Потапов М.К., Н.Н. Решетников Н.Н., Шевкин А.В. Алгебра и начала математического анализа, учебник для 11 класса общеобразовательных учреждений, М.: Просвещение, 2009.
- Мордкович А. Г. О некоторых методических вопросах, связанных с решением уравнений. Математика в школе. -2006. -№3.
- М. Шабунин. Уравнения. Лекции для старшеклассников и абитуриентов. Москва, «Чистые пруды», 2005. (библиотечка «Первое сентября»)
- Э.Н. Балаян. Практикум по решению задач. Иррациональные уравнения, неравенства и системы. Ростов-на-Дону, «Феникс», 2006.
- Математика. Подготовка к ЕГЭ-2011. Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова Легион-М, Ростов-на-Дону, 2010.
Презентация.
алгебраическое предварительное исчисление — Решение уравнения многочлена, возведенного в степень многочлена.
Если это просто случайная загадка, то я могу согласиться с принятым ответом. Однако, если мы хотим быть математически строгими, я утверждаю, что $3$ и $4$ не являются решениями уравнения, потому что они лежат вне области определения.
Отказ от ответственности: в этом посте я рассматриваю только реальное возведение в степень. Я не собираюсь погружаться в комплексные числа.
9{\ sqrt {2}} $. Это разные виды возведения в степень — первое получается как многократное умножение, второе — результат некоторого предельного процесса, и ни одно из определений не работает для другой стороны. Таким образом, у нас есть выбор: если мы допускаем в качестве основания ноль и отрицательные числа, показатель степени должен быть неотрицательным целым числом, поэтому область определения равна $\mathbb{R} \times \mathbb{N}$. Если мы исключим $0$ в качестве базы, мы можем использовать отрицательные показатели степени, что делает домен $(\mathbb{R} \setminus \{ 0 \}) \times \mathbb{Z}$. Если мы пойдем дальше и исключим отрицательные числа в качестве оснований, мы можем использовать ограничения для перехода к действительным показателям степени, поэтому область определения станет $(0, \infty) \times \mathbb{R}$.
Можно утверждать, что, поскольку три вида возведения в степень попарно согласуются в пересечении их областей определения, мы можем склеить их, т. 2-7x+6$ является целым числом. Это не кажется правильным. 9b$ для двух разных видов возведения в степень и не выдерживает перехода к строгой настройке.
*Примечание: я выбрал тип возведения в степень, который, как мне показалось, лучше подходит для уравнения. На самом деле, этот выбор является неотъемлемой частью проблемы, поэтому он должен быть устранен автором уравнения (и указан рядом с ним).
Предварительное исчисление по алгебре. Почему возведение в отрицательную степень обеих частей уравнения без переменных имеет смысл?
Задавать вопрос 9{-1}$
$1/4 = 1/5$
, когда теперь 1/4 больше. Уравнение перевернулось? Или это как-то связано с отношениями, поскольку 4 составляет 80% от 5, а 1/4 составляет 80% от 1/5.
- алгебра-предварительное исчисление
$\endgroup$
3
$\begingroup$
В любое время, когда у вас есть выражение $A=B$ и вы знаете, что $A\neq 0, B\neq 0$, вы можете заключить, что $$A^{-1}=B^{-1}$$ также верно.