Вычисление факториалов: Онлайн калькулятор: Факториал

VBA Excel. Функция для вычисления факториала

Вычисление факториала натуральных (неотрицательных целых) чисел с помощью пользовательской функции Factorial. Ограничение для VBA Excel по типу данных.

Факториал и его вычисление

Факториал – это функция, определяемая для натурального числа n как произведение всех неотрицательных целых чисел от 1 до n включительно.

Формула, по которой вычисляется факториал, записывается следующим образом:

n! = 1 · 2 · ... · n

Пример: 3! = 1 · 2 · 3 = 6

В соответствии с формулой факториала, будет верным следующее соотношение:

(n-1)! = n! : n

Если принять для этого равенства n = 1, тогда получим:

0! = 1

Пользовательская функция Factorial

Для вычисления факториала натуральных чисел можно использовать следующую пользовательскую функцию:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Public Function Factorial(n)

Dim i, p

    If Not IsNumeric(n) Or n = Empty Then

        Factorial = «Аргумент не является числом»

        Exit Function

    ElseIf n < 0 Then

        Factorial = «Аргумент отрицательный»

        Exit Function

    End If

p = 1

n = Format(n, 0)

    If n > 1 Then

        For i = 2 To n

            p = p * i

        Next

    End If

Factorial = p

End Function

Первое условие функции Factorial (If Not IsNumeric(n) Or n = Empty) проверяет, не является ли значение ячейки не числом.

Второе условие (ElseIf n < 0) проверяет, не является ли число в ячейке отрицательным.

Если значение ячейки окажется не числом или числом отрицательным, функция возвратит соответствующее сообщение и завершит работу (Exit Function).

Далее, если функция Factorial не завершила работу, переменной p присваивается значение 1, которое возвратит функция, если значение переменной n будет равно нулю или единице.

Значение ячейки (переменная n) округляется до целого и, если оно окажется больше единицы, вычисляется факториал с помощью цикла For… Next.

Пользовательская функция Factorial возвратит значение, присвоенное ей из переменной p.

Рекурсивная функция Factorial

Рекурсивной называется функция, которая вызывает сама себя.

Рекурсивная функция, вычисляющая факториал:

1

2

3

4

5

6

7

Function Factorial(n)

    If n <= 1 Then

        Factorial = 1

    Else

        Factorial = Factorial(n — 1) * n

    End If

End Function

Как она работает, я не понимаю, но она работает!

Ограничение по типу данных

Максимальное значение пользовательской функции Factorial для ячеек с общим форматированием будет ограничено максимальным значением типа данных Double (1,79769313486232Е+308).

Максимально возможное значение будет превышено при вычислении факториала при n > 170. В этом случае, в ячейку с функцией Factorial, Excel возвратит сообщение об ошибке: #ЗНАЧ!.

При желании, можно в код функции Factorial добавить еще одно условие, проверяющее, не содержит ли переменная n значение больше 170. Если n > 170, тогда вывод сообщения об этом и выход из функции.

Попробуйте задать ячейке с функцией Factorial числовой тип без дробных значений. У меня в Excel 2016 x64 факториал от 146 отображается из 15 значащих цифр впереди и огромного количества нулей справа. Чтобы это увидеть, надо ячейку растянуть на всю ширину и уменьшить размер шрифта в ней. Значение факториала от 147 в ячейке с числовым форматом уже не отображается.

Содержание рубрики VBA Excel по тематическим разделам со ссылками на все статьи.

2.4 Вычисление факториала числа

Известно, что

n!=(n-1)!*n, 0!=1

Используем этот факт для решения поставленной задачи.

(DEFUN FAKTORIAL (N)

(COND ((ZEROP N) 1)

(T (TIMES N (FACTORIAL (SUB1 N))))

)

)

2.5 Вычисление длины списка

Требуется вычислить длину списка. Список состоит из элементов, длина списка — количество этих элементов.

Идея: Проверяем является ли список X пустым, тогда длина списка = 0. Если X – не пустой список, то его длина равна длина списка X без первого элемента +1.

(DEFUN LENGTH (X)

(COND ((NULL X) 0)

(T (ADD1 (LENGTH (CDR X))))))

2.6 Вычисление длины списка и его подсписков

(DEFUN FULLLENGTH

(COND ((ATOM X) 1)

(T (PLUS (FULLLENGTH (CAR X))

(FULLLENGTH (CDR X)))

)

)

Функция возвращает длину списка увеличенную на 1, т. к. NIL — атом.

Определим теперь, является ли список одноуровневым, т.е. не содержащим подсписков:

(DEFUN ATOMLIST (U)

(COND ((NULL U) T)

((NOT (ATOM (CAR U))) NIL)

(T (ATOMLIST (CDR U)))

)

)

2.7 Соединение списков

Определяемая ниже функция является встроенной для многих реализаций языка ЛИСП.

(APPEND (Х1 … Хn)

(DEFUN APPEND (U V)

(COND ((NULL U) V)

(T (CONS (CAR U) (APPEND (CDR U) V)))

)

)

Функция APPEND вначале в итоговый список добавляет первый аргумент, т.е. копирует первый аргумент, а затем к скопированной структуре присоединяет второй аргумент. В соответствии с таким определением функции, аргумент V может быть не списком. В этом случае, результат — точечная пара.

— обращение к функции APPEND

(A B) (A B C D) 

(C D) 

(B) (B C D)  — диаграмма работы функции

(C D) 

() (C D) 

(C D)

до начала работы функции после работы функции

копирует

A структуру

A

B

B

C

D

Воспользуемся функцией APPEND для линеаризации списка.

(DEFUN LINERIZED (U)

(COND ((ATOM U) U)

((ATOM (CAR U))(CONS (CAR U)(LINERIZED (CDR U))))

(T (APPEND (LINERIZED (CAR U))(LINERIZED (CDR U))))

))

Функция проверяет, является ли U атомом, если да, то возвращает U. Если U — список, то проверяется, является ли атомом первый элемент, если да, то он добавляется в начало линеаризованного остатка списка U. Если первый элемент списка не атом, то он линеаризуется и с помощью APPEND соединяется с линеаризованным остатком списка U.

В языке muLISP имеется стандартная функция:

(LIST Arg1 … Argn) — объединяет аргументы в один список. Аргументы могут быть и списками. Число аргументов неопредлено,т.е. функция относится к классу FSUBR.

Определим функцию, которая будет обращать список через функцию APPEND.

(DEFUN REVLIST (U)

(COND ((NULL U) NIL)

(T (APPEND (REVLIST (CDR U)) (LIST (CAR U))))

)

)

Если U- не пустой список, то соединяем перевернутый остаток списка U с первым элементом списка U.

Научитесь вычислять факториалы

Сегодня мы научимся вычислять факториалы . Вычисление факториалов довольно просто; давайте посмотрим, что это такое:

Что такое факториальная функция?

Мы представляем функцию факториала с восклицательным знаком «!» , поместив его после номера. Этот восклицательный знак означает, что нам нужно умножить все целые числа, находящиеся между числом и 1.

Например:

 

Мы обычно говорим «6 факториал», хотя это также может быть «факториал 6».

На вашем калькуляторе вы увидите кнопку с «n!» или «х!». Вы можете использовать эту кнопку, чтобы вычислить факториал любого числа, которое вы хотите вычислить.

Несколько примеров факториалов

Рассмотрим еще несколько примеров факториалов:

 

Как видите, 100! огромное число…

И что нам делать с меньшими числами? 1 факториал логически равен 1, потому что это просто 1 x 1:

 

Но как мы можем вычислить факториал 0? Ну, когда мы применяем нормы умножения всех целых чисел, которые находятся между 0 и 1, нет смысла вычислять это, потому что 0 x 1 равно 0.

Таким образом, решение состоит в том, чтобы приравнять факториал 0 к 1. Итак, просто запомните, что:

 

Для чего мы используем факториалы?

Прежде всего, факториальные числа используются в комбинаторном анализе для вычисления комбинаций и перестановок. В комбинаторном анализе факториалы также могут использоваться для расчета вероятностей.

Мы собираемся рассмотреть простую задачу, в которой мы можем применить факториалы.

 

Паула достала 4 туза из колоды карт. Она собирается положить их в ряд на столе. Сколькими разными способами она могла их выстроить в ряд?

В этой задаче мы должны решить «перестановку », или, другими словами, мы должны выяснить все возможные способы, которыми можно заказать эти 4 карты.

Если мы начнем с составления всех возможных линий, начинающихся с бубнового туза, мы можем составить 6 комбинаций:  

У нас также будет 6 возможных комбинаций с тузом треф, червой и пикой. Другими словами, 6 комбинаций, начинающихся с каждого из 4 тузов: 4 x 6 = 24

Она могла заказать их 24 различными способами.

Используя факториал, мы могли бы решить задачу намного проще:

Если вы начинаете только с одной комбинации из 4 тузов:

  • Когда мы выбираем первую комбинацию, остается только 3 выбрать из
  • Когда мы выбираем второй, остается только 2 на выбор
  • Затем, когда мы выбираем третий, остается только 1 на выбор

Таким образом, все возможные комбинации равны 4 x 3 x 2 x 1.

Это то же самое, что и 4! = 24

Что вы думаете об этом посте? Это помогло вам понять факториалы? Если вам нравится математика и вы хотите узнать больше, вы можете бесплатно попробовать Smartick, нажав на эту ссылку.

Подробнее:

  • Автор
  • Последние сообщения

Smartick

Команда создания контента.
Мультидисциплинарная и мультикультурная команда, состоящая из математиков, учителей, профессоров и других специалистов в области образования!
Они стремятся создать наилучший математический контент.

Последние сообщения Smartick (посмотреть все)

Программа Python для нахождения факториала числа

В этой статье вы научитесь находить факториал числа и отображать его.

Чтобы понять этот пример, вы должны знать следующие темы программирования Python:

  • Python if…else Оператор
  • Python for Loop
  • Python Recursion

Факториал числа — это произведение всех целых чисел от 1 до этого числа.

Например, факториал 6 равен 1*2*3*4*5*6 = 720 . Факториал не определен для отрицательных чисел, а факториал нуля равен единице, 0! = 1 .

Факториал числа с использованием цикла

 # Программа Python для нахождения факториала числа, предоставленного пользователем. 
# изменить значение для другого результата
число = 7
# Чтобы получить ввод от пользователя
#num = int(input("Введите число: "))
факториал = 1
# проверить, является ли число отрицательным, положительным или нулем
если число < 0:
   print("К сожалению, факториала для отрицательных чисел не существует")
Элиф номер == 0:
   print("Факториал 0 равен 1")
еще:
   для i в диапазоне (1, число + 1):
       факториал = факториал*i
   print("Факториал of",num,"is",factorial)
 

Выход

  Факториал 7 равен 5040
  

Примечание: Чтобы протестировать программу для другого числа, измените значение на число .

Здесь число, факториал которого нужно найти, хранится в num , и мы проверяем, является ли число отрицательным, нулевым или положительным, используя оператор if...elif...else . Если число положительное, мы используем для цикла и функцию range() для вычисления факториала.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *