y=корень из (cosx-1) y=корень из (sinx-1) — Знания.site
РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
Простейшими тригонометрическими уравнениями называют уравнения
cos x = a, sin x = a, tg x = a, ctg x = a.
Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.
19.1. Уравнение cos x = a
Таблица 1
Объяснение и обоснование
- Корни уравнения cos x =
При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a < -1 не пересекает график функции y = cos x).
Пусть | a | ≤ 1. Тогда прямая y = a пересекает график функции y = cos x (рис. из пункта 1 табл. 1). На промежутке [0; π] функция y = cos x убывает от 1 до -1. Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение cos x = a имеет на этом промежутке только один корень, который по определению арккосинуса равен: x1 = arccos a (и для этого корня cos x = a).
Косинус – четная функция, поэтому на промежутке [-π; 0] уравнение cos x = a также имеет только один корень – число, противоположное x1, то есть x2 = — arccos a.
Таким образом, на промежутке [-π; π] (длиной 2π) уравнение cos x = a при |a| ≤ 1 имеет только корни x = ±arccos a.
Функция y = cos x периодическая с периодом 2π, поэтому все остальные корни отличаются от найденных на 2πn (n ∈ Z). Получаем следующую формулу корней уравнения cos x = a при |a| ≤ 1:
x = ±arccos a + 2πn, n
- Частые случаи решения уравнения cos x = a.
Полезно помнить специальные записи корней уравнения cos x = a при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность.
Поскольку косинус равен абсциссе соответствующей точки единичной окружности, получаем, что cos x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка А или точка В (рис. из пункта 2 табл. 1). Тогда
Аналогично cos x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка С, следовательно, x = 2πk, k ∈ Z.
Также cos x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка D, таким образом, x = п + 2πk, k ∈ Z
Примеры решения задач
19.2. Уравнение sin x = a
Таблица 2
Объяснение и обоснование
1.Корни уравнения sin x
При |a| > 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a < -1 не пересекает график функции y = sin x).
Рисунок 1
Пусть |a| ≤ 1. Тогда прямая y = a пересекает график функции y = sin x (рис. 1). На промежутке функция y = sin x возрастает от -1 до 1. Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение sin x = a имеет на этом промежутке только один корень, который по определению арксинуса равен: x1 = arcsin a (и для этого корня sin
x = a).На промежутке функция y = sin x убывает от 1 до -1. Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение sin x = a имеет на этом промежутке только один корень x2 = π — arcsin a (рис. 1). Для проверки правильности записи значения второго корня x2 заметим, что x2 = π — x1, тогда sin x2 = sin (π- x1) = sin x1 = a. То есть x2 – корень уравнения sin x = a.
Таким образом на промежутке (длиной 2π) уравнение sin
Функция y = sin x периодическая с периодом 2π, поэтому все остальные корни отличаются от найденных 2πk (k ∈ Z). Получаем следующие формулы корней уравнения sin x = a при |a| ≤ 1:
x=arcsin a + 2πk, k ∈ Z. (1)
x= π — arcsin a + 2πk, k ∈ Z. (2)
Все значения корней уравнения sin x = a при |a| ≤ 1, которые дают формулы (1) и (2), можно записать с помощью одной формулы
x=(-1)n arcsin a + 2πn, n ∈ Z (3)
Действительно, из формулы (3) при четном n = 2k получаем x = arcsin a + 2πk – формулу (1), а при нечетном n = 2k +1 – формулу x= — arcsin a + π(2k+1)= π — arcsin a + 2πk, то есть формулу (2).
2.Частые случаи решения уравнения sin x = a.
Рисунок 2
Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).
Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что
x+y=п sinx+siny=корень из 3 — Знания.site
Mathway | Популярные задачи
Mathway | Популярные проблемыПопулярные проблемы
Базовая математика Предварительно Алгебра Алгебра тригонометрия тригонометрия и алгебра Исчисление Конечно математика Линейная алгебра ХимияMathway требует JavaScript и современный браузер.
Этот веб-сайт использует куки-файлы, чтобы обеспечить вам наилучшую работу на нашем веб-сайте.
Убедитесь, что ваш пароль содержит не менее 8 символов и содержит следующие данные:
- номер
- письмо
- специальный символ: @ $ #!% *? &
Наука
- Анатомия и физиология
- астрономия
- астрофизика
- Биология
- Химия
- наука о планете Земля
- Наука об окружающей среде
- Органическая химия
- физика
математический
- Алгебра
- Исчисление
Наука
- Анатомия и физиология
- астрономия
- астрофизика
- Биология
- Химия
- наука о планете Земля
- Наука об окружающей среде
- Органическая химия
- физика
математический
- Алгебра