Mathway | Популярные задачи
1 | Найти точное значение | sin(30) | |
2 | Найти точное значение | sin(45) | |
3 | Найти точное значение | sin(60) | |
4 | Найти точное значение | sin(30 град. ) | |
5 | Найти точное значение | sin(60 град. ) | |
6 | Найти точное значение | ||
7 | Найти точное значение | arcsin(-1) | |
8 | Найти точное значение | sin(pi/6) | |
9 | Найти точное значение | cos(pi/4) | |
10 | Найти точное значение | sin(45 град. ) | |
11 | Найти точное значение | sin(pi/3) | |
12 | Найти точное значение | arctan(-1) | |
13 | Найти точное значение | cos(45 град. ) | |
14 | Найти точное значение | cos(30 град. ) | |
15 | Найти точное значение | tan(60) | |
16 | Найти точное значение | csc(45 град. ) | |
17 | Найти точное значение | tan(60 град. ) | |
18 | Найти точное значение | sec(30 град. ) | |
19 | Преобразовать из радианов в градусы | (3pi)/4 | |
20 | График | y=sin(x) | |
21 | Преобразовать из радианов в градусы | pi/6 | |
22 | Найти точное значение | cos(60 град. ) | |
23 | Найти точное значение | cos(150) | |
24 | Найти точное значение | tan(45) | |
25 | Найти точное значение | sin(30) | |
26 | Найти точное значение | sin(60) | |
27 | Найти точное значение | cos(pi/2) | |
28 | Найти точное значение | tan(45 град. ) | |
29 | График | ||
30 | Найти точное значение | arctan(- квадратный корень 3) | |
31 | Найти точное значение | csc(60 град. ) | |
32 | Найти точное значение | sec(45 град. ) | |
33 | Найти точное значение | csc(30 град. ) | |
34 | Найти точное значение | sin(0) | |
35 | Найти точное значение | sin(120) | |
36 | Найти точное значение | cos(90) | |
37 | Преобразовать из радианов в градусы | pi/3 | |
38 | Найти точное значение | sin(45) | |
39 | Найти точное значение | tan(30) | |
40 | Преобразовать из градусов в радианы | 45 | |
41 | Найти точное значение | tan(60) | |
42 | Упростить | квадратный корень x^2 | |
43 | Найти точное значение | cos(45) | |
44 | Упростить | sin(theta)^2+cos(theta)^2 | |
45 | Преобразовать из радианов в градусы | pi/6 | |
46 | Найти точное значение | cot(30 град. ) | |
47 | Найти точное значение | arccos(-1) | |
48 | Найти точное значение | arctan(0) | |
49 | График | y=cos(x) | |
50 | Найти точное значение | cot(60 град. ) | |
51 | Преобразовать из градусов в радианы | 30 | |
52 | Упростить | ( квадратный корень x+ квадратный корень 2)^2 | |
53 | Преобразовать из радианов в градусы | (2pi)/3 | |
54 | Найти точное значение | sin((5pi)/3) | |
55 | Упростить | 1/( кубический корень от x^4) | |
56 | Найти точное значение | sin((3pi)/4) | |
57 | Найти точное значение | tan(pi/2) | |
58 | Найти угол А | tri{}{90}{}{}{}{} | |
59 | Найти точное значение | sin(300) | |
60 | Найти точное значение | cos(30) | |
61 | Найти точное значение | cos(60) | |
62 | Найти точное значение | cos(0) | |
63 | Найти точное значение | arctan( квадратный корень 3) | |
64 | Найти точное значение | cos(135) | |
65 | Найти точное значение | cos((5pi)/3) | |
66 | Найти точное значение | cos(210) | |
67 | Найти точное значение | sec(60 град. ) | |
68 | Найти точное значение | sin(300 град. ) | |
69 | Преобразовать из градусов в радианы | 135 | |
70 | Преобразовать из градусов в радианы | 150 | |
71 | Преобразовать из радианов в градусы | (5pi)/6 | |
72 | Преобразовать из радианов в градусы | (5pi)/3 | |
73 | Преобразовать из градусов в радианы | 89 град. | |
74 | Преобразовать из градусов в радианы | 60 | |
75 | Найти точное значение | sin(135 град. ) | |
76 | Найти точное значение | sin(150) | |
77 | Найти точное значение | sin(240 град. ) | |
78 | Найти точное значение | cot(45 град. ) | |
79 | Преобразовать из радианов в градусы | (5pi)/4 | |
80 | Упростить | 1/( кубический корень от x^8) | |
81 | Найти точное значение | sin(225) | |
82 | Найти точное значение | sin(240) | |
83 | Найти точное значение | cos(150 град. ) | |
84 | Найти точное значение | tan(45) | |
85 | Вычислить | sin(30 град. ) | |
86 | Найти точное значение | sec(0) | |
87 | Упростить | arcsin(-( квадратный корень 2)/2) | |
88 | Найти точное значение | cos((5pi)/6) | |
89 | Найти точное значение | csc(30) | |
90 | Найти точное значение | arcsin(( квадратный корень 2)/2) | |
91 | Найти точное значение | tan((5pi)/3) | |
92 | Найти точное значение | tan(0) | |
93 | Вычислить | sin(60 град. ) | |
94 | Найти точное значение | arctan(-( квадратный корень 3)/3) | |
95 | Преобразовать из радианов в градусы | (3pi)/4 | |
96 | Вычислить | arcsin(-1) | |
97 | Найти точное значение | sin((7pi)/4) | |
98 | Найти точное значение | arcsin(-1/2) | |
99 | Найти точное значение | sin((4pi)/3) | |
100 | Найти точное значение | csc(45) |
С помощью данного калькулятора вы можете сложить, вычесть, умножить, и разделить комплексные числа.
Программа решения комплексных чисел не просто даёт ответ задачи, она приводит подробное решение
с пояснениями, т.е. отображает процесс нахождения решения.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Правила ввода действительной и мнимой части
Примеры подробного решения >>
Введите действительную и мнимую части чисел \( z_1 \) и \( z_2 \).
У каждого числа нужно ввести как минимум одну часть — действительную или мнимую.
Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.
Сообщение отправлено. Спасибо.
Понятие комплексного числа
Определение.
Комплексными числами называют выражения вида а + bi где а и b — действительные числа, а i — некоторый символ, для которого
по определению выполняется равенство i2 = -1.
Название «комплексные» происходит от слова «составные» — по виду выражения а + bi. Число а называется действительной частью комплексного числа а + bi, а число b — его мнимой частью. Число i называется мнимой единицей. Например, действительная часть комплексного числа 2-3i равна 2, мнимая часть равна -3. Запись комплексного числа в виде а + bi называют алгебраической формой комплексного числа.
Равенство комплексных чисел
Определение.
Два комплексных числа а + bi и c + di называются равными тогда и только тогда, когда а = с и b = d, т. е. когда равны
их действительные и мнимые части.
Сложение и умножение комплексных чисел
Операции сложения и умножения двух комплексных чисел определяются следующим образом.
Определения.
Суммой двух комплексных чисел а + bi и c + di называется комплексное число (a + c) + (b + d)i, т.е.
(a + bi) + (c + di) = (a + c) + (b + d)i.
Произведением двух комплексных чисел а + bi и c + di называется комплексное число (ac — bd) + (ad + bc)i, т. е.
(а + bi)(с + di) = (ас-bd) + (ad + bc)i.
Из двух предыдущих формул следует, что сложение и умножение комплексных чисел можно выполнять по правилам действий с многочленами. Поэтому нет необходимости запоминать эти формулы, их можно получить по обычным правилам алгебры, считая, что i2 = -1.
Основные свойства сложения и умножения комплексных чисел
1. Переместительное свойство
\( z_1 + z_2 = z_2 + z_1 , \qquad z_1z_2 = z_2z_1 \)
2. Сочетательное свойство
\( (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3) , \qquad (z_1z_2)z_3 = z_1(z_2z_3) \)
3. Распределительное свойство
\( z_1(z_2 + z_3) = z_1z_2 + z_1z_3 \)
Комплексно сопряженные числа
Определение.
Сопряженным с числом z = a + bi называется комплексное число а -bi, которое обозначается \( \overline{z} \), т. е.
\( \overline{z} = \overline{a+bi} = a-bi \)
Например, \( \overline{3 + 4i} = 3-4i, \qquad \overline{-2-5i} = -2+5i, \qquad \overline{i} = -i \)
Отметим, что \( \overline{a-bi} = a+bi \), поэтому для любого комплексного числа z имеет место равенство
\( \overline{(\overline{z})} = z \)
Модуль комплексного числа
Определение.
Модулем комплексного числа z = а + bi называется число \( \sqrt{a^2+b^2} \), т.е.
\( |z|=|a+bi| = \sqrt{a^2+b^2} \)
Из данной формулы следует, что \( |z| \geq 0 \) для любого комплексного числа z, причем |z|=0 тогда и только тогда, когда z=0, т.е. когда a=0 и b=0.
Вычитание комплексных чисел
Определение.
Комплексное число (–1)z называется противоположным комплексному числу z и обозначается –z.
Если z = a+bi, то –z = –a–bi. Например, –(3–5i) = –3+5i. Для любого комплексного числа z выполняется равенство
z+(–z) = 0.
Вычитание комплексных чисел вводится как операция, обратная сложению: для любых комплексных чисел z1 и
z2 существует, и притом только одно, число z, такое, что
z + z2 = z1,
т.е. это уравнение имеет только один корень.
Деление комплексных чисел
Деление комплексных чисел вводится как операция, обратная умножению: для любых комплексных чисел \( z_1 \) и \( z_2 \neq 0 \) существует, и притом только одно, число \( z \), такое, что \( zz_2=z_1 \) т.е. это уравнение относительно z имеет только один корень, который называется частным чисел \( z_1 \) и \( z_2 \) и обозначается \( z_1:z_2 \), или \( \frac{z_1}{z_2} \), т.е. \( z=z_1:z_2 = \frac{z_1}{z_2} \)
Комплексное число нельзя делить на нуль.
Частное комплексных чисел \( z_1 \) и \( z_2 \neq 0 \) можно найти по формуле
\( \large \frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{|z_2|^2} \)
Каждое комплексное число z, не равное нулю, имеет обратное ему число w, такое, что z*w = 1, где
\( \large w= \frac{1}{z} = \frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i \)
Если z1 = a1 + b1i, z2 = a2 + b2i, то формулу частного
комплексных чисел можно представить в виде
\( \large \frac{z_1}{z_2} = \frac{a_1+b_1i}{a_2+b_2i}= \frac{(a_1+b_1i)(a_2-b_2i)}{a^2_2+b^2_2} =
\frac{a_1a_2+b_1b_2}{a^2_2+b^2_2}+ \frac{a_2b_1-a_1b_2}{a^2_2+b^2_2}i \)
Геометрическая интерпретация комплексного числа. Комплексная плоскость
Действительные числа геометрически изображаются точками числовой прямой. Комплексное число а + bi можно рассматривать как пару действительных чисел (а; b). Поэтому естественно комплексные числа изображать точками плоскости.
Пусть на плоскости задана прямоугольная система координат. Комплексное число z = a + bi изображается точкой плоскости с координатами (а; b), и эта точка обозначается той же буквой z.
Такое соответствие между комплексными числами и точками плоскости взаимно однозначно: каждому комплексному числу а + bi соответствует одна точка плоскости с координатами (а; b) и, наоборот, каждой точке плоскости с координатами (а; b) соответствует одно комплексное число a + bi. Поэтому слова «комплексное число» и «точка плоскости» часто употребляются как синонимы. Так, вместо слов «точка, изображающая число 1 + i» говорят «точка 1 + i». Можно, например, сказать «треугольник с вершинами в точках i, 1+i, -i».
При такой интерпретации действительные числа a, т.е. комплексные числа а+0i, изображаются точками с координатами (а; 0), т.е. точками оси абсцисс. Поэтому ось абсцисс называют действительной осью. Чисто мнимые числа bi = 0+bi изображаются точками с координатами (0; b), т.е. точками оси ординат, поэтому ось ординат называют мнимой осью. При этом точка с координатами (0; b) обозначается bi. Например, точка (0; 1) обозначается i, точка (0; -1) — это -i , точка (0; 2) — это точка 2i. Начало координат — это точка O. Плоскость, на которой изображаются комплексные числа, называют комплексной плоскостью.
Отметим, что точки z и -z симметричны относительно точки 0 (начала координат), а точки \( z \) и \( \overline{z} \) симметричны относительно действительной оси.
Комплексное число z = a+bi можно изображать вектором с началом в точке 0 и концом в точке z. Этот вектор будем обозначать той же буквой z, длина этого вектора равна |z|.
Число z1 + z2 изображается вектором, построенным по правилу сложения векторов z1 и z2 а вектор z1-z2 можно построить как сумму векторов z1 и -z2.
Геометрический смысл модуля комплексного числа
Выясним геометрический смысл модуля комплексного числа |z|. Пусть z = а+bi. Тогда по определению модуля \( |z|= \sqrt{a^2+b^2} \). Это означает, что |z| — расстояние от точки 0 до точки z.
Например, равенство |z| = 4 означает, что расстояние от точки 0 до точки z равно 4. Поэтому множество всех точек z, удовлетворяющих равенству |z| = 4, является окружностью с центром в точке 0 радиуса 4. Уравнение |z| = R является уравнением окружности с центром в точке 0 радиуса R, где R — заданное положительное число.
Геометрический смысл модуля разности комплексных чисел
Выясним геометрический смысл модуля разности двух комплексных чисел, т.е. |z1—z2|.
Пусть z1 = a1+b1i, z2 = a2+b2i.
Тогда \( |z_1-z_2| = |(a_1-a_2) + (b_2-b_2)i| = \sqrt{(a_1+a_2)^2 + (b_1+b_2)^2} \)
Из курса геометрии известно, что это число равно расстоянию между точками с координатами (а1; b1) и (a2; b2).
Итак, |z1-z2| — расстояние между точками z1 и z2.
Тригонометрическая форма комплексного числа. Аргумент комплексного числа
Определение
Аргумент комплексного числа \( z \neq 0 \) — это угол \( \varphi \) между положительным направлением действительной оси и
вектором Oz. Этот угол считается положительным, если отсчет ведется против часовой стрелки, и отрицательным при отсчете по часовой
стрелке.
Связь между действительной и мнимой частями комплексного числа z = а + bi, его модулем r=|z| и аргументом \( \varphi \) выражается
следующими формулами:
\( \left\{ \begin{array}{l} a=r \cos \varphi \\ b=r \sin \varphi \end{array} \qquad (1) \right. \)
\( \left\{ \begin{array}{l} \cos \varphi =\frac{a}{\sqrt{a^2+b^2}} \\ \sin \varphi =\frac{b}{\sqrt{a^2+b^2}} \end{array} \qquad (2) \right. \)
Аргумент комплексного числа z = a+bi ( \( z\neq 0 \) ) можно найти, решив систему (2). Эта система имеет бесконечно много решений вида \( \varphi =\varphi_0+2k\pi \), где \( k\in\mathbb{Z} , \;\; \varphi_0 \) — одно из решений системы (1), т.е. аргумент комплексного числа определяется неоднозначно.
Для нахождения аргумента комплексного числа z = а+bi ( \( z\neq 0 \) ) можно воспользоваться формулой
\( tg \varphi = \large \frac{b}{a} \normalsize \qquad (3) \)
При решении уравнения (3) нужно учитывать, в какой четверти находится точка z = а+bi.
Запись комплексного числа в тригонометрической форме
Из равенства (1) следует, что любое комплексное число z = a+bi, где \( z\neq 0 \), представляется в виде
\( z = r(\cos\varphi +i\sin\varphi ) \qquad (4) \)
где \( r=|z|=\sqrt{a^2+b^2} \) — модуль комплексного числа z, \( \varphi \) — его аргумент. Запись комплексного числа в
виде (4), где r>0, называют тригонометрической формой комплексного числа z.
Умножение и деление комплексных чисел, записанных в тригонометрической форме
С помощью тригонометрической формы записи комплексных чисел удобно находить произведение и частное комплексных чисел
z1 и z2. Если два комплексных числа записаны в тригонометрической форме:
\( z_1 = r_1(\cos\varphi_1 +i\sin\varphi_1), \quad z_2 = r_2(\cos\varphi_2 +i\sin\varphi_2) \)
то произведение этих комплексных чисел можно найти по формуле:
\( z_1z_2 = r_1r_2(\cos(\varphi_1+\varphi_2) +i\sin(\varphi_1+\varphi_2)) \)
Из этой формулы следует, что при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.
Формула для нахождения частного комплексных чисел:
\( \frac{z_1}{z_2} = \frac{r_1}{r_2}(\cos(\varphi_1-\varphi_2) +i\sin(\varphi_1-\varphi_2)) \)
Из этой формулы следует, что модуль частного двух комплексных чисел равен частному модулей делимого и делителя, а разность аргументов делимого и делителя является аргументом частного.
Формула Муавра
Для любого \( n \in \mathbb{Z} \) справедлива формула
\( z^n = r^n(\cos \varphi + i \sin \varphi)^n = r^n(\cos (n\varphi) + i \sin (n\varphi) ) \)
которую называют формулой Муавра.
Mathway | Популярные задачи
1 | Найти точное значение | sin(30) | |
2 | Найти точное значение | sin(45) | |
3 | Найти точное значение | sin(60) | |
4 | Найти точное значение | sin(30 град. ) | |
5 | Найти точное значение | sin(60 град. ) | |
6 | Найти точное значение | tan(30 град. ) | |
7 | Найти точное значение | arcsin(-1) | |
8 | Найти точное значение | sin(pi/6) | |
9 | Найти точное значение | cos(pi/4) | |
10 | Найти точное значение | sin(45 град. ) | |
11 | Найти точное значение | sin(pi/3) | |
12 | Найти точное значение | arctan(-1) | |
13 | Найти точное значение | cos(45 град. ) | |
14 | Найти точное значение | cos(30 град. ) | |
15 | Найти точное значение | tan(60) | |
16 | Найти точное значение | csc(45 град. ) | |
17 | Найти точное значение | tan(60 град. ) | |
18 | Найти точное значение | sec(30 град. ) | |
19 | Преобразовать из радианов в градусы | (3pi)/4 | |
20 | График | y=sin(x) | |
21 | Преобразовать из радианов в градусы | pi/6 | |
22 | Найти точное значение | cos(60 град. ) | |
23 | Найти точное значение | cos(150) | |
24 | Найти точное значение | tan(45) | |
25 | Найти точное значение | sin(30) | |
26 | Найти точное значение | sin(60) | |
27 | Найти точное значение | cos(pi/2) | |
28 | Найти точное значение | tan(45 град. ) | |
29 | График | y=sin(x) | |
30 | Найти точное значение | arctan(- квадратный корень 3) | |
31 | Найти точное значение | csc(60 град. ) | |
32 | Найти точное значение | sec(45 град. ) | |
33 | Найти точное значение | csc(30 град. ) | |
34 | Найти точное значение | sin(0) | |
35 | Найти точное значение | sin(120) | |
36 | Найти точное значение | cos(90) | |
37 | Преобразовать из радианов в градусы | pi/3 | |
38 | Найти точное значение | sin(45) | |
39 | Найти точное значение | tan(30) | |
40 | Преобразовать из градусов в радианы | 45 | |
41 | Найти точное значение | tan(60) | |
42 | Упростить | квадратный корень x^2 | |
43 | Найти точное значение | cos(45) | |
44 | Упростить | sin(theta)^2+cos(theta)^2 | |
45 | Преобразовать из радианов в градусы | pi/6 | |
46 | Найти точное значение | cot(30 град. ) | |
47 | Найти точное значение | arccos(-1) | |
48 | Найти точное значение | arctan(0) | |
49 | График | y=cos(x) | |
50 | Найти точное значение | cot(60 град. ) | |
51 | Преобразовать из градусов в радианы | 30 | |
52 | Упростить | ( квадратный корень x+ квадратный корень 2)^2 | |
53 | Преобразовать из радианов в градусы | (2pi)/3 | |
54 | Найти точное значение | sin((5pi)/3) | |
55 | Упростить | 1/( кубический корень от x^4) | |
56 | Найти точное значение | sin((3pi)/4) | |
57 | Найти точное значение | tan(pi/2) | |
58 | Найти угол А | tri{}{90}{}{}{}{} | |
59 | Найти точное значение | sin(300) | |
60 | Найти точное значение | cos(30) | |
61 | Найти точное значение | cos(60) | |
62 | Найти точное значение | cos(0) | |
63 | Найти точное значение | arctan( квадратный корень 3) | |
64 | Найти точное значение | cos(135) | |
65 | Найти точное значение | cos((5pi)/3) | |
66 | Найти точное значение | cos(210) | |
67 | Найти точное значение | sec(60 град. ) | |
68 | Найти точное значение | sin(300 град. ) | |
69 | Преобразовать из градусов в радианы | 135 | |
70 | Преобразовать из градусов в радианы | 150 | |
71 | Преобразовать из радианов в градусы | (5pi)/6 | |
72 | Преобразовать из радианов в градусы | (5pi)/3 | |
73 | Преобразовать из градусов в радианы | 89 град. | |
74 | Преобразовать из градусов в радианы | 60 | |
75 | Найти точное значение | sin(135 град. ) | |
76 | Найти точное значение | sin(150) | |
77 | Найти точное значение | sin(240 град. ) | |
78 | Найти точное значение | cot(45 град. ) | |
79 | Преобразовать из радианов в градусы | (5pi)/4 | |
80 | Упростить | 1/( кубический корень от x^8) | |
81 | Найти точное значение | sin(225) | |
82 | Найти точное значение | sin(240) | |
83 | Найти точное значение | cos(150 град. ) | |
84 | Найти точное значение | tan(45) | |
85 | Вычислить | sin(30 град. ) | |
86 | Найти точное значение | sec(0) | |
87 | Упростить | arcsin(-( квадратный корень 2)/2) | |
88 | Найти точное значение | cos((5pi)/6) | |
89 | Найти точное значение | csc(30) | |
90 | Найти точное значение | arcsin(( квадратный корень 2)/2) | |
91 | Найти точное значение | tan((5pi)/3) | |
92 | Найти точное значение | tan(0) | |
93 | Вычислить | sin(60 град. ) | |
94 | Найти точное значение | arctan(-( квадратный корень 3)/3) | |
95 | Преобразовать из радианов в градусы | (3pi)/4 | |
96 | Вычислить | arcsin(-1) | |
97 | Найти точное значение | sin((7pi)/4) | |
98 | Найти точное значение | arcsin(-1/2) | |
99 | Найти точное значение | sin((4pi)/3) | |
100 | Найти точное значение | csc(45) |
Комплексные числа
Напомним необходимые сведения о комплексных числах.
Комплексное число — это выражение вида a + bi, где a, b — действительные числа, а i — так называемая мнимая единица, символ, квадрат которого равен –1, то есть i2 = –1. Число a называется действительной частью, а число b — мнимой частью комплексного числа z = a + bi. Если b = 0, то вместо a + 0i пишут просто a. Видно, что действительные числа — это частный случай комплексных чисел.
Арифметические действия над комплексными числами те же, что и над действительными: их можно складывать, вычитать, умножать и делить друг на друга. Сложение и вычитание происходят по правилу (a + bi) ± (c + di) = (a ± c) + (b ± d)i, а умножение — по правилу (a + bi) · (c + di) = (ac – bd) + (ad + bc)i (здесь как раз используется, что i2 = –1). Число = a – bi называется комплексно-сопряженным к z = a + bi. Равенство z ·
= a2 + b2 позволяет понять, как делить одно комплексное число на другое (ненулевое) комплексное число:

(Например, .)

У комплексных чисел есть удобное и наглядное геометрическое представление: число z = a + bi можно изображать вектором с координатами (a; b) на декартовой плоскости (или, что почти то же самое, точкой — концом вектора с этими координатами). При этом сумма двух комплексных чисел изображается как сумма соответствующих векторов (которую можно найти по правилу параллелограмма). По теореме Пифагора длина вектора с координатами (a; b) равна . Эта величина называется модулем комплексного числа z = a + bi и обозначается |z|. Угол, который этот вектор образует с положительным направлением оси абсцисс (отсчитанный против часовой стрелки), называется аргументом комплексного числа z и обозначается Arg z. Аргумент определен не однозначно, а лишь с точностью до прибавления величины, кратной 2π радиан (или 360°, если считать в градусах) — ведь ясно, что поворот на такой угол вокруг начала координат не изменит вектор. Но если вектор длины r образует угол φ с положительным направлением оси абсцисс, то его координаты равны (r · cos φ; r · sin φ). Отсюда получается тригонометрическая форма записи комплексного числа: z = |z| · (cos(Arg z) + i sin(Arg z)). Часто бывает удобно записывать комплексные числа именно в такой форме, потому что это сильно упрощает выкладки. Умножение комплексных чисел в тригонометрической форме выглядит очень просто: z1 · z2 = |z1| · |z2| · (cos(Arg z1 + Arg z2) + i sin(Arg z1 + Arg z2)) (при умножении двух комплексных чисел их модули перемножаются, а аргументы складываются). Отсюда следуют формулы Муавра: zn = |z|n · (cos(n · (Arg z)) + i sin(n · (Arg z))). С помощью этих формул легко научиться извлекать корни любой степени
из комплексных чисел. Корень n-й степени из числа z — это такое комплексное число w, что wn = z. Видно, что
, а
, где k может принимать любое значение из множества {0, 1, …, n – 1}. Это означает, что всегда есть ровно n корней n-й степени из комплексного числа (на плоскости они располагаются в вершинах правильного n-угольника).
Далее: Фрактальные размерности
Mathway | Популярные задачи
1 | Найти точное значение | sin(30) | |
2 | Найти точное значение | sin(45) | |
3 | Найти точное значение | sin(60) | |
4 | Найти точное значение | sin(30 град. ) | |
5 | Найти точное значение | sin(60 град. ) | |
6 | Найти точное значение | tan(30 град. ) | |
7 | Найти точное значение | arcsin(-1) | |
8 | Найти точное значение | sin(pi/6) | |
9 | Найти точное значение | cos(pi/4) | |
10 | Найти точное значение | sin(45 град. ) | |
11 | Найти точное значение | sin(pi/3) | |
12 | Найти точное значение | arctan(-1) | |
13 | Найти точное значение | cos(45 град. ) | |
14 | Найти точное значение | cos(30 град. ) | |
15 | Найти точное значение | tan(60) | |
16 | Найти точное значение | csc(45 град. ) | |
17 | Найти точное значение | tan(60 град. ) | |
18 | Найти точное значение | sec(30 град. ) | |
19 | Преобразовать из радианов в градусы | (3pi)/4 | |
20 | График | y=sin(x) | |
21 | Преобразовать из радианов в градусы | pi/6 | |
22 | Найти точное значение | cos(60 град. ) | |
23 | Найти точное значение | cos(150) | |
24 | Найти точное значение | tan(45) | |
25 | Найти точное значение | sin(30) | |
26 | Найти точное значение | sin(60) | |
27 | Найти точное значение | cos(pi/2) | |
28 | Найти точное значение | tan(45 град. ) | |
29 | График | y=sin(x) | |
30 | Найти точное значение | arctan(- квадратный корень 3) | |
31 | Найти точное значение | csc(60 град. ) | |
32 | Найти точное значение | sec(45 град. ) | |
33 | Найти точное значение | csc(30 град. ) | |
34 | Найти точное значение | sin(0) | |
35 | Найти точное значение | sin(120) | |
36 | Найти точное значение | cos(90) | |
37 | Преобразовать из радианов в градусы | pi/3 | |
38 | Найти точное значение | sin(45) | |
39 | Найти точное значение | tan(30) | |
40 | Преобразовать из градусов в радианы | 45 | |
41 | Найти точное значение | tan(60) | |
42 | Упростить | квадратный корень x^2 | |
43 | Найти точное значение | cos(45) | |
44 | Упростить | sin(theta)^2+cos(theta)^2 | |
45 | Преобразовать из радианов в градусы | pi/6 | |
46 | Найти точное значение | cot(30 град. ) | |
47 | Найти точное значение | arccos(-1) | |
48 | Найти точное значение | arctan(0) | |
49 | График | y=cos(x) | |
50 | Найти точное значение | cot(60 град. ) | |
51 | Преобразовать из градусов в радианы | 30 | |
52 | Упростить | ( квадратный корень x+ квадратный корень 2)^2 | |
53 | Преобразовать из радианов в градусы | (2pi)/3 | |
54 | Найти точное значение | sin((5pi)/3) | |
55 | Упростить | 1/( кубический корень от x^4) | |
56 | Найти точное значение | sin((3pi)/4) | |
57 | Найти точное значение | tan(pi/2) | |
58 | Найти угол А | tri{}{90}{}{}{}{} | |
59 | Найти точное значение | sin(300) | |
60 | Найти точное значение | cos(30) | |
61 | Найти точное значение | cos(60) | |
62 | Найти точное значение | cos(0) | |
63 | Найти точное значение | arctan( квадратный корень 3) | |
64 | Найти точное значение | cos(135) | |
65 | Найти точное значение | cos((5pi)/3) | |
66 | Найти точное значение | cos(210) | |
67 | Найти точное значение | sec(60 град. ) | |
68 | Найти точное значение | sin(300 град. ) | |
69 | Преобразовать из градусов в радианы | 135 | |
70 | Преобразовать из градусов в радианы | 150 | |
71 | Преобразовать из радианов в градусы | (5pi)/6 | |
72 | Преобразовать из радианов в градусы | (5pi)/3 | |
73 | Преобразовать из градусов в радианы | 89 град. | |
74 | Преобразовать из градусов в радианы | 60 | |
75 | Найти точное значение | sin(135 град. ) | |
76 | Найти точное значение | sin(150) | |
77 | Найти точное значение | sin(240 град. ) | |
78 | Найти точное значение | cot(45 град. ) | |
79 | Преобразовать из радианов в градусы | (5pi)/4 | |
80 | Упростить | 1/( кубический корень от x^8) | |
81 | Найти точное значение | sin(225) | |
82 | Найти точное значение | sin(240) | |
83 | Найти точное значение | cos(150 град. ) | |
84 | Найти точное значение | tan(45) | |
85 | Вычислить | sin(30 град. ) | |
86 | Найти точное значение | sec(0) | |
87 | Упростить | arcsin(-( квадратный корень 2)/2) | |
88 | Найти точное значение | cos((5pi)/6) | |
89 | Найти точное значение | csc(30) | |
90 | Найти точное значение | arcsin(( квадратный корень 2)/2) | |
91 | Найти точное значение | tan((5pi)/3) | |
92 | Найти точное значение | tan(0) | |
93 | Вычислить | sin(60 град. ) | |
94 | Найти точное значение | arctan(-( квадратный корень 3)/3) | |
95 | Преобразовать из радианов в градусы | (3pi)/4 | |
96 | Вычислить | arcsin(-1) | |
97 | Найти точное значение | sin((7pi)/4) | |
98 | Найти точное значение | arcsin(-1/2) | |
99 | Найти точное значение | sin((4pi)/3) | |
100 | Найти точное значение | csc(45) |
Аргумент и модуль комплексного числа
Вычислить аргумент и модуль комплексного числа.
Аргументом комплексного числа z называется угол φ в радианах радиус-вектора точки, соответствующей данному комплексному числу и обозначается Arg(z) = φ
Аргументом комплексного числа z называется угол φ в радианах радиус-вектора точки, соответствующей данному комплексному числу и обозначается Arg(z) = φ
Из определения следуют следующие формулы:

Для числа z = 0 аргумент не определен.
Главным значением аргумента называется такое значение φ, что .
Обозначается: arg(z).
Свойства аргумента:
![]() | — аргумент от произведения двух комплексных чисел равен сумме аргументов этих чисел |
![]() | — аргумент частного двух комплексных чисел равен разности аргументов этих чисел |
![]() | — аргумент от сопряженного комплексного числа равен отрицательному значению аргумента от этого числа. |
Модулем комплексного числа z = x + iy называется вещественное число |z| равное:

Для любых комплексных чисел z, z1, z2 имеют место следующие свойства модуля:
![]() |
для пары комплексных чисел z1 и z2 модуль их разности |z1 − z2| равен расстоянию между соответствующими точками комплексной плоскости. |
Mathway | Популярные задачи
Mathway | Популярные задачиПопулярные задачи
Элементарная математика Основы алгебры Алгебра Тригонометрия Основы мат. анализа Математический анализ Конечная математика Линейная алгебра ХимияДля функционирования Mathway необходим javascript и современный браузер.
Этот веб-сайт использует cookie файлы, чтобы сделать использование нашего ресурса максимально удобным для вас.
Убедитесь, что ваш пароль содержит не менее 8 символов и как минимум один из следующих символов:
- число
- буква
- специальный символ: @$#!%*?&