Формула косинус 2х – Все формулы по тригонометрии

Содержание

Все формулы по тригонометрии

Все формулы по тригонометрии

Подождите пару секунд пока подгрузятся формулы

Основные тригонометрические тождества
$$sin^2x+cos^2x=1$$
$$tgx= \frac{sinx}{cosx}$$
$$ctgx= \frac{cosx}{sinx}$$
$$tgxctgx=1$$
$$tg^2x+1= \frac{1}{cos^2x}$$
$$ctg^2x+1= \frac{1}{sin^2x}$$
Формулы двойного аргумента (угла)
$$sin2x=2cosxsinx$$
\begin{align} sin2x &=\frac{2tgx}{1+tg^2x}\\ &= \frac{2ctgx}{1+ctg^2x}\\ &= \frac{2}{tgx+ctgx} \end{align}
\begin{align} cos2x & = \cos^2x-sin^2x\\ &= 2cos^2x-1\\ &= 1-2sin^2x \end{align}
\begin{align} cos2x & = \frac{1-tg^2x}{1+tg^2x}\\ &= \frac{ctg^2x-1}{ctg^2x+1}\\ &= \frac{ctgx-tgx}{ctgx+tgx} \end{align}
\begin{align} tg2x & = \frac{2tgx}{1-tg^2x}\\ &= \frac{2ctgx}{ctg^2x-1}\\ &= \frac{2}{ctgx-tgx} \end{align}
\begin{align} ctg2x & = \frac{ctg^2x-1}{2ctgx}\\ &= \frac{2ctgx}{ctg^2x-1}\\ &= \frac{ctgx-tgx}{2} \end{align}
Формулы тройного аргумента (угла)
$$sin3x=3sinx-4sin^3x$$
$$cos3x=4cos^3x-3cosx$$
$$tg3x= \frac{3tgx-tg^3x}{1-3tg^2x}$$
$$ctg3x= \frac{ctg^3x-3ctgx}{3ctg^2x-1}$$
Формулы половинного аргумента (угла)
$$sin^2 \frac{x}{2}= \frac{1-cosx}{2}$$
$$cos^2 \frac{x}{2}= \frac{1+cosx}{2}$$
$$tg^2 \frac{x}{2}= \frac{1-cosx}{1+cosx}$$
$$ctg^2 \frac{x}{2}= \frac{1+cosx}{1-cosx}$$
\begin{align} tg \frac{x}{2} & = \frac{1-cosx}{sinx}\\ &= \frac{sinx}{1+cosx} \end{align}
\begin{align} ctg \frac{x}{2} & = \frac{1+cosx}{sinx}\\ &= \frac{sinx}{1-cosx} \end{align}
Формулы квадратов тригонометрических функций
$$sin^2x= \frac{1-cos2x}{2}$$
$$cos^2x= \frac{1+cos2x}{2}$$
$$tg^2x= \frac{1-cos2x}{1+cos2x}$$
$$ctg^2x= \frac{1+cos2x}{1-cos2x}$$
$$sin^2 \frac{x}{2}= \frac{1-cosx}{2}$$
$$cos^2 \frac{x}{2}= \frac{1+cosx}{2}$$
$$tg^2 \frac{x}{2}= \frac{1-cosx}{1+cosx}$$
$$ctg^2 \frac{x}{2}= \frac{1+cosx}{1-cosx}$$
Формулы кубов тригонометрических функций
$$sin^3x= \frac{3sinx-sin3x}{4}$$
$$cos^3x= \frac{3cosx+cos3x}{4}$$
$$tg^3x= \frac{3sinx-sin3x}{3cosx+cos3x}$$
$$ctg^3x= \frac{3cosx+cos3x}{3sinx-sin3x}$$
Формулы тригонометрических функций в четвертой степени
$$sin^4x= \frac{3-4cos2x+cos4x}{8}$$
$$cos^4x= \frac{3+4cos2x+cos4x}{8}$$
Формулы сложения аргументов
$$sin(\alpha + \beta) = sin \alpha cos \beta + cos \alpha sin \beta$$
$$cos(\alpha + \beta) = cos \alpha cos \beta — sin \alpha sin \beta$$
$$tg(\alpha + \beta)= \frac{tg \alpha + tg \beta}{1 — tg \alpha tg \beta}$$
$$ctg(\alpha + \beta)= \frac{ctg \alpha ctg \beta -1}{ctg \alpha + ctg \beta}$$
$$sin(\alpha — \beta) = sin \alpha cos \beta — cos \alpha sin \beta$$
$$cos(\alpha — \beta) = cos \alpha cos \beta + sin \alpha sin \beta$$
$$tg(\alpha — \beta)= \frac{tg \alpha — tg \beta}{1 + tg \alpha tg \beta}$$
$$ctg(\alpha — \beta)= \frac{ctg \alpha ctg \beta +1}{ctg \alpha — ctg \beta}$$
Формулы суммы тригонометрических функций
$$sin\alpha + sin\beta = 2sin \frac{\alpha + \beta }{2} \cdot cos \frac{\alpha — \beta }{2}$$
$$cos\alpha + cos\beta = 2cos \frac{\alpha + \beta }{2} \cdot cos \frac{\alpha — \beta }{2}$$
$$tg\alpha + tg\beta = \frac{sin(\alpha + \beta) }{cos \alpha cos \beta}$$
$$ctg\alpha + ctg\beta = \frac{sin(\alpha + \beta) }{cos \alpha cos \beta}$$
$$(sin\alpha + cos\alpha)^2= 1+sin2\alpha$$
Формулы разности тригонометрических функций
$$sin\alpha — sin\beta = 2sin \frac{\alpha — \beta }{2} \cdot cos \frac{\alpha + \beta }{2}$$
$$cos\alpha — cos\beta = -2sin \frac{\alpha + \beta }{2} \cdot sin \frac{\alpha — \beta }{2}$$
$$tg\alpha — tg\beta = \frac{sin(\alpha — \beta) }{cos \alpha cos \beta}$$
$$ctg\alpha — ctg\beta = — \frac{sin(\alpha — \beta) }{sin \alpha sin \beta}$$
$$(sin\alpha + cos\alpha)^2= 1-sin2\alpha$$
Формулы произведения тригонометрических функций
$$sin\alpha \cdot sin\beta = \frac{cos(\alpha — \beta)-cos(\alpha + \beta)}{2}$$
$$sin\alpha \cdot cos\beta = \frac{sin(\alpha — \beta)+sin(\alpha + \beta)}{2}$$
$$cos\alpha \cdot cos\beta = \frac{cos(\alpha — \beta)+cos(\alpha + \beta)}{2}$$
\begin{align} tg\alpha \cdot tg\beta & = \frac{cos(\alpha — \beta)-cos(\alpha + \beta)}{cos(\alpha — \beta)+cos(\alpha + \beta)}\\ &= \frac{tg\alpha + tg\beta}{ctg\alpha + ctg\beta} \end{align}
\begin{align} ctg\alpha \cdot ctg\beta & = \frac{cos(\alpha — \beta)+cos(\alpha + \beta)}{cos(\alpha — \beta)-cos(\alpha + \beta)}\\ &= \frac{ctg\alpha + ctg\beta}{tg\alpha + tg\beta} \end{align}
$$tg\alpha \cdot ctg\beta = \frac{sin(\alpha — \beta)+sin(\alpha + \beta)}{sin(\alpha + \beta)-sin(\alpha — \beta)}$$

www.100formul.ru

Все формулы (уравнения) тригонометрии : sin(x) cos(x) tg(x) ctg(x)

Уравнения разложения тригонометрических функций:квадрат синус альфа, косинус альфа, тангенс альфа, котангенс альфа.

 

 

 

 

 

Формулы преобразования функций двойного угла (2α) в выражение через одинарный угол (α)

 

sin(2α)- через sin и cos:

 

sin(2α)- через tg и ctg:

 

cos(2α)- через sin и cos:

 

cos(2α)- через tg и ctg:

 

 

tg(2α) и сtg(2α):

 

 


Формулы преобразования функций (синус, косинус, тангенс, котангенс), тройного угла (3α) в выражение через одинарный угол (α):

 

 

 

 


Тригонометрические формулы преобразования разности аргументов

 

 

 

 

 

 


sin(α)=OA

cos(α)=OC

tg(α)=DE

ctg(α)=MK

R=OB=1

 

Значения функций для некоторых углов, α

 


В таблице показаны формулы приведения для тригонометрических функций (sin, cos, tg, ctg).

 

 

www-formula.ru

73 формулы тригонометрии

На странице вы найдете все формулы тригонометрии в удобном для использования оформлении. Формулы структурированы в блоки по количеству аргументов, степеням, арифметическим операциям над ними.

Все формулы тригонометрии

Основные тригонометрические тождества

{\tg \alpha = \dfrac {\sin \alpha}{ \cos \alpha} = \dfrac{1}{\ctg \alpha}}


{\ctg \alpha = \dfrac {\cos \alpha}{ \sin \alpha} = \dfrac{1}{\tg \alpha}}
{\sin ^2 \alpha + \cos ^2 \alpha = 1}
{1+\tg^2\alpha=\dfrac{1}{\cos^2\alpha}}
{1+\ctg^2\alpha=\dfrac{1}{\sin^2\alpha}}
{\tg\alpha \cdot \ctg\alpha=1}

Формулы двойного угла (аргумента)

{\sin(2\alpha)=2 \cdot \cos \alpha \cdot \sin \alpha}


{\sin(2\alpha)=\dfrac{2 \cdot \tg \alpha}{1+\tg ^2 \alpha}=\dfrac{2 \cdot \ctg \alpha}{1+\ctg ^2 \alpha}=\dfrac{2}{\tg \alpha + \ctg \alpha}}
{\cos(2\alpha)=\cos ^2 \alpha- \sin ^2 \alpha = 2 \cdot \cos ^2 \alpha- 1 = 1- 2 \cdot \sin ^2 \alpha}
{\cos(2\alpha)=\dfrac{1 -\tg ^2 \alpha}{1+\tg ^2 \alpha}=\dfrac{\ctg ^2 \alpha- 1}{\ctg ^2 \alpha +1}=\dfrac{\ctg \alpha-\tg \alpha}{\ctg \alpha + \tg \alpha}}
{\tg(2\alpha) = \dfrac{2 \cdot \tg \alpha}{1-\tg ^2 \alpha}=\dfrac{2 \cdot \ctg \alpha}{\ctg ^2 \alpha- 1}=\dfrac{2}{\ctg \alpha- \tg \alpha}}
{\ctg(2\alpha) = \dfrac{\ctg ^2 \alpha-1}{2 \cdot \ctg \alpha}=\dfrac{\ctg \alpha- \tg \alpha}{2}}

Формулы тройного угла (аргумента)

{\sin(3\alpha)=3 \cdot \sin \alpha- 4 \cdot \sin ^3 \alpha}


{\cos(3\alpha)= 4 \cdot \cos ^3 \alpha- 3 \cdot \cos \alpha}
{\tg(3\alpha)= \dfrac{3 \cdot \tg \alpha- \tg ^3 \alpha}{1-3 \cdot \tg ^2 \alpha}}
{\ctg(3\alpha)= \dfrac{\ctg ^3 \alpha- 3 \cdot \ctg \alpha}{3 \cdot \ctg ^2 \alpha -1}}

Формулы понижения степени тригонометрических функций

Вторая степень

{\sin ^2 \alpha = \dfrac{1-\cos(2\alpha)}{2}}
{\cos ^2 \alpha = \dfrac{1+\cos(2\alpha)}{2}}
{\tg ^2 \alpha = \dfrac{1-\cos(2\alpha)}{1+\cos(2\alpha)}}
{\ctg ^2 \alpha = \dfrac{1+\cos(2\alpha)}{1-\cos(2\alpha)}}
{(\sin \alpha- \cos \alpha)^2=1-\sin(2 \alpha)}
{(\sin \alpha+ \cos \alpha)^2=1+\sin(2 \alpha)}

Третья степень

{\sin ^3 \alpha = \dfrac{3 \cdot \sin(\alpha)-\sin(3 \alpha)}{4}}
{\cos ^3 \alpha = \dfrac{3 \cdot \cos(\alpha)+\cos(3 \alpha)}{4}}
{\tg ^3 \alpha = \dfrac{3 \cdot \sin (\alpha)-\sin(3 \alpha)}{3 \cdot \cos (\alpha)+\cos(3 \alpha)}}
{\ctg ^3 \alpha = \dfrac{3 \cdot \cos (\alpha)+\cos(3 \alpha)}{3 \cdot \sin (\alpha)-\sin(3 \alpha)}}

Четвёртая степень

{\sin ^4 \alpha = \dfrac{3-4 \cdot \cos(2 \alpha)+\cos(4 \alpha)}{8}}
{\cos ^4 \alpha = \dfrac{3+4 \cdot \cos(2 \alpha)+\cos(4 \alpha)}{8}}

Пятая степень

{\sin ^5 \alpha = \dfrac{10 \cdot \sin(\alpha)-5 \cdot \sin(3 \alpha)+\sin(5 \alpha)}{16}}
{\cos ^5 \alpha = \dfrac{10 \cdot \cos(\alpha)+5 \cdot \cos(3 \alpha)+\cos(5 \alpha)}{16}}

Формулы половинного угла (аргумента)

{\sin \Big( \dfrac{\alpha}{2} \Big)=\pm \sqrt{\dfrac{1-\cos \alpha}{2}}}


{\cos \Big( \dfrac{\alpha}{2} \Big)=\pm \sqrt{\dfrac{1+\cos \alpha}{2}}}
{\tg \Big( \dfrac{\alpha}{2} \Big)= \dfrac{1-\cos \alpha}{\sin \alpha}= \dfrac{\sin \alpha}{1+\cos \alpha}}
{\ctg \Big( \dfrac{\alpha}{2} \Big)= \dfrac{1+\cos \alpha}{\sin \alpha}= \dfrac{\sin \alpha}{1-\cos \alpha}}

Формулы понижения степени половинного угла (аргумента)

{\sin ^2 \Big( \dfrac{\alpha}{2} \Big)=\dfrac{1-\cos \alpha}{2}}


{\cos ^2 \Big( \dfrac{\alpha}{2} \Big)=\dfrac{1+\cos \alpha}{2}}
{\tg ^2 \Big( \dfrac{\alpha}{2} \Big)=\dfrac{1-\cos \alpha}{1+\cos \alpha}}
{\ctg ^2 \Big( \dfrac{\alpha}{2} \Big)=\dfrac{1+\cos \alpha}{1-\cos \alpha}}

Формулы сложения аргументов

{\sin(\alpha + \beta)=\sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta}


{\cos(\alpha + \beta)=\cos \alpha \cdot \cos \beta- \sin \alpha \cdot \sin \beta}
{\tg(\alpha + \beta)= \dfrac{\tg \alpha + \tg \beta}{1-\tg \alpha \cdot \tg \beta}}
{\ctg(\alpha + \beta)= \dfrac{\ctg \alpha \cdot \ctg \beta-1}{\ctg \alpha + \ctg \beta}}

Формулы вычитания аргументов

{\sin(\alpha- \beta)=\sin \alpha \cdot \cos \beta- \cos \alpha \cdot \sin \beta}


{\cos(\alpha- \beta)=\cos \alpha \cdot \cos \beta+ \sin \alpha \cdot \sin \beta}
{\tg(\alpha- \beta)= \dfrac{\tg \alpha- \tg \beta}{1+\tg \alpha \cdot \tg \beta}}
{\ctg(\alpha- \beta)= \dfrac{\ctg \alpha \cdot \ctg \beta+1}{\ctg \alpha- \ctg \beta}}

Формулы суммы тригонометрических функций

{\sin \alpha+ \sin \beta=2 \cdot \sin \big( \dfrac{\alpha + \beta}{2} \big) \cdot \cos \big( \dfrac{\alpha- \beta}{2} \big)}


{\cos \alpha+ \cos \beta=2 \cdot \cos \big( \dfrac{\alpha + \beta}{2} \big) \cdot \cos \big( \dfrac{\alpha- \beta}{2} \big)}
{\tg \alpha + \tg \beta = \dfrac{\sin(\alpha + \beta)}{\cos \alpha \cdot \cos \beta}}
{\ctg \alpha + \ctg \beta = \dfrac{\sin(\alpha + \beta)}{\cos \alpha \cdot \cos \beta}}
{\sin (\alpha)+\cos(\alpha)=\sqrt{2} \cdot \sin \Big( \alpha+ \dfrac{\pi}{4} \Big)}

Формулы разности тригонометрических функций

{\sin \alpha- \sin \beta=2 \cdot \sin \big( \dfrac{\alpha- \beta}{2} \big) \cdot \cos \big( \dfrac{\alpha+ \beta}{2} \big)}


{\cos \alpha- \cos \beta=-2 \cdot \sin \big( \dfrac{\alpha + \beta}{2} \big) \cdot \sin \big( \dfrac{\alpha- \beta}{2} \big)}
{\tg \alpha- \tg \beta = \dfrac{\sin(\alpha- \beta)}{\cos \alpha \cdot \cos \beta}}
{\ctg \alpha- \ctg \beta = \dfrac{\sin(\alpha + \beta)}{\sin \alpha \cdot \sin \beta}}
{\sin (\alpha)-\cos(\alpha)=\sqrt{2} \cdot \sin \Big( \alpha- \dfrac{\pi}{4} \Big)}

Формулы произведения тригонометрических функций

{\sin \alpha \cdot \sin \beta = \dfrac{\cos (\alpha- \beta)-\cos(\alpha + \beta)}{2}}


{\sin \alpha \cdot \cos \beta = \dfrac{\sin (\alpha- \beta)+\sin(\alpha + \beta)}{2}}
{\cos \alpha \cdot \cos \beta = \dfrac{\cos (\alpha- \beta)+\cos(\alpha + \beta)}{2}}
{\tg \alpha \cdot \tg \beta = \dfrac{\cos(\alpha- \beta)- \cos(\alpha+\beta)}{\cos(\alpha- \beta)+ \cos(\alpha+\beta)}=\dfrac{\tg \alpha + \tg \beta}{\ctg \alpha + \ctg \beta}}
{\ctg \alpha \cdot \ctg \beta = \dfrac{\cos(\alpha- \beta)+ \cos(\alpha+\beta)}{\cos(\alpha- \beta)- \cos(\alpha+\beta)}=\dfrac{\ctg \alpha + \ctg \beta}{\tg \alpha + \tg \beta}}
{\tg \alpha \cdot \ctg \beta = \dfrac{\sin(\alpha- \beta)+ \sin(\alpha+\beta)}{\sin(\alpha+ \beta)- \sin(\alpha-\beta)}}

Формулы произведения тригонометрических функций в степени

{\sin ^2 (\alpha) \cdot \cos ^2 (\alpha) = \dfrac{1-\cos(4 \alpha)}{8}}


{\sin ^3 (\alpha) \cdot \cos ^3 (\alpha) = \dfrac{3 \cdot \sin(2 \alpha)- \sin(6 \alpha)}{32}}
{\sin ^4 (\alpha) \cdot \cos ^4 (\alpha) = \dfrac{3-4 \cdot \cos(4 \alpha)+ \cos(8 \alpha)}{128}}
{\sin ^5 (\alpha) \cdot \cos ^5 (\alpha) = \dfrac{10 \cdot \sin (2 \alpha)-5 \cdot \sin(6 \alpha)+\sin (10 \alpha)}{512}}

Все формулы тригонометрии на одном листе

На этой картинке собраны все формулы тригонометрии для печати. Листо можно распечатать и использовать при решении задач ЕГЭ или вырезать таблицы и использовать как шпаргалку. Распечатанный лист можно применять как справочный материал при решении задач по тригонометрии в 10 и 11 классе.

Все формулы тригонометрии на одном листе

Просмотров страницы: 13 674

mnogoformul.ru

Тригонометрические формулы

© Школяр. Математика (при поддержке «Ветвистого древа») 2009—2016

(1) Основное тригонометрическое тождествоsin2(α) + cos2(α) = 1
(2) Основное тождество через тангенс и косинус 1 + tg2(α) = 1/cos2(α)
(3) Основное тождество через котангенс и синус 1 + ctg2(α) = 1/sin2(α)
(4) Соотношение между тангенсом и котангенсомtg(α)ctg(α) = 1
(5) Синус двойного углаsin(2α) = 2sin(α)cos(α)
(6) Косинус двойного углаcos(2α) = cos2(α) – sin2(α) = 2cos2(α) – 1 = 1 – 2sin2(α)
(7) Тангенс двойного угла
tg(2α) =   2tg(α)
1 – tg2(α)
(8) Котангенс двойного угла
ctg(2α) =ctg2(α) – 1
  2ctg(α)
(9) Синус тройного углаsin(3α) = 3sin(α)cos2(α) – sin3(α)
(10) Косинус тройного углаcos(3α) = cos3(α) – 3cos(α)sin2(α)
(11) Косинус суммы/разностиcos(α±β) = cos(α)cos(β) ∓ sin(α)sin(β)
(12) Синус суммы/разностиsin(α±β) = sin(α)cos(β) ± cos(α)sin(β)
(13) Тангенс суммы/разности tg(α±β) = (tg(α) ± tg(β))/(1 ∓ tg(α)tg(β))
(14) Котангенс суммы/разности ctg(α±β) = (-1 ± ctg(α)ctg(β))/(ctg(&alpha) ± ctg(β))
(15) Произведение синусовsin(α)sin(β) = ½(cos(α–β) – cos(α+β))
(16) Произведение косинусовcos(α)cos(β) = ½(cos(α+β) + cos(α–β))
(17) Произведение синуса на косинусsin(α)cos(β) = ½(sin(α+β) + sin(α–β))
(18) Сумма/разность синусовsin(α) ± sin(β) = 2sin(½(α±β))cos(½(α∓β))
(19) Сумма косинусовcos(α) + cos(β) = 2cos(½(α+β))cos(½(α–β))
(20) Разность косинусовcos(α) – cos(β) = –2sin(½(α+β))sin(½(α–β))
(21) Сумма/разность тангенсов tg(α) ± tg(β) = sin(α±β)/cos(α)cos(β)
(22) Формула понижения степени синусаsin2(α) = ½(1 – cos(2α))
(23) Формула понижения степени косинуса cos2(α) = ½(1 + cos(2α))
(24) Сумма/разность синуса и косинуса sin(α) ± cos(α) = &sqrt;2sin(α±π/4)
(25) Сумма/разность синуса и косинуса с коэффициентами Asin(α) ± Bcos(α) = Корень(A²+B²)(sin(α ± arccos(A/Корень(A²+B²)))
(26) Основное соотношение арксинуса и арккосинусаarcsin(x) + arccos(x) = π/2
(27) Основное соотношение арктангенса и арккотангенсаarctg(x) + arcctg(x) = π/2

scolaire.ru

Тригонометрические формулы

Наиболее часто встречающиеся тригонометрические формулы:

 

\(\blacktriangleright\) Основные тождества:

\[\begin{array}{|l|l|} \hline \sin^2 \alpha+\cos^2 \alpha =1& \mathrm{tg}\, \alpha \cdot \mathrm{ctg}\, \alpha =1 \\ &(\sin\alpha\ne 0, \cos\alpha\ne 0)\\[0.5ex] \hline &\\ \mathrm{tg}\, \alpha=\dfrac{\sin \alpha}{\cos \alpha} &\mathrm{ctg}\, \alpha =\dfrac{\cos \alpha}{\sin \alpha} \\&\\ 1+\mathrm{tg}^2\, \alpha =\dfrac1{\cos^2 \alpha} & 1+\mathrm{ctg}^2\, \alpha=\dfrac1{\sin^2 \alpha}\\&\\ (\cos\alpha\ne 0)& (\sin\alpha\ne 0) \\ \hline \end{array}\]

\(\blacktriangleright\) Формулы сложения углов: \[\begin{array}{|l|r|} \hline &\\ \sin{(\alpha\pm \beta)}=\sin\alpha\cdot \cos\beta\pm \sin\beta\cdot \cos\alpha & \cos{(\alpha\pm \beta)}=\cos\alpha\cdot \cos\beta \mp \sin\alpha\cdot \sin\beta\\ &\\ \hline &\\ \mathrm{tg}\, (\alpha\pm \beta)=\dfrac{\mathrm{tg}\, \alpha\pm \mathrm{tg}\, \beta}{1 \mp \mathrm{tg}\, \alpha\cdot \mathrm{tg}\, \beta} & \mathrm{ctg}\, (\alpha\pm\beta)=-\dfrac{1\mp \mathrm{ctg}\, \alpha\cdot \mathrm{ctg}\, \beta}{\mathrm{ctg}\, \alpha\pm \mathrm{ctg}\, \beta}\\&\\ \cos\alpha\cos\beta\ne 0&\sin\alpha\sin\beta\ne 0\\ \hline \end{array}\]

\(\blacktriangleright\) Формулы двойного и тройного углов: \[\begin{array}{|lc|cr|} \hline \sin {2\alpha}=2\sin \alpha\cos \alpha & \qquad &\qquad & \cos{2\alpha}=\cos^2\alpha -\sin^2\alpha\\ \sin \alpha\cos \alpha =\dfrac12\sin {2\alpha} && & \cos{2\alpha}=2\cos^2\alpha -1\\ & & & \cos{2\alpha}=1-2\sin^2 \alpha\\ \hline &&&\\ \mathrm{tg}\, 2\alpha = \dfrac{2\mathrm{tg}\, \alpha}{1-\mathrm{tg}^2\, \alpha} && & \mathrm{ctg}\, 2\alpha = \dfrac{\mathrm{ctg}^2\, \alpha-1}{2\mathrm{ctg}\, \alpha}\\&&&\\ \cos\alpha\ne 0, \ \cos2\alpha\ne 0 &&& \sin\alpha\ne 0, \ \sin2\alpha\ne 0\\ \hline &&&\\ \sin {3\alpha}=3\sin \alpha -4\sin^3\alpha && & \cos{3\alpha}=4\cos^3\alpha -3\cos \alpha\\&&&\\ \hline \end{array}\]

\(\blacktriangleright\) Формулы понижения степени: \[\begin{array}{|lc|cr|} \hline &&&\\ \sin^2\alpha=\dfrac{1-\cos{2\alpha}}2 &&& \cos^2\alpha=\dfrac{1+\cos{2\alpha}}2\\&&&\\ \hline \end{array}\]

\(\blacktriangleright\) Формулы произведения функций: \[\begin{array}{|c|} \hline \\ \sin\alpha\sin\beta=\dfrac12\bigg(\cos{(\alpha-\beta)}-\cos{(\alpha+\beta)}\bigg)\\\\ \cos\alpha\cos\beta=\dfrac12\bigg(\cos{(\alpha-\beta)}+\cos{(\alpha+\beta)}\bigg)\\\\ \sin\alpha\cos\beta=\dfrac12\bigg(\sin{(\alpha-\beta)}+\sin{(\alpha+\beta)}\bigg)\\\\ \hline \end{array}\]

\(\blacktriangleright\) Формулы суммы/разности функций: \[\begin{array}{|lc|cr|} \hline &&&\\ \sin\alpha+\sin\beta=2\sin{\dfrac{\alpha+\beta}2}\cos{\dfrac{\alpha-\beta}2} &&& \sin\alpha-\sin\beta=2\sin{\dfrac{\alpha-\beta}2}\cos{\dfrac{\alpha+\beta}2}\\&&&\\ \cos\alpha+\cos\beta=2\cos{\dfrac{\alpha+\beta}2}\cos{\dfrac{\alpha-\beta}2} &&& \cos\alpha -\cos\beta=-2\sin{\dfrac{\alpha-\beta}2}\sin{\dfrac{\alpha+\beta}2}\\&&&\\ \mathrm{tg}\, \alpha \pm \mathrm{tg}\, \beta=\dfrac{\sin{(\alpha\pm\beta)}}{\cos\alpha\cos\beta} &&& \mathrm{ctg}\, \alpha\pm \mathrm{ctg}\, \beta= — \dfrac{\sin{(\alpha\pm \beta)}}{\sin\alpha\sin\beta}\\&&&\\ \hline \end{array}\]

\(\blacktriangleright\) Выражение синуса и косинуса через тангенс половинного угла: \[\begin{array}{|l|r|} \hline &\\ \sin{2\alpha}=\dfrac{2\mathrm{tg}\, \alpha}{1+\mathrm{tg}^2\, \alpha} & \cos{2\alpha}=\dfrac{1-\mathrm{tg}^2\, \alpha}{1+\mathrm{tg}^2\, \alpha}\\&\\ \cos\alpha\ne 0 & \sin\alpha\ne 0\\ \hline \end{array}\]

\(\blacktriangleright\) Формула вспомогательного аргумента: \[\begin{array}{|c|} \hline \text{Частный случай}\\ \hline \\ \sin\alpha\pm \cos\alpha=\sqrt2\cdot \sin{\left(\alpha\pm \dfrac{\pi}4\right)}\\\\ \sqrt3\sin\alpha\pm \cos\alpha=2\sin{\left(\alpha\pm \dfrac{\pi}6\right)}\\\\ \sin\alpha\pm \sqrt3\cos\alpha=2\sin{\left(x\pm \dfrac{\pi}3\right)}\\\\ \hline \text{Общий случай}\\ \hline\\ a\sin\alpha\pm b\cos\alpha=\sqrt{a^2+b^2}\cdot \sin{(\alpha\pm \phi)}, \ \ \cos\phi=\dfrac a{\sqrt{a^2+b^2}}, \ \sin\phi=\dfrac b{\sqrt{a^2+b^2}}\\\\ \hline \end{array}\]

Зная идею вывода формул, вы можете запомнить лишь несколько из них. Тогда остальные формулы вы всегда сможете быстро вывести.

 

Вывод всех основных тождеств был рассказан в предыдущем разделе “Введение в тригонометрию”.

 

\(\blacktriangleright\) Вывод формулы косинуса разности углов \(\cos{(\alpha -\beta)}=\cos\alpha\cos\beta+\sin\alpha\sin\beta\)

 

Рассмотрим тригонометрическую окружность и на ней углы \(\alpha\) и \(\beta\). Пусть этим углам соответствуют точки \(A\) и \(B\) соответственно. Тогда координаты этих точек: \(A(\cos\alpha;\sin\alpha), \ B(\cos\beta;\sin\beta)\).


 

Рассмотрим \(\triangle AOB: \ \angle AOB=\alpha-\beta\). По теореме косинусов:

 

\(AB^2=AO^2+BO^2-2AO\cdot BO\cdot \cos(\alpha-\beta)=1+1-2\cos(\alpha-\beta) \ (1)\)  (т.к. \(AO=BO=R\) – радиус окружности)

 

По формуле расстояния между двумя точками на плоскости:

 

\(AB^2=(\cos\alpha-\cos\beta)^2+(\sin\alpha-\sin\beta)^2=\cos^2\alpha-2\cos\alpha\cos\beta+\cos^2\beta+\)

\(+\sin^2\alpha-2\sin\alpha\sin\beta+\sin^2\beta=\big(\cos^2\alpha+\sin^2\alpha\big)+\big(\cos^2\beta+\sin^2\beta\big)-2\big(\cos\alpha\cos\beta+\sin\alpha\sin\beta\big)=\)

\(=1+1-2\big(\cos\alpha\cos\beta+\sin\alpha\sin\beta\big) \ (2)\)

 

Таким образом, сравнивая равенства \((1)\) и \((2)\):

\(1+1-2\big(\cos\alpha\cos\beta+\sin\alpha\sin\beta\big)=1+1-2\cos(\alpha-\beta)\)

 

Отсюда и получается наша формула.

 

\(\blacktriangleright\) Вывод остальных формул суммы/разности углов:

 

Остальные формулы с легкостью выводятся с помощью предыдущей формулы, свойств четности/нечетности косинуса/синуса и формул приведения \(\sin x=\cos(90^\circ-x)\) и \(\cos x=\sin (90^\circ-x)\):

 

1) \(\cos(\alpha+\beta)=\cos(\alpha-(-\beta))=\cos\alpha\cos(-\beta)+\sin\alpha\sin(-\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)

 

2) \(\sin(\alpha+\beta)=\cos(90^\circ-(\alpha+\beta))=\cos((90^\circ-\alpha)-\beta)=\)

\(+\cos(90^\circ-\alpha)\cos\beta+\sin(90^\circ-\alpha)\sin\beta=\sin\alpha\cos\beta+\cos\alpha\sin\beta\)

 

3) \(\sin(\alpha-\beta)=\sin(\alpha+(-\beta))=\sin\alpha\cos(-\beta)+\sin(-\beta)\cos\alpha=\sin\alpha\cos\beta-\sin\beta\cos\alpha\)

 

4) \(\mathrm{tg}\,(\alpha\pm\beta)=\dfrac{\sin (\alpha\pm\beta)}{\cos (\alpha\pm\beta)}=\dfrac{\sin\alpha\cos\beta\pm\sin\beta\cos\alpha}{\cos\alpha\cos\beta\mp\sin\alpha\sin\beta}=\)

 

разделим числитель и знаменатель дроби на \(\cos\alpha\cos\beta\ne 0\)
(при \(\cos\alpha=0 \Rightarrow \mathrm{tg}\,(\alpha\pm\beta)=\mp \mathrm{ctg}\,\beta\), при \(\cos\beta=0 \Rightarrow \mathrm{tg}\,(\alpha\pm\beta)=\pm \mathrm{ctg}\,\alpha\)):

 

\(=\dfrac{\mathrm{tg}\,\alpha\pm\mathrm{tg}\,\beta}{1\mp\mathrm{tg}\,\alpha\cdot \mathrm{tg}\,\beta}\)

 

Таким образом, данная формула верна только при \(\cos\alpha\cos\beta\ne 0\).

 

5) Аналогично, только делением на \(\sin\alpha\sin\beta\ne 0\), выводится формула котангенса суммы/разности двух углов.

 

\(\blacktriangleright\) Вывод формул двойного и тройного углов:

 

Данные формулы выводятся с помощью предыдущих формул:

 

1) \(\sin 2\alpha=\sin(\alpha+\alpha)=\sin\alpha\cos\alpha+\sin\alpha\cos\alpha=2\sin\alpha\cos\alpha\)

 

2) \(\cos2\alpha=\cos(\alpha+\alpha)=\cos\alpha\cos\alpha-\sin\alpha\sin\alpha=\cos^2\alpha-\sin^2\alpha\)

 

Используя основное тригонометрическое тождество \(\sin^2\alpha+\cos^2\alpha=1\), получим еще две формулы для косинуса двойного угла:

 

2.1) \(\cos2\alpha=\cos^2\alpha-\sin^2\alpha=\cos^2\alpha-(1-\cos^2\alpha)=2\cos^2\alpha-1\)

 

2.2) \(\cos2\alpha=\cos^2\alpha-\sin^2\alpha=(1-\sin^2\alpha)-\sin^2\alpha=1-2\sin^2\alpha\)

 

3) \(\mathrm{tg}\,2\alpha=\dfrac{\sin2\alpha}{\cos2\alpha}=\dfrac{2\sin\alpha\cos\alpha}{\cos^2\alpha-\sin^2\alpha}=\)

 

разделим числитель и знаменатель дроби на \(\cos^2\alpha\ne 0\) (при \(\cos\alpha=0 \Rightarrow \mathrm{tg}\,2\alpha=0\)):

 

\(=\mathrm{tg}\,2\alpha=\dfrac{2\mathrm{tg}\,\alpha}{1-\mathrm{tg}^2\,\alpha}\)

 

Таким образом, эта формула верна только при \(\cos\alpha\ne 0\), а также при \(\cos2\alpha\ne 0\) (чтобы существовал сам \(\mathrm{tg}\,2\alpha\)).

 

4) \(\mathrm{ctg}\,2\alpha=\dfrac{\cos^2\alpha-\sin^2\alpha}{2\sin\alpha\cos\alpha}=\dfrac{\mathrm{ctg}^2\,\alpha-1}{2\mathrm{ctg}\,\alpha}\)

 

По тем же причинам при \(\sin\alpha\ne 0, \sin2\alpha\ne 0\).

 

5) \(\sin3\alpha=\sin(\alpha+2\alpha)=\sin\alpha\cos2\alpha+\cos\alpha\sin2\alpha=\sin\alpha(1-2\sin^2\alpha)+\cos\alpha\cdot 2\sin\alpha\cos\alpha=\)

\(=\sin\alpha-2\sin^3\alpha+2\sin\alpha(1-\sin^2\alpha)=3\sin\alpha-4\sin^3\alpha\)

 

6) Аналогично выводится, что \(\cos3\alpha=\cos(\alpha+2\alpha)=4\cos^3\alpha-3\cos\alpha\)

 

\(\blacktriangleright\) Вывод формул понижения степени:

 

Данные формулы — просто по-другому записанные формулы двойного угла для косинуса:

 

1) \(\cos2\alpha=2\cos^2\alpha-1 \Rightarrow \cos^2\alpha=\dfrac{1+\cos2\alpha}2\)

 

2) \(\cos2\alpha=1-2\sin^2\alpha \Rightarrow \sin^2\alpha=\dfrac{1-\cos2\alpha}2\)

 

Заметим, что в данных формулах степень синуса/косинуса равна \(2\) в левой части, а в правой части степень косинуса равна \(1\).

 

\(\blacktriangleright\) Вывод формул произведения функций:

 

1) Сложим формулы косинуса суммы и косинуса разности двух углов:

 

\(\cos(\alpha-\beta)=\cos\alpha\cos\beta+\sin\alpha\sin\beta\)

 

\(\cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)

 

Получим: \(\cos(\alpha+\beta)+\cos(\alpha-\beta)=2\cos\alpha\cos\beta \Rightarrow \cos\alpha\cos\beta=\dfrac12\Big(\cos(\alpha-\beta)+\cos(\alpha+\beta)\Big)\)

 

2) Если вычесть из формулы косинуса суммы косинус разности, то получим:

 

\(\sin\alpha\sin\beta=\dfrac12\Big(\cos(\alpha-\beta)-\cos(\alpha+\beta)\Big)\)

 

3) Сложим формулы синуса суммы и синуса разности двух углов:

 

\(\sin(\alpha+\beta)=\sin\alpha\cos\beta+\sin\beta\cos\alpha\)

 

\(\sin(\alpha-\beta)=\sin\alpha\cos\beta-\sin\beta\cos\alpha\)

 

Получим: \(\sin\alpha\cos\beta=\dfrac12\Big(\sin(\alpha-\beta)+\sin(\alpha+\beta)\Big)\)

 

\(\blacktriangleright\) Вывод формул суммы/разности функций:

 

Обозначим \(\alpha+\beta=x, \alpha-\beta=y\). Тогда: \(\alpha=\dfrac{x+y}2, \ \beta=\dfrac{x-y}2\). Подставим эти значения в предыдущие три формулы:

 

1) \(2\cos{\dfrac{x+y}2}\cos{\dfrac{x-y}2}=\cos x+\cos y\)

 

Получили формулу суммы косинусов.

 

2) \(2\sin {\dfrac{x+y}2}\sin {\dfrac{x-y}2}=\cos y-\cos x\)

 

Получили формулу разности косинусов.

 

3) \(2\sin {\dfrac{x+y}2}\cos {\dfrac{x-y}2}=\sin y+\sin x\)

 

Получили формулу суммы синусов.

 

4) Формулу разности синусов можно вывести из формулы суммы синусов:

 

\(\sin x-\sin y=\sin x+\sin(-y)=2\sin {\dfrac{x-y}2}\cos {\dfrac{x+y}2}\)

 

5) \(\mathrm{tg}\,\alpha\pm\mathrm{tg}\,\beta=\dfrac{\sin\alpha}{\cos\alpha}\pm\dfrac{\sin\beta}{\cos\beta}=\dfrac{\sin\alpha\cos\beta\pm\sin\beta\cos\alpha}{\cos\alpha\cos\beta}=\dfrac{\sin(\alpha\pm\beta)}{\cos\alpha\cos\beta}\)

 

Аналогично выводится формула суммы котангенсов.

 

\(\blacktriangleright\) Вывод формул выражения синуса и косинуса через тангенс половинного угла:

 

1) \(\sin2\alpha=\dfrac{\sin2\alpha}1=\dfrac{2\sin\alpha\cos\alpha}{\sin^2\alpha+\cos^2\alpha}=\)

 

(разделим числитель и знаменатель дроби на \(\cos^2\alpha\ne 0\) (при \(\cos\alpha=0\) и \(\sin2\alpha=0\)):)

 

\(=\dfrac{2\mathrm{tg}\,\alpha}{1+\mathrm{tg}^2\,\alpha}\)

 

2) Так же, только делением на \(\sin^2\alpha\), выводится формула для косинуса.

 

\(\blacktriangleright\) Вывод формул вспомогательного угла:

 

Данные формулы выводятся с помощью формул синуса/косинуса суммы/разности углов.

 

Рассмотрим выражение \(a\sin x+b\cos x\). Домножим и разделим это выражение на \(\sqrt{a^2+b^2}\,\):

 

\(a\sin x+b\cos x=\sqrt{a^2+b^2}\left(\dfrac a{\sqrt{a^2+b^2}}\sin x+ \dfrac b{\sqrt{a^2+b^2}}\cos x \right)=\sqrt{a^2+b^2}\big(a_1\sin x+b_1\cos x\big)\)

 

Заметим, что таким образом мы добились того, что \(a_1^2+b_1^2=1\),   т.к. \(\left(\dfrac a{\sqrt{a^2+b^2}}\right)^2+\left(\dfrac b{\sqrt{a^2+b^2}}\right)^2=\dfrac{a^2+b^2}{a^2+b^2}=1\)

 

Таким образом, можно утверждать, что существует такой угол \(\phi\), для которого, например, \(\cos \phi=a_1, \ \sin \phi=b_1\). Тогда наше выражение примет вид:

 

\(\sqrt{a^2+b^2}\,\big(\cos \phi \sin x+\sin \phi\cos x\big)=\sqrt{a^2+b^2}\,\sin (x+\phi)\) (по формуле синуса суммы двух углов)

 

Значит, формула выглядит следующим образом: \[{\large{a\sin x+b\cos x=\sqrt{a^2+b^2}\,\sin (x+\phi),}} \quad \text{где } \cos \phi=\dfrac a{\sqrt{a^2+b^2}}\] Заметим, что мы могли бы, например, принять за \(\cos \phi=b_1, \ \sin \phi=a_1\) и тогда формула выглядела бы как \[a\sin x+b\cos x=\sqrt{a^2+b^2}\,\cos (x-\phi)\]

 

\(\blacktriangleright\) Рассмотрим некоторые частные случаи формул вспомогательного угла:

 

\(a) \ \sin x\pm\cos x=\sqrt2\,\left(\dfrac1{\sqrt2}\sin x\pm\dfrac1{\sqrt2}\cos x\right)=\sqrt2\, \sin \left(x\pm\dfrac{\pi}4\right)\)

 

\(b) \ \sqrt3\sin x\pm\cos x=2\left(\dfrac{\sqrt3}2\sin x\pm \dfrac12\cos x\right)=2\, \sin \left(x\pm\dfrac{\pi}6\right)\)

 

\(c) \ \sin x\pm\sqrt3\cos x=2\left(\dfrac12\sin x\pm\dfrac{\sqrt3}2\cos x\right)=2\,\sin\left(x\pm\dfrac{\pi}3\right)\)

 

shkolkovo.net

Формулы тригонометрии

Формулы тригонометрии (тригонометрические формулы) или тригонометрические тождества описывают зависимости между синусом, косинусом, тангенсом и котангенсом и применяются при решении математических задач.

Ниже указаны основные тригонометрические тождества (равенства), формулы понижения степени, формулы двойного угла, косинус двойного угла, синус двойного угла, а также другие формулы. Дополнительно приведены значения тригонометрических функций для наиболее распространённых углов.


Основные тождества

… Подготовка формул …

Формулы двойного угла

… Подготовка формул …

Формулы тройного угла

… Подготовка формул …

Формулы понижения степени

… Подготовка формул …

Формулы понижения степени

… Подготовка формул …

Формулы понижения степени

… Подготовка формул …

Формулы половинного аргумента

Формулы понижения степени
половинного аргумента

… Подготовка формул …

Формулы сложения

… Подготовка формул …

Формулы вычитания

… Подготовка формул …

Формулы преобразования суммы
в формулы произведения

… Подготовка формул …

Формулы преобразования разности
в формулы произведения

… Подготовка формул …

Формулы преобразования суммы

… Подготовка формул …

Формулы преобразования произведения
в формулы суммы и разности

… Подготовка формул …

Формулы преобразования произведения
функций в степени

… Подготовка формул …

Формулы понижения степени

… Подготовка формул …

Универсальная
тригонометрическая подстановка

… Подготовка формул …

Значения тригонометрических функций

α 0
α° 30° 45° 60° 90° 120° 135° 150° 180° 210° 225° 240° 270° 300° 315° 330° 360°
sin α 0 1 0 −1 0
cos α 1 0 −1 0 1
tg α 0 1 −1 0 1 −1 0
ctg α 1 0 −1
1
0 −1

Теория

Тригонометрия – раздел математики, изучающий зависимости углов и сторон треугольников, которые выражены функциями, называемыми тригонометрическими.

Функция – это правило, описывающее зависимость одной величины от другой.

Тождество – это равенство, справедливое при любых значениях, входящих в него переменных




Скачать тригонометрические формулы

Вы можете скачать тригонометрические формулы в виде картинки:

Формулы тригонометрии Формулы тригонометрии
Формулы тригонометрии Формулы тригонометрии Формулы тригонометрии Формулы тригонометрии Формулы тригонометрии
Формулы тригонометрии

doza.pro

Все формулы по тригонометрии

Все формулы по тригонометрии

Основные тригонометрические тождества

sin2x + cos2x = 1

tgx ctgx = 1

tg2x + 1

  =  

1

cos2x

ctg2x + 1

  =  

1

sin2x

Формулы двойного аргумента

sin2x = 2sinx cosx

sin2x

  =  

2tgx

  = 

2ctgx

  = 

2

1 + tg2

x

1 + ctg2x

tgx + ctgx

cos2x = cos2 — sin2x = 2cos2x — 1 = 1 — 2sin2x

cos2x

  =  

1 — tg2x

  = 

ctg2x — 1

  = 

ctgx — tgx

1 + tg2x

ctg2x + 1

ctgx + tgx

tg2x

  =  

2tgx

  = 

2ctgx

  = 

2

1 — tg2x

ctg2x — 1

ctgx — tgx

ctg2x

  =  

ctg2x — 1

  = 

ctgx — tgx

2ctgx

2

Формулы тройного аргумента

sin3x = 3sinx — 4sin3x cos3x = 4cos3x — 3cosx

tg3x

  =  

3tgx — tg3x

1 — 3tg2x

ctg3x

  =  

ctg3x — 3ctgx

3ctg2x — 1

Формулы половинного аргумента

sin2

x

  =  

1 — cosx

2

2

cos2

x

  =  

1 + cosx

2

2

tg2

x

  =  

1 — cosx

2

1 + cosx

ctg2

x

  =  

1 + cosx

2

1 — cosx

tg

x

  =  

1 — cosx

  =  

sinx

2

sinx

1 + cosx

ctg

x

  =  

1 + cosx

  =  

sinx

2

sinx

1 — cosx

Формулы квадратов тригонометрических функций

sin2x

  =  

1 — cos2x

2

cos2x

  =  

1 + cos2x

2

tg2x

  =  

1 — cos2x

1 + cos2x

ctg2x

  =  

1 + cos2x

1 — cos2x

sin2

x

  =  

1 — cosx

2

2

cos2

x

  =  

1 + cosx

2

2

tg2

x

  =  

1 — cosx

2

1 + cosx

ctg2

x

  =  

1 + cosx

2

1 — cosx

Формулы кубов тригонометрических функций

sin3x

  =  

3sinx — sin3x

4

cos3x

  =  

3cosx + cos3x

4

tg3x

  =  

3sinx — sin3x

3cosx + cos3x

ctg3x

  =  

3cosx + cos3x

3sinx — sin3x

Формулы тригонометрических функций в четвертой степени

sin4x

  =  

3 — 4cos2x + cos4x

8

cos4x

  =  

3 + 4cos2x + cos4x

8

Формулы сложения аргументов

sin(α + β) = sinα cosβ + cosα sinβ cos(α + β) = cosα cosβ — sinα sinβ

tg(α + β)

  =  

tgα + tgβ

1 — tgα tgβ

ctg(α + β)

  =  

ctgα ctgβ — 1

ctgα + ctgβ

sin(α — β) = sinα cosβ — cosα sinβ cos(α — β) = cosα cosβ + sinα sinβ

tg(α — β)

  =  

tgα — tgβ

1 + tgα tgβ

ctg(α — β)

  =  

ctgα ctgβ + 1

ctgα — ctgβ

Формулы суммы тригонометрических функций

sinα + sinβ

  =  2sin

α + β

 ∙ cos

α — β

2

2

cosα + cosβ

  =  2cos

α + β

 ∙ cos

α — β

2

2

(sinα + cosα)2 = 1 + sin2α

tgα + tgβ

  =  

sin(α + β)

cosα cosβ

ctgα + ctgβ

  =  

sin(α + β)

sinα sinβ

Формулы разности тригонометрических функций

sinα — sinβ

  =  2sin

α — β

 ∙ cos

α + β

2

2

cosα — cosβ

  =  -2sin

α + β

 ∙ sin

α — β

2

2

(sinα — cosα)2 = 1 — sin2α

tgα — tgβ

  =  

sin(α — β)

cosα cosβ

ctgα — ctgβ

  =  – 

sin(α — β)

sinα sinβ

Формулы произведения тригонометрических функций

sinα ∙ sinβ

  =  

cos(α — β) — cos(α + β)

2

sinα ∙ cosβ

  =  

sin(α — β) + sin(α + β)

2

cosα ∙ cosβ

  =  

cos(α — β) + cos(α + β)

2

tgα ∙ tgβ

  =  

cos(α — β) — cos(α + β)

  =  

tgα + tgβ

cos(α — β) + cos(α + β)

ctgα + ctgβ

ctgα ∙ ctgβ

  =  

cos(α — β) + cos(α + β)

  =  

ctgα + ctgβ

cos(α — β) — cos(α + β)

tgα + tgβ

tgα ∙ ctgβ

  =  

sin(α — β) + sin(α + β)

sin(α + β) — sin(α — β)

studfiles.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *