Фсу словами – Формулы сокращенного умножения. Подробная теория с примерами.

Формулы сокращённого умножения. Алгебра, 7 класс: уроки, тесты, задания.

1. Формула квадрата суммы или квадрата разности, проверка правильности использования формулы

Сложность: лёгкое

1
2. Применение формулы разности квадратов

Сложность: лёгкое

1
3. Формула квадрата суммы, возведение многочлена в квадрат

Сложность: лёгкое

2
4. Формула разности квадратов

Сложность: лёгкое

1
5.
Формула квадрата разности

Сложность: лёгкое

1
6. Формулы сокращённого умножения (формулировки)

Сложность: лёгкое

1
7. Произведение разности и суммы (обыкновенные дроби)

Сложность: среднее

3
8. Разность квадратов (степень)

Сложность: среднее

3
9. Разность квадратов (десятичные дроби)

Сложность: среднее

3
10. Произведение суммы и разности (целые числа)

Сложность: среднее

3
11. Значение выражения

Сложность: среднее

4
12. Квадрат суммы (десятичные дроби)

Сложность: среднее

5
13. Квадрат разности (обыкновенные дроби)

Сложность: среднее

5
14. Квадрат суммы (трином)

Сложность: среднее

5
15. Квадрат разности (трином)

Сложность: среднее

5
16. Разность кубов

Сложность: среднее

5
17. Квадрат разности (умножение на число)

Сложность: среднее

3
18. Произведение суммы двух чисел на неполный квадрат их разности

Сложность: сложное

3
19. Формулы сокращённого умножения (десятичные дроби)

Сложность: сложное

8
20. Разность квадратов (целые числа)

Сложность: сложное

7
21. Произведение суммы и разности (числовое выражение)

Сложность: сложное

5

www.yaklass.ru

Как читаются формулы сокращенного умножения? — Мегаобучалка

Дополнительные формулы

В таблицу формул сокращенного умножения не помешает добавить еще несколько тождеств.

Во-первых, полезной будет формула бинома Ньютона вида , где — биномиальные коэффициенты, стоящие в строке под номером n в треугольнике Паскаля. С ее помощью можно сокращенно возводить сумму двух выражений в любую натуральную степень. Кстати, ФСУ квадрата и куба суммы и разности являются частными случаями формулы бинома Ньютона при n=2 и n=3.

Во-вторых, полезной бывает формула возведения в квадрат суммы трех, четырех и большего количества слагаемых вида
(a1+a2+…+an)2=a12+a22+…+an−12+an2+
+2·a1·a2+2·a1·a3+2·a1·a4+…+
+2·a1·an−1+2·a1·an+
+2·a2·a3+2·a2·a4+…+2·a2·an−1+2·a2·an+
+…+
+2·an−1·an
.

Она читается так: квадрат суммы n слагаемых равен сумме квадратов всех этих слагаемых и удвоенных произведений всех возможных пар этих слагаемых. Для примера возведем в квадрат с использованием этой формулы сумму трех слагаемых a, b и c, имеем (a+b+c)2=a2+b2+c2+2·a·b+2·a·c+2·b·c. В частном случае при n=2 эта формула становится уже известной нам формулой квадрата суммы двух слагаемых.

И еще не помешает держать перед глазами формулу разности n-ых степеней двух слагаемых вида an−bn=
=(a−b)·(an−1+an−2·b+an−3·b2+…+a·bn−2+bn−1)
, которую обычно представляют раздельно для четных и нечетных показателей. Для четных показателей 2·m она имеет вид a2·m−b2·m=
=(a2−b2)·(a2·m−2+a2·m−4·b2+a2·m−6·b4+…+b2·m−2)
, а для нечетных показателей 2·m+1 – вид a2·m+1−b2·m+1=
=(a−b)·(a2·m+a2·m−1·b+a2·m−2·b2+…+b2·m)
. Частными случаями этой формулы являются формулы разность квадратов (при n=2), разность кубов (при n=3) и сумма кубов (при n=3 и если b заменить на −b).

Как читаются формулы сокращенного умножения?

Чтобы рассказать решение примера, в котором были использованы формулы сокращенного умножения, нужно знать, как эти формулы читаются. Дадим соответствующие формулировки.

Сначала разберемся с принципом чтения формул сокращенного умножения. Это удобнее всего сделать, рассмотрев любую и них, например, первую формулу квадрата суммы вида (a+b)2=a2+2·a·b+b2.



В левой ее части находится выражение (a+b)2, которое представляет собой квадрат суммы двух выражений a и b, оно так и читается (отсюда понятно и название формулы). Дальше стоит знак равно, он и произносится как равно. В правой части формулы расположена сумма трех слагаемых a2, 2·a·b и b2. a2 и b2 – это квадраты первого и второго выражений соответственно, а 2·a·b читается как удвоенное произведение выражений a и b, слово «удвоенное» отвечает числовому коэффициенту 2. Осталось соединить все эти рассуждения в одно предложение, которое будет ответом на вопрос, как читается формула квадрата суммы.

Итак, квадрат суммы двух выражений a и b равен сумме квадрата первого выражения, удвоенного произведения первого и второго выражений и квадрата второго выражения.

Аналогично читаются и остальные фсу.

Так квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение этих выражений плюс квадрат второго выражения. Эта формулировка второй фсу вида (a−b)2=a2−2·a·b+b2.

Дальше читаем формулу (a+b)3=a3+3·a2·b+3·a·b2+b3. Куб суммы двух выражений a и b равен сумме куба первого выражения, утроенного произведения квадрата первого выражения на второе, утроенного произведения первого выражения на квадрат второго и куба второго выражения.

Аналогично читается и формула куба разности (a−b)3=a3−3·a2·b+3·a·b2−b3. Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого на квадрат второго выражения минус куб второго выражения.

Переходим к чтению пятой по списку формулы сокращенного выражения (a−b)·(a+b)=a2−b2. Произведение разности двух выражений и их суммы равно разности квадратов первого и второго выражений.

А для удобства чтения шестой и, последней, седьмой ФСУ используют термины «неполный квадрат суммы» и «неполный квадрат разности» выражений a и b, которыми называют выражения a2+a·b+b2 и a2−a·b+b2 соответственно. (В свою очередь выражения a2+2·a·b+b2 и a2−2·a·b+b2 называют полным квадратом суммы и разности соответственно.)

Итак, произведение суммы двух выражений на их неполный квадрат разности равно сумме кубов этих выражений. Так читается формула (a+b)·(a2−a·b+b2)=a3+b3. И произведение разности двух выражений на неполный квадрат их суммы равен разности кубов этих выражений, этому утверждению отвечает формула сокращенного умножения вида (a−b)·(a2+a·b+b2)=a3−b3.

Доказательство

Сейчас самое время остановиться на доказательстве формул сокращенного умножения. Доказать их достаточно легко – для этого нужно лишь выполнить возведение в степень или умножение выражений, находящихся в левых частях формул, основываясь на свойствах умножения.

Для примера докажем формулу квадрата разности (a−b)2=a2−2·a·b+b2. Возведем разность a−b во вторую степень. Для этого степень заменяем умножением, и выполняем это действие: (a−b)2=(a−b)·(a−b)=
=a·(a−b)−b·(a−b)=a·a+a·(−b)−b·a−b·(−b)=
=a2−a·b−b·a+b·b=a2−a·b−a·b+b2=
=a2−2·a·b+b2
.

Абсолютно аналогично доказывается любая другая из 7 основных формул сокращенного умножения.

megaobuchalka.ru

Формулы сокращенного умножения

Решая различные задачи, часто приходится умножать друг на друга двучлены следующего вида: , и т.п. Чтобы в таком случае сразу можно было записать ответ, полезно запомнить определенные тождества, которые называются формулами сокращенного умножения.

При помощи формул сокращенного умножения некоторые многочлены можно разложить на множители либо ускорить процесс умножения некоторых выражений друг на друга.

Приведем формулы сокращенного умножения 7 класс:

Квадрат суммы

   и обратная   

Квадрат разности

   и обратная   

Разность квадратов

   и обратная   

Куб суммы

   и обратная   

Куб разности

   и обратная   

Сумма кубов

   и обратная   

Разность кубов

   и обратная   

Отметим, что разложение на множители является обратным преобразованием к умножению многочленов. Схематически, на примере формулы «разность квадратов», это можно изобразить так:

   

Формулы сокращенного умножения были известны уже давно, еще древнегреческим и древнекитайским математикам. Записывали их словами и доказывали геометрически для положительных чисел. Используя рисунок, доказывали, что площадь квадрата со стороною равна сумме площадей двух квадратов со сторонами и и прямоугольников со сторонами , . То есть доказывали выполнение равенства

   

Аналогично доказывались и остальные формулы сокращенного умножения.

Бином Ньютона

Отметим, что формулы квадрат суммы/разности, куб суммы/разности являются простейшими случаями формулы бинома Ньютона:

   

ru.solverbook.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *