Функции четность или нечетность функции – Четность и нечетность функции, с примерами

Нечетная функция — это… Что такое Нечетная функция?


Нечетная функция

f(x) = x — пример нечётной функции.

f(x) = x2 — пример чётной функции.

f(x) = x3, нечётная

f(x) = x3 + 1 ни чётная, ни нечётная


Нечётная фу́нкция — функция, меняющая знак при изменении знака независимого переменного.

Чётная фу́нкция — это функция, не изменяющая своего значения при изменении знака независимого переменного.

Или по-другому

Нечётная фу́нкция — функция, симметричная относительно центра координат, а чётная — функция, симметричная относительно оси ординат.

Определения

  • Функция называется нечётной, если справедливо равенство
  • Функция f называется чётной, если справедливо равенство
  • Если не выполняется ни одно из этих равенств, то функция называется функцией общего вида.

Свойства

  • График нечётной функции симметричен относительно начала координат O.
  • График чётной функции симметричен относительно оси ординат Oy.
  • Произвольная функция может быть представлена в виде суммы нечётной и чётной функций:
f(x) = g(x) + h(x),

где

  • Функция  — единственная функция, одновременно являющаяся нечётной и чётной.
  • Сумма, разность и вообще любая линейная комбинация чётных функций чётна, а нечётных — нечётна.
  • Произведение или дробь двух нечётных функций чётно.
  • Произведение или дробь двух чётных функций чётно.
  • Произведение или дробь нечётной и чётной функций нечётно.
  • Композиция двух нечётных функция нечётна.
  • Композиция двух чётных функций чётна.
  • Композиция чётной функции с нечётной чётна.
  • Композиция любой функции с чётной чётна (но не наоборот).
  • Функция, обратная чётной, чётна, а нечётной — нечётна.
  • Производная чётной функции нечётна, а нечётной — чётна.
    • То же верно про производную третьего, пятого и вообще любого нечётного порядка.
  • Производная чётного порядка сохраняет чётность.

Примеры

Нечётные функции

Чётные функции

Вариации и обобщения

Wikimedia Foundation. 2010.

  • Нечеткие множества
  • Нечетное число

Смотреть что такое «Нечетная функция» в других словарях:

  • НЕЧЕТНАЯ ФУНКЦИЯ — функция, удовлетворяющая равенству f( x) = f(x) при всех х …   Большой Энциклопедический словарь

  • нечетная функция — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN odd function …   Справочник технического переводчика

  • НЕЧЕТНАЯ ФУНКЦИЯ — функция, меняющая знак при изменении знака независимого переменного, т. е. функция, удовлетворяющая условию . График Н. ф. симметричен относительно начала координат …   Математическая энциклопедия

  • нечётная функция — функция, удовлетворяющая равенству f(–х) =  f(х) при всех х. * * * НЕЧЕТНАЯ ФУНКЦИЯ НЕЧЕТНАЯ ФУНКЦИЯ, функция, удовлетворяющая равенству f( x) = f(x) при всех х …   Энциклопедический словарь

  • Единичная функция Хевисайда — Функция Хевисайда, единичная ступенчатая функция, ступенька положения  специальная математическая функция, чьё значение равно нулю для отрицательных аргументов и единице для положительных аргументов …   Википедия

  • Единичная Хевисайда — Единичная функция Хевисайда Функция Хевисайда, единичная ступенчатая функция, ступенька положения  специальная математическая функция, чьё значение равно нулю для отрицательных аргументов и единице для положительных аргументов …   Википедия

  • Многочлены Лежандра — Многочлен Лежандра  многочлен, который в наименьшей степени отклоняется от нуля в смысле среднего квадратического. Образует ортогональную систему многочленов, на отрезке по мере Лебега. Многочлены Лежандра могут быть получены из многочленов… …   Википедия

  • ОБРАТНОЕ ОТОБРАЖЕНИЕ — (обратный оператор) к однозначному отображению (оператору) однозначное отображение gтакое, что где нек рые множества. Если gудовлетворяет лишь условию (1), то оно наз. правым обратным отображением к f, если лишь (2) левым обратным отображением к… …   Математическая энциклопедия

  • ЯКОБИ ЭЛЛИПТИЧЕСКИЕ ФУНКЦИИ — эллиптические функции, возникшие при непосредственном обращении эллиптических интегралов в нормальной форме Лежандра. Эта задача обращения была решена в 1827 независимо К. Якоби (С. Jacobi) и, в несколько иной форме, Н. Абелем (N. Abel).… …   Математическая энциклопедия

  • ВЕИЕРШТРАССА ЭЛЛИПТИЧЕСКИЕ ФУНКЦИИ — ф>тнкции, положенные К. Вейерштрассом в основу его общей теории эллиптических функций, излагавшейся им с 1862 на лекциях в Берлинском университете (см. [1], [2]). В отличие от более раннего построения теории эллиптич. функций, связанного с… …   Математическая энциклопедия

dic.academic.ru

Четность и нечетность функций

Вопросы занятия:

·  повторить такое свойство функции, как чётность и нечётность.

Материал урока

Прежде давайте вспомним свойства функций, о которых мы уже говорили. Это: область определения функции, область значений функции, нули функции, промежутки знакопостоянства функции, промежутки монотонности функции.

Для того чтобы мы могли говорить о чётности, еще раз давайте повторим, что мы понимаем под областью определения функции.

Определение.

Область определения функции – это все значения, которые может принимать аргумент.

Теперь вспомним, что

Теперь давайте разберёмся с этим определением по подробней. Первым условием является то, что область определения функции должна быть симметрична относительно икс равного нулю. Что это значит? Это значит, что если число А принадлежит области определения, то и число минус А тоже принадлежит области определения этой функции.

Выполним задание:

Пример.

Второе условие чётности говорит о том, что:

Если посмотреть на график чётной функции, то можно увидеть, что он будет симметричен относительно оси ординат

.

Если же нарушается первое условие, то есть область определения функции – не симметричное относительно x = 0 множество, то такая функция не обладает свойством чётности.

Теперь давайте вспомним какую функцию называют нечётной.

Если мы посмотрим на график нечётной функции, то нетрудно увидеть, что он симметричен относительно начала координат.

Мы с вами уже рассмотрели некоторые элементарные функции, их свойства и графики. А теперь давайте попробуем определить какие из этих функций являются чётными, нечётными, ни чётными, ни нечётными.

Итак, начнём с прямой пропорциональности. Область определения прямой пропорциональности – вся числовая прямая, то есть говорить о чётности или нечётности, мы можем. Подставим вместо х -x и получим, что y(-x) = —y(x), то есть прямая пропорциональность –

нечётная функция.

Если мы посмотрим на графики прямой пропорциональности, то увидим, что эти графики симметричны относительно начала координат.

Теперь давайте рассмотрим обратную пропорциональность.

Область определения этой функции – симметричная относительно x = 0 область, то есть говорить о чётности или нечётности этой функции можно.

Подставим вместо х и получим, что y(-x) = —y(x), то есть обратная пропорциональность – нечётная функция.

Следующей мы рассмотрим линейную функцию.

Область определения функции – вся числовая прямая, то есть область определения – симметричное множество. Подставим вместо х -х, тогда получим что:

То есть линейная функция не является ни чётной, ни нечётной.

Рассмотрим функцию

y = │x│.

Область определения этой функции – вся числовая прямая. То есть можно проверить эту функцию на чётность и нечётность. Подставим вместо х -х. По свойству модуля:

Тогда получим, что функция игрек равно модуль икс – чётная функция.

Теперь поговорим о функции у = х2.

Область определения – вся числовая прямая.

Подставим вместо х -х. По свойству квадрата выражения, получим, что:

то есть функция чётная.

Рассмотрим квадратичную функцию.

Область определения – вся числовая прямая.

Подставим вместо х -х и получим, что:

то есть квадратичная функция не является ни чётной, ни нечётной.

Теперь давайте рассмотрим функцию:

Область определения функции – промежуток [0; + ∞) – это не симметричное относительно точки

x = 0 множество, то есть мы сразу можем написать, что о чётности или нечётности этой функции говорить нельзя.

Теперь давайте рассмотрим функцию y = x3. Область определения – вся числовая прямая. Подставим вместо x x и получим, что:

то есть перед нами нечётная функция.

Теперь давайте решим несколько заданий.

Пример.

Рассмотрим ещё один пример.

Пример.

Пример.

Итоги урока

Сегодня на уроке мы повторили такое свойство функций как чётность. Вспомнили какая функция называется чётной, а какая – нечётной.

videouroki.net

Основные свойства функции: четность, нечетность, периодичность, ограниченность.

Функция

— это одно из важнейших математических понятий. Функция — зависимость переменной у от переменной x, если каждому значению х соответствует единственное значение у. Переменную х называют независимой переменной или аргументом. Переменную у называют зависимой переменной. Все значения независимой переменной (переменной x) образуют область определения функции. Все значения, которые принимает зависимая переменная (переменная y), образуют область значений функции.

Графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты — соответствующим значениям функции, тоесть по оси абсцисс откладываются значения переменной x, а по оси ординат откладываются значения переменной y. Для построения графика функции необходимо знать свойства функции. Основные свойства функции будут рассмотрены далее!

Для построения графика функции советуем использовать нашу программу — Построение графиков функций онлайн. Если при изучении материала на данной странице у Вас возникнут вопросы, Вы всегда можете задать их на нашем форуме. Также на форуме Вам помогут решить задачи по математике, химии, геометрии, теории вероятности и многим другим предметам!

 

Основные свойства функций.

1) Область определения функции и область значений функции.

Область определения функции — это множество всех допустимых действительных значений аргумента x (переменной x), при которых функция y = f(x) определена.
Область значений функции — это множество всех действительных значений y, которые принимает функция.

В элементарной математике изучаются функции только на множестве действительных чисел.

2) Нули функции.

Значения х, при которых y=0, называется нулями функции. Это абсциссы точек пересечения графика функции с осью Ох.

3) Промежутки знакопостоянства функции.

Промежутки знакопостоянства функции – такие промежутки значений x, на которых значения функции y либо только положительные, либо только отрицательные, называются промежутками знакопостоянства функции.

 

 

4) Монотонность функции.

Возрастающая функция (в некотором промежутке) — функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

Убывающая функция (в некотором промежутке) — функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

 

5) Четность (нечетность) функции.

Четная функция — функция, у которой область определения симметрична относительно начала координат и для любого хиз области определения выполняется равенство f(-x) = f(x). График четной функции симметричен относительно оси ординат.

Нечетная функция — функция, у которой область определения симметрична относительно начала координат и для любогох из области определения справедливо равенство f(-x) = — f(x). График нечетной функции симметричен относительно начала координат.

Четная функция обладает следующими свойствами:
1) Область определения симметрична относительно точки (0; 0), то есть если точка a принадлежит области определения, то точка -a также принадлежит области определения.
2) Для любого значения x, принадлежащего области определения , выполняется равенство f(-x)=f(x)
3) График четной функции симметричен относительно оси Оу.

Нечетная функция обладает следующими свойствами:
1) Область определения симметрична относительно точки (0; 0).
2) для любого значения x, принадлежащего области определения , выполняется равенство f(-x)=-f(x)
3) График нечетной функции симметричен относительно начала координат (0; 0).

Не всякая функция является четной или нечетной. Функции общего вида не являются ни четными, ни нечетными.

 

6) Ограниченная и неограниченная функции.

Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция — неограниченная.

 

7) Периодическость функции.

Функция f(x) — периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

Функция f называется периодической, если существует такое число , что при любом x из области определения выполняется равенство f(x)=f(x-T)=f(x+T). T — это период функции.

Всякая периодическая функция имеет бесконечное множество периодов. На практике обычно рассматривают наименьший положительный период.

Значения периодической функции через промежуток, равный периоду, повторяются. Это используют при построении графиков.

 

 



infopedia.su

Внеклассный урок — Четные и нечетные функции. Периодические функции

Четные и нечетные функции. Периодические функции

 

Четная функция.

Четной называется функция, знак которой не меняется при изменении знака x.

Говоря иначе, для любого значения x выполняется равенство f(–x) = f(x). Знак x не влияет на знак y.

График четной функции симметричен относительно оси координат (рис.1).

Примеры четной функции:

y = cos x

y = x2

y = –x2

y = x4

y = x6

y = x2 + x

Пояснение:
Возьмем функцию y = x2 или y = –x2.
При любом значении x функция положительная. Знак x не влияет на знак y. График симметричен относительно оси координат. Это четная функция.

 

Нечетная функция.

Нечетной называется функция, знак которой меняется при изменении знака x.

Говоря иначе, для любого значения x выполняется равенство f(–x) = –f(x).

График нечетной функции симметричен относительно начала координат (рис.2).

Примеры нечетной функции:

y = sin x

y = x3

y = –x3

 

Пояснение:

Возьмем функцию y = –x3.
Все значения у в ней будут со знаком минус. То есть знак x влияет на знак y. Если независимая переменная – положительное число, то и функция положительная, если независимая переменная – отрицательное число, то и функция отрицательная: f(–x) = –f(x).
График функции симметричен относительно начала координат. Это нечетная функция.

 

Свойства четной и нечетной функций:

1) Сумма четных функций является четной функцией.
    Сумма нечетных функций является нечетной функцией.

2) Если функция f четна, то и функция 1/f четна.
    Если функция f нечетна, то и функция 1/f нечетна.

3) Произведение двух четных функций является четной функцией.
    Произведение двух нечетных функций тоже является четной функцией.

4) Произведение четной и нечетной функции является нечетной функцией.

5) Производная четной функции нечетна, а нечетной — четна.

 

ПРИМЕЧАНИЕ:

Не все функции являются четными или нечетными. Есть функции, которые не подчиняются такой градации. К примеру, функция корня у = √х не относится ни к четным, ни к нечетным функциям (рис.3). При перечислении свойств подобных функций следует давать соответствующее описание: ни четна, ни нечетна.

 

Периодические функции.

Как вы знаете, периодичность – это повторяемость определенных процессов с определенным интервалом. Функции, описывающие эти процессы, называют периодическими функциями. То есть это функции, в чьих графиках есть элементы, повторяющиеся с определенными числовыми интервалами.

raal100.narod.ru

Четность функции — это… Что такое Четность функции?


Четность функции

f(x) = x — пример нечётной функции.

f(x) = x2 — пример чётной функции.

f(x) = x3, нечётная

f(x) = x3 + 1 ни чётная, ни нечётная


Нечётная фу́нкция — функция, меняющая знак при изменении знака независимого переменного.

Чётная фу́нкция — это функция, не изменяющая своего значения при изменении знака независимого переменного.

Или по-другому

Нечётная фу́нкция — функция, симметричная относительно центра координат, а чётная — функция, симметричная относительно оси ординат.

Определения

  • Функция называется нечётной, если справедливо равенство
  • Функция f называется чётной, если справедливо равенство
  • Если не выполняется ни одно из этих равенств, то функция называется функцией общего вида.

Свойства

  • График нечётной функции симметричен относительно начала координат O.
  • График чётной функции симметричен относительно оси ординат Oy.
  • Произвольная функция может быть представлена в виде суммы нечётной и чётной функций:
f(x) = g(x) + h(x),

где

  • Функция  — единственная функция, одновременно являющаяся нечётной и чётной.
  • Сумма, разность и вообще любая линейная комбинация чётных функций чётна, а нечётных — нечётна.
  • Произведение или дробь двух нечётных функций чётно.
  • Произведение или дробь двух чётных функций чётно.
  • Произведение или дробь нечётной и чётной функций нечётно.
  • Композиция двух нечётных функция нечётна.
  • Композиция двух чётных функций чётна.
  • Композиция чётной функции с нечётной чётна.
  • Композиция любой функции с чётной чётна (но не наоборот).
  • Функция, обратная чётной, чётна, а нечётной — нечётна.
  • Производная чётной функции нечётна, а нечётной — чётна.
    • То же верно про производную третьего, пятого и вообще любого нечётного порядка.
  • Производная чётного порядка сохраняет чётность.

Примеры

Нечётные функции

Чётные функции

Вариации и обобщения

Wikimedia Foundation. 2010.

  • Четное число
  • Четные и нечетные функции

Смотреть что такое «Четность функции» в других словарях:

  • Четность и нечетность функции —  [odd and even  function]; четной функция называется тогда, когда   для любых двух различных значений ее аргумента    f ( x) =f(x) , например,  y= |x|;    нечетной — такая  функция , когда f( x) = — f(x), например, y= x2n+1,  где   n… …   Экономико-математический словарь

  • четность и нечетность функции — Четной функция называется тогда, когда для любых двух различных значений ее аргумента f ( x) =f(x) , например, y= |x|; нечетной такая функция , когда f( x) = f(x), например, y= x2n+1, где  n любое натуральное число. Функции которые не являются ни …   Справочник технического переводчика

  • ЧЕТНОСТЬ — квантовое число, характеризующее симметрию волновой функции физической системы или элементарной частицы при некоторых дискретных преобразованиях: если при таком преобразовании ? не меняет знака, то четность положительна, если меняет, то четность… …   Большой Энциклопедический словарь

  • ЧЕТНОСТЬ УРОВНЯ — чётность состояния физ. системы (чётность волн. ф ции), соответствующего данному уровню энергии. Такая хар ка уровней возможна для системы ч ц, между к рыми действуют эл. магн. или яд. силы, сохраняющие чётность. При учёте слабого взаимодействия… …   Физическая энциклопедия

  • Четность — Чётность в теории чисел способность целого числа делиться без остатка на 2. Чётность функции в математическом анализе определяет, изменяет ли функция знак при изменении знака аргумента: для чётной/нечётной функции. Чётность в квантовой механике… …   Википедия

  • Четность (математика) — Чётность в теории чисел способность целого числа делиться без остатка на 2. Чётность функции в математическом анализе определяет, изменяет ли функция знак при изменении знака аргумента: для чётной/нечётной функции. Чётность в квантовой механике… …   Википедия

  • ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ — класс элементарных функций: синус, косинус, тангенс, котангенс, секанс, косеканс. Обозначаются соответственно: sin x,cos x, tg x,ctg x, sec x,cosec x. Тригонометрические функции действительного аргумента. Пусть А точка окружности с центром в… …   Математическая энциклопедия

  • ВНУТРЕННЯЯ ЧЕТНОСТЬ — (Р), одна из хар к (квант. чисел) элем. ч цы, определяющая поведение её волновой функции y при пространственной инверсии (зеркальном отражении), т. е. при замене координат х® х, y® у, z® z. Если при таком отражении y не меняет знака, В. ч. ч цы… …   Физическая энциклопедия

  • Зарядовая четность — Зарядовое сопряжение  операция замены частицы на античастицу (напр., электрон на позитрон). Зарядовая чётность Зарядовая чётность  квантовое число, определящее поведение волновой функции частицы при операции замены частицы на античастицу… …   Википедия

  • Циклическая проверка на четность — Алгоритм вычисления контрольной суммы (англ. Cyclic redundancy code, CRC  циклический избыточный код)  способ цифровой идентификации некоторой последовательности данных, который заключается в вычислении контрольного значения её циклического… …   Википедия


xzsad.academic.ru

Четность, нечетность функций — Мегаобучалка

Определение: Функция называется четной, если она обладает следующими свойствами:

1) область определения этой функции симметрична относительно начала координат, то есть для любого ;

2) для любого значения х, принадлежащего области определения этой функции, выполняется равенство .

Вывод:

1. Если точка принадлежит графику четной функции, то точка так же принадлежит графику этой функции.

2.

Так как любая пара точек и , принадлежащих графику четной функции, симметрична относительно оси ординат, следовательно, график любой четной функции симметричен относительно оси ординат (Рис. 1).

Рис. 1. Рис. 2.

Пример: – четная функция, так как, во-первых, область определения этой функции симметрична относительно начала координат; во-вторых, для любого выполняется равенство .

, (Рис. 2).

Определение: Функция называется нечетной, если она обладает следующими свойствами:

1) область определения этой функции симметрична относительно начала координат, то есть для любого ;

2)

для любого значения х, принадлежащего области определения этой функции, выполняется равенство .

Вывод:

1. Если точка принадлежит графику нечетной функции, то точка так же принадлежит графику этой функции.

2. Так как любая пара точек и , принадлежащих графику нечетной функции, симметрична относительно начала координат, следовательно, график любой нечетной функции симметричен относительно начала координат.

Пример: – нечетная функция, так как, во-первых, область определения этой функции симметрична относительно начала координат; во-вторых, для любого выполняется равенство .

, .

Пример: Исследовать на четность и нечетность функции:

1) ;

Область определения данной функции симметрична относительно начала координат. Найдем и сравним с : , .

Следовательно, является четной функцией.

2) ;

Область определения данной функции симметрична относительно начала координат. Найдем и сравним с :



,

и . Следовательно, не является ни четной, ни нечетной функцией.

3) .

Область определения данной функции симметрична относительно начала координат. Найдем и сравним с : , .

Следовательно, является нечетной функцией.

Монотонность функций

Определение: Функция называется возрастающей на промежутке Х, если большему значению аргумента из этого промежутка соответствует большее значение функции (Рис. 1).

Определение: Функция называется убывающей на промежутке Х, если большему значению аргумента из этого промежутка соответствует меньшее значение функции. (Рис. 2)

Рис. 1. Рис. 2

Вывод: График возрастающей функции — восходящая кривая, график убывающей функции — нисходящая кривая при перемещении вдоль оси абсцисс в положительном направлении.

Определение: Функция только возрастающая или только убывающая на данном промежутке называется монотонной на этом промежутке.

монотонновозрастающая монотонноубывающая не монотонная функция функция функция

Обратимость функций

Определение: Функция называется обратимой (имеет обратную функцию), если она принимает каждое свое значение один раз.

Рис. 1: Рис. 2:

Функции (Рис. 1)и (Рис. 2) определены наи имеют множество значений.

Функция принимает каждое свое значение один раз, то естьу = f ( х ) -обратимая функция.

Функция принимает некоторые свои значения не один раз, то есть у = j ( х )-необратимая функция.

Вывод: Обратима только монотонная функция.

Пример: Найти функцию обратную функции . Построить графики взаимно обратных функций.

Решение:

1. Из формулы выразим х через у: ; ; .

В полученной формуле поменяем местами х и у: .

и — взаимно обратные функции.

2.

Построим графики взаимно обратных функций и :

х 2 2

у 5 3

х 5 3

у 2 2

График функции прямая l1 проходит через точки ( 2; 5) и (2;3).

График функции прямая l2 проходит через точки ( 5; 2) и (3;2).

Прямая является осью симметрии прямых l1 и l2 .

Вывод:

1.Чтобы получить функцию, обратную даннойфункции ,надо из формулы выразить х черезуи в полученной формуле поменять местами х иу.

2.Графики взаимно обратных функций симметричны относительно прямой .

megaobuchalka.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *