Графики функций x y 2 – Mathway | Популярные задачи

y = -x^2-3

Дано

$$f{\left (x \right )} = — x^{2} — 3$$

График функции

Точки пересечения с осью координат X

График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$- x^{2} — 3 = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X

Точки пересечения с осью координат Y

График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в -x^2 — 3.
$$-3 — 0$$
Результат:
$$f{\left (0 \right )} = -3$$
Точка:

(0, -3)

Экстремумы функции

Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
Зн. экстремумы в точках:

(0, -3)

Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумы функции в точках:
$$x_{1} = 0$$
Убывает на промежутках

(-oo, 0]

Возрастает на промежутках

[0, oo)

Точки перегибов

Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет

Горизонтальные асимптоты

Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$lim_{x to -\infty}\left(- x^{2} — 3\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует

Наклонные асимптоты

Наклонную асимптоту можно найти, подсчитав предел функции -x^2 — 3, делённой на x при x->+oo и x ->-oo
$$lim_{x to -\infty}\left(\frac{1}{x} \left(- x^{2} — 3\right)\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует

Чётность и нечётность функции

Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$- x^{2} — 3 = — x^{2} — 3$$
— Да
$$- x^{2} — 3 = — -1 x^{2} + 3$$
— Нет
значит, функция
является
чётной Загрузка… 600*x=300 4*x^2-20*x>=-25 >>

uchimatchast.ru

Функции y=x2 и y=x3 и их графики

Вопросы занятия:

·  рассмотреть функцию y = x2, её свойства и график;

·  рассмотреть функцию y = х3, её свойства и график.

Материал урока

На одном из предыдущих уроков мы с вами познакомились с линейной функцией, которую можно задать формулой вида:

Также вспомним, что графиком линейной функции является прямая.

На этом уроке мы рассмотрим  функции:

А точнее, мы научимся строить графики этих функций и выясним некоторые их свойства.

Начнём с того, что выразим формулой зависимость площади квадрата от длины его стороны.

Таким образом, зависимость площади квадрата от его стороны является примером функции.

Давайте построим график этой функции.

Составим таблицу значений x, y.

Далее полученные точки изобразим на координатной плоскости и проведём через них плавную линию.

Обратите внимание, что этот график неограниченно продолжается вверх справа и слева от оси игрек.

Теперь выясним некоторые свойства функции y = x2.

Из последнего свойства графика следует, что точки графика, имеющие противоположные абсциссы, симметричны относительно оси игрек.

Теперь давайте выразим формулой зависимость объёма куба от длины его ребра.

 Если мы будем менять длину ребра, то и его объём будет меняться.

Зависимость объёма куба от длины его ребра является примером функции.

Построим график этой функции. Для этого придадим несколько значений аргументу икс и вычислим соответствующие значения функции.

Изобразим точки с полученными координатами на координатной плоскости и проведём через них плавную линию.

Обратите внимание, что этот график можно неограниченно продолжать справа от оси игрек вверх и слева от оси игрек вниз.

Поговорим о свойствах функции игрек равняется икс в кубе.

Следовательно, точки графика, которые имеют противоположные абсциссы, расположены симметрично относительно начала координат.

В повседневной жизни представление о параболе дают нам, например, траектории прыжков животных, радуга. Тросы висячего моста напоминают нам параболы.

Также параболу часто можно встретить в архитектуре.

videouroki.net

График функции y=a(x-m)^2

Найдём связь между графиками функций  и .

Для этого изобразим в одной координатной плоскости графики функций , , .

Составим таблицы значений для функций:

Видно, что график функции  можно получить из графика  в квадрате параллельным переносом относительно оси х вправо на 6 единиц, m=6. А график функции  параллельным переносом влево на 6 единиц, m=-6.

Определение:

График функции  является параболой, которую можно получить из графика функции  с помощью параллельного переноса вдоль оси х на m единиц вправо, если m>0, и на m единиц влево, если m<0.

Пример.

Изобразить графики функций вида , пользуясь уже известными определениями.

Используя шаблон , изобразим графики функции .

Сначала рассмотрим шаблон. Не трудно составить таблицу значений этой функции:

Получаем параболу.

Взглянем на формулу, которой задана функция . Это функция вида , в данном случае m=-4. Получить график этой функции можно с помощью параллельного переноса параболы  относительно оси х на 4 единицы влево.

Получили график функции . Вершина данной параболы имеет координаты (-4,0).

Заметим, что вершина параболы  будет иметь координаты (m,0).

Определение:

Функция вида  – это парабола, которую можно получить из графика функции  в квадрате с помощью двух параллельных переносов:

1.     вдоль оси y на n единиц вверх, если n>0, и на

n единиц вниз, если n<0;

2.     вдоль оси x на m единиц вправо, если m>0, и на m единиц влево, если m<0.

Параллельные переносы можно производить в любом порядке.

Вершина этой параболы будет иметь координаты (m,n).

Пример.

С помощью шаблона параболы  изобразить график функции .

На рисунке видно, что m=-4, сдвигаем точки шаблона на 4 единицы влево и n=-3, сдвигаем полученный график на 3 единицы вниз. Получили график функции . Вершина имеет координаты (-4,-3).

videouroki.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *