Исследование функции и построение графика 10 класс примеры – Исследование функции и построение графика функции

Построение графиков функций — урок. Алгебра, 10 класс.

построить график функции y=x2+1×2−1.

Решение 1. Введём обозначение: f(x)=x2+1×2−1. Найдём область определения функции. Она задаётся условиями x≠1,x≠−1. Итак, D(f)=(−∞;−1)∪(−1;1)∪(1;+∞).

2. Исследуем функцию на чётность:

f(−x)=−x2+1−x2−1=x2+1×2−1=f(x).

Значит, заданная функция чётна, её график симметричен относительно оси ординат, а потому можно для начала ограничиться построением ветвей графика при x≥0.

3. Найдём асимптоты. Вертикальной асимптотой является прямая \(x=1\), поскольку при этом значении \(x\) знаменатель дроби обращается в нуль, а числитель отличен от нуля. Для отыскания горизонтальной асимптоты надо вычислить limx→∞f(x):

limx→∞x2+1×2−1=limx→∞x2x2+1x2x2x2−1×2=limx→∞1+1×21−1×2=1.

 Значит, \(y=1\) — горизонтальная асимптота графика функции.

4. Найдём стационарные и критические точки, точки экстремума и промежутки монотонности функции:

y′=x2+1×2−1′=(x2+1)′⋅(x2−1)−(x2+1)⋅(x2−1)′x2−12=2x⋅(x2−1)−(x2+1)⋅2xx2−12==−4xx2−12.

Производная существует всюду в области определения функции, значит, критических точек у функции нет.

Стационарные точки найдём из соотношения y′=0. Получаем: \(-4x=0\) — откуда находим, что \(x=0\). При \(x<0\) имеем: y′>0; при \(x>0\) имеем: y′<0. Значит, \(x=0\) — точка максимума функции, причём ymax=f(0)=02+102−1=−1.

При \(x>0\) имеем: y′<0; но следует учесть наличие точки разрыва \(x=1\). Значит, вывод о промежутках монотонности будет выглядеть так: на промежутке 0;1) функция убывает, на промежутке (1;+∞) функция также убывает.

5. Составим таблицу значений функции f(x)=x2&plus;1×2−1 при x≥0:

\(x\)

\(0\)

\(0.5\)

\(2\)

\(3\)

\(4\)

\(y\)

\(-1\)

−53

53

54

1715

 

6. Отметим найденные точки на координатной плоскости, учтя при этом, что \((0;-1)\) — точка максимума, что \(y=1\) — горизонтальная асимптота, что \(x=1\) — вертикальная асимптота, построим ветви искомого графика при x≥0. Добавив ветви, симметричные построенным относительно оси ординат, получим весь график.

www.yaklass.ru

10 класс. Алгебра. Производная. Применение производной к исследованию функции. — Исследование функции и построение графика

Комментарии преподавателя

Построение графика произвольной функции может быть как отдельной задачей, так и вспомогательной — например, при решении уравнений графическим способом, или при решении задач с параметрами.

Алгоритм исследования функции  и построения ее графика таков:

 

1. Находим область определения (D(f)) функции .

2. Если область определения функции симметрична относительно нуля (то есть для любого значения  из D(f) значение  также принадлежит области определения, то проверяем функцию на четность.

Если , то функция четная. (Примером четной функции является функция )

Для нас важно, что график четной функции симметричен относительно оси OY.

Если , то функция нечетная. (Примером нечетной функции является функция )

График 

нечетной функции симметричен относительно начала координат.

Если функция является четной или нечетной, то мы можем построить часть ее графика для ,  а затем соответствующим образом отразить ее.

3. Н

www.kursoteka.ru

Уроки 9-10. Исследование функций (факультативное занятие) | Поурочные планы по алгебре и начала анализа 10 класс

Уроки 9-10. Исследование функций (факультативное занятие)