Построение таблицы истинности online | Полезная информация
Что такое таблица истинности?
Таблица, описывающая логическую функцию, называется таблицей истинности.
В таблице истинности перечислены все возможные наборы входных переменных.
В последнем столбце таблицы истинности выводится число, соответствующее значению функции, по которой строилась данная таблица истинности.
Рассмотрим пример:
Допустим, у нас есть две булевых переменных x1 и x2. От этих переменных зависит логическая функция f(x1,x2)
Для примера возьмем f(x1,x2)=x1∧x2∨x1.
Так как x1, x2 булевы, то они принимают значния 0 или 1 (Истина или Ложь, True или False, сокращенно можно писать T или F).
Все возможные варианты входных переменных x1 и x2 можно представить в таблице:
x1 | x2 | f(x1,x2) |
---|
0 |
0 |
|
0 |
1 |
|
1 |
0 |
|
1 |
1 |
|
Подставим значения переменных x1 и x2 в каждой строчке в функцию f(x1,x2).
f(0,0)= 0∧0∨0=0
f(0,1)= 0∧1∨0=0f(1,0)= 1∧0∨1=1
f(1,1)= 1∧1∨1=1
Получившиеся значения запишем в последний столбец нашей таблицы:
x1 | x2 | f(x1,x2) |
---|
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
Мы получили таблицу истинности функции f(x1,x2)=x1∧x2∨x1.
На нашем сайте вы можете построить таблицу истинности online.
Для этого вам всего лишь нужно ввести функцию в поле и нажать вычислить.
Таблицы истинности основных булевых функций:
Унарные функции
:
Бинарные функции
spisok-literaturi.ru
Построение таблицы истинности для вектора значений A%B@C
Список литературыГенератор кроссвордовГенератор титульных листовТаблица истинности ONLINEПрочие ONLINE сервисы | Промежуточные таблицы истинности: A←B:
(A←B)→C:
A | B | C | A←B | (A←B)→C | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
Общая таблица истинности:A | B | C | A←B | A←B→C | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | Fсднф = ¬A∧¬B∧C ∨ ¬A∧B∧¬C ∨ ¬A∧B∧C ∨ A∧¬B∧C ∨ A∧B∧C Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | Fскнф = (A∨B∨C) ∧ (¬A∨B∨C) ∧ (¬A∨¬B∨C) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функцииA | B | C | Fж | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина: Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧CТак как Fж(000) = 0, то С000 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0 Fж(010) = С000 ⊕ С010 = 1 => С010 = 0 ⊕ 1 = 1 Fж(001) = С000 ⊕ С001 = 1 => С001 = 0 ⊕ 1 = 1 Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1 Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0 Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1 Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С 111 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1Таким образом, полином Жегалкина будет равен: Fж = B ⊕ C ⊕ A∧B ⊕ B∧C ⊕ A∧B∧C Логическая схема, соответствующая полиному Жегалкина: Построить еще одну таблицу истинности
| | | |
| В нашем каталогеОколостуденческоеЭто интересно…Наши контакты |
spisok-literaturi.ru
Построение таблицы истинности для вектора значений A+!B*!C+D
Список литературыГенератор кроссвордовГенератор титульных листовТаблица истинности ONLINEПрочие ONLINE сервисы | Промежуточные таблицы истинности: ¬B:
¬C:
(¬B)∧(¬C):
B | C | ¬B | ¬C | (¬B)∧(¬C) | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
A∨((¬B)∧(¬C)):
A | B | C | ¬B | ¬C | (¬B)∧(¬C) | A∨((¬B)∧(¬C)) | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
(A∨((¬B)∧(¬C)))∨D:
A | B | C | D | ¬B | ¬C | (¬B)∧(¬C) | A∨((¬B)∧(¬C)) | (A∨((¬B)∧(¬C)))∨D | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
Общая таблица истинности:A | B | C | D | ¬B | ¬C | (¬B)∧(¬C) | A∨((¬B)∧(¬C)) | A∨¬B∧¬C∨D | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
A | B | C | D | F | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | Fсднф = ¬A∧¬B∧¬C∧¬D ∨ ¬A∧¬B∧¬C∧D ∨ ¬A∧¬B∧C∧D ∨ ¬A∧B∧¬C∧D ∨ ¬A∧B∧C∧D ∨ A∧¬B∧¬C∧¬D ∨ A∧¬B∧¬C∧D ∨ A∧¬B∧C∧¬D ∨ A∧¬B∧C∧D ∨ A∧B∧¬C∧¬D ∨ A∧B∧¬C∧D ∨ A∧B∧C∧¬D ∨ A∧B∧C∧D Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
A | B | C | D | F | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | Fскнф = (A∨B∨¬C∨D) ∧ (A∨¬B∨C∨D) ∧ (A∨¬B∨¬C∨D) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функцииA | B | C | D | Fж | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина: Fж = C0000 ⊕ C1000∧A ⊕ C0100∧B ⊕ C0010∧C ⊕ C0001∧D ⊕ C1100∧A∧B ⊕ C1010∧A∧C ⊕ C1001∧A∧D ⊕ C0110∧B∧C ⊕ C0101∧B∧D ⊕ C0011∧C∧D ⊕ C1110∧A∧B∧C ⊕ C1101∧A∧B∧D ⊕ C1011∧A∧C∧D ⊕ C0111∧B∧C∧D ⊕ C1111∧A∧B∧C∧DТак как Fж(0000) = 1, то С0000 = 1. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: Fж(1000) = С0000 ⊕ С1000 = 1 => С1000 = 1 ⊕ 1 = 0 Fж(0100) = С0000 ⊕ С0100 = 0 => С0100 = 1 ⊕ 0 = 1 Fж(0010) = С0000 ⊕ С0010 = 0 => С0010 = 1 ⊕ 0 = 1 Fж(0001) = С0000 ⊕ С0001 = 1 => С0001 = 1 ⊕ 1 = 0 Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 1 => С1100 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1 Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 1 => С1010 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1 Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 1 => С1001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0 Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 0 => С0110 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1 Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 1 => С0101 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1 Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 1 => С0011 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1 Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 1 => С1110 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 1 Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 1 => С1101 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1 Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 1 => С1011 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1 Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 1 => С0111 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 1 Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 1 => С1111 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 1 Таким образом, полином Жегалкина будет равен: Fж = 1 ⊕ B ⊕ C ⊕ A∧B ⊕ A∧C ⊕ B∧C ⊕ B∧D ⊕ C∧D ⊕ A∧B∧C ⊕ A∧B∧D ⊕ A∧C∧D ⊕ B∧C∧D ⊕ A∧B∧C∧D Логическая схема, соответствующая полиному Жегалкина: Построить еще одну таблицу истинности
| | | |
| В нашем каталогеОколостуденческоеЭто интересно…Наши контакты |
spisok-literaturi.ru
Построение таблицы истинности для вектора значений !(A*!B)+C
Список литературыГенератор кроссвордовГенератор титульных листовТаблица истинности ONLINEПрочие ONLINE сервисы | Промежуточные таблицы истинности: ¬B:
A∧(¬B):
A | B | ¬B | A∧(¬B) | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
¬(A∧(¬B)):
A | B | ¬B | A∧(¬B) | ¬(A∧(¬B)) | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
(¬(A∧(¬B)))∨C:
A | B | C | ¬B | A∧(¬B) | ¬(A∧(¬B)) | (¬(A∧(¬B)))∨C | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
Общая таблица истинности:A | B | C | ¬B | A∧(¬B) | ¬(A∧(¬B)) | ¬(A∧¬B)∨C | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | Fсднф = ¬A∧¬B∧¬C ∨ ¬A∧¬B∧C ∨ ¬A∧B∧¬C ∨ ¬A∧B∧C ∨ A∧¬B∧C ∨ A∧B∧¬C ∨ A∧B∧C Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | Fскнф = (¬A∨B∨C) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функцииA | B | C | Fж | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина: Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧CТак как Fж(000) = 1, то С000 = 1. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: Fж(100) = С000 ⊕ С100 = 0 => С100 = 1 ⊕ 0 = 1 Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0 Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0 Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1 Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1 Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0 Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1 Таким образом, полином Жегалкина будет равен: Fж = 1 ⊕ A ⊕ A∧B ⊕ A∧C ⊕ A∧B∧C Логическая схема, соответствующая полиному Жегалкина: Построить еще одну таблицу истинности
| | | |
| В нашем каталогеОколостуденческоеЭто интересно…Наши контакты |
spisok-literaturi.ru
Построение таблицы истинности для вектора значений F=A@B*C*!A
Список литературыГенератор кроссвордовГенератор титульных листовТаблица истинности ONLINEПрочие ONLINE сервисы | Промежуточные таблицы истинности: ¬A:
B∧C:
(B∧C)∧(¬A):
B | C | A | B∧C | ¬A | (B∧C)∧(¬A) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
A→((B∧C)∧(¬A)):
A | B | C | B∧C | ¬A | (B∧C)∧(¬A) | A→((B∧C)∧(¬A)) | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
F≡(A→((B∧C)∧(¬A))):
F | A | B | C | B∧C | ¬A | (B∧C)∧(¬A) | A→((B∧C)∧(¬A)) | F≡(A→((B∧C)∧(¬A))) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
Общая таблица истинности:F | A | B | C | ¬A | B∧C | (B∧C)∧(¬A) | A→((B∧C)∧(¬A)) | F≡A→B∧C∧¬A | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
F | A | B | C | F | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | Fсднф = ¬F∧A∧¬B∧¬C ∨ ¬F∧A∧¬B∧C ∨ ¬F∧A∧B∧¬C ∨ ¬F∧A∧B∧C ∨ F∧¬A∧¬B∧¬C ∨ F∧¬A∧¬B∧C ∨ F∧¬A∧B∧¬C ∨ F∧¬A∧B∧C Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
F | A | B | C | F | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | Fскнф = (F∨A∨B∨C) ∧ (F∨A∨B∨¬C) ∧ (F∨A∨¬B∨C) ∧ (F∨A∨¬B∨¬C) ∧ (¬F∨¬A∨B∨C) ∧ (¬F∨¬A∨B∨¬C) ∧ (¬F∨¬A∨¬B∨C) ∧ (¬F∨¬A∨¬B∨¬C) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функцииF | A | B | C | Fж | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
Построим полином Жегалкина: Fж = C0000 ⊕ C1000∧F ⊕ C0100∧A ⊕ C0010∧B ⊕ C0001∧C ⊕ C1100∧F∧A ⊕ C1010∧F∧B ⊕ C1001∧F∧C ⊕ C0110∧A∧B ⊕ C0101∧A∧C ⊕ C0011∧B∧C ⊕ C1110∧F∧A∧B ⊕ C1101∧F∧A∧C ⊕ C1011∧F∧B∧C ⊕ C0111∧A∧B∧C ⊕ C1111∧F∧A∧B∧CТак как Fж(0000) = 0, то С0000 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: Fж(1000) = С0000 ⊕ С1000 = 1 => С1000 = 0 ⊕ 1 = 1 Fж(0100) = С0000 ⊕ С0100 = 1 => С0100 = 0 ⊕ 1 = 1 Fж(0010) = С0000 ⊕ С0010 = 0 => С0010 = 0 ⊕ 0 = 0 Fж(0001) = С0000 ⊕ С0001 = 0 => С0001 = 0 ⊕ 0 = 0 Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 0 => С1100 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0 Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 1 => С1010 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0 Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 1 => С1001 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0 Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 1 => С0110 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0 Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 1 => С0101 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0 Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 0 => С0011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 0 => С1110 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 0 => С1101 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 1 => С1011 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0 Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 1 => С0111 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0 Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 0 => С1111 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 Таким образом, полином Жегалкина будет равен: Fж = F ⊕ A Логическая схема, соответствующая полиному Жегалкина: Построить еще одну таблицу истинности
| | | |
| В нашем каталогеОколостуденческоеЭто интересно…Наши контакты |
spisok-literaturi.ru
Построение таблицы истинности для вектора значений !A+!B
Список литературыГенератор кроссвордовГенератор титульных листовТаблица истинности ONLINEПрочие ONLINE сервисы | Промежуточные таблицы истинности: ¬A:
¬B:
(¬A)∨(¬B):
A | B | ¬A | ¬B | (¬A)∨(¬B) | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
Общая таблица истинности:A | B | ¬A | ¬B | ¬A∨¬B | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: Fсднф = ¬A∧¬B ∨ ¬A∧B ∨ A∧¬B Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: Fскнф = (¬A∨¬B) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции Построим полином Жегалкина: Fж = C00 ⊕ C10∧A ⊕ C01∧B ⊕ C11∧A∧BТак как Fж(00) = 1, то С00 = 1. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: Fж(10) = С00 ⊕ С10 = 1 => С10 = 1 ⊕ 1 = 0 Fж(01) = С00 ⊕ С01 = 1 => С01 = 1 ⊕ 1 = 0 Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 0 => С11 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1 Таким образом, полином Жегалкина будет равен: Fж = 1 ⊕ A∧B Логическая схема, соответствующая полиному Жегалкина: Построить еще одну таблицу истинности
| | | |
| В нашем каталогеОколостуденческоеЭто интересно…Наши контакты |
spisok-literaturi.ru
Построение таблицы истинности для вектора значений A+B+C*!A
Список литературыГенератор кроссвордовГенератор титульных листовТаблица истинности ONLINEПрочие ONLINE сервисы | Промежуточные таблицы истинности: ¬A:
C∧(¬A):
C | A | ¬A | C∧(¬A) | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
A∨B:
(A∨B)∨(C∧(¬A)):
A | B | C | A∨B | ¬A | C∧(¬A) | (A∨B)∨(C∧(¬A)) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
Общая таблица истинности:A | B | C | ¬A | C∧(¬A) | A∨B | A∨B∨C∧¬A | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | Fсднф = ¬A∧¬B∧C ∨ ¬A∧B∧¬C ∨ ¬A∧B∧C ∨ A∧¬B∧¬C ∨ A∧¬B∧C ∨ A∧B∧¬C ∨ A∧B∧C Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
A | B | C | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | Fскнф = (A∨B∨C) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функцииA | B | C | Fж | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина: Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧CТак как Fж(000) = 0, то С000 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1 Fж(010) = С000 ⊕ С010 = 1 => С010 = 0 ⊕ 1 = 1 Fж(001) = С000 ⊕ С001 = 1 => С001 = 0 ⊕ 1 = 1 Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1 Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1 Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1 Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 1 Таким образом, полином Жегалкина будет равен: Fж = A ⊕ B ⊕ C ⊕ A∧B ⊕ A∧C ⊕ B∧C ⊕ A∧B∧C Логическая схема, соответствующая полиному Жегалкина: Построить еще одну таблицу истинности
| | | |
| В нашем каталогеОколостуденческоеЭто интересно…Наши контакты |
spisok-literaturi.ru