Сфера объем – Шар и сфера, объем шара, площадь сферы, формулы

Шар и сфера, объем шара, площадь сферы, формулы

Шар и сфера — это прежде всего геометрические фигуры, и если шар — это геометрическое тело, то сфера — это поверхность шара. Этими фигурами интересовались еще многие тысячи лет назад до н.э.

Впоследствии когда было открыто, что Земля — это шар, а небо — небесная сфера, получило развитие новое увлекательное направление в геометрии — геометрия на сфере или сферическая геометрия. Для того, чтобы рассуждать о размере и объеме шара, нужно сначала дать ему определение.

Шар

Шаром радиуса R с центром в точке О в геометрии называют тело, которое создано всеми точками пространство, имеющими общее свойство. Эти точки находятся на расстоянии, не превышающем радиуса шара, то есть заполняют все пространство меньше радиуса шара во все стороны от его центра. Если мы рассмотрим только те точки, которые равноудалены от центра шара — мы будем рассматривать его поверхность или оболочку шара.

Как можно получить шар? Мы можем вырезать из бумаги круг и начать его вращать вокруг его же диаметра. То есть диаметр круга будет осью вращения. Образованная фигура — будет шар. Поэтому шар называют также телом вращения. Потому что он может быть образован путем вращения плоской фигуры — круга.

Возьмем какую-нибудь плоскость и разрежем ею наш шар. Подобно тому как мы режем ножом апельсин. Кусок, который мы отсечем от шара, называется шаровым сегментом.

В Древней Греции умели не только работать с шаром и сферой, как с геометрическими фигурами, например, использовать их при строительстве, а также умели расчитывать площадь поверхности шара и объем шара.

Сфера

Сферой иначе называется поверхность шара. Сфера — это не тело — это поверхность тела вращения. Однако так как и Земля и многие тела имеют сферическую форму, например капля воды, то изучение геометрических соотношений внутри сферы получило большое распространение.

Например, если мы соединим две точки сферы между собой прямой линией, то эта прямая линия назовется хордой, а если эта хорда пройдет через центр сферы, который совпадает с центром шара, то хорда назовется диаметром сферы.

Если мы проведем прямую линию, которая коснется сферы всего в одной точке, то эта линия будет называться касательной. Кроме того, эта касательная к сфере в этой точке будет перпендикулярна к радиусу сферы, проведенному в точку касания.

Если мы продолжим хорду до прямой в одну и другую сторону от сферы, то эта хорда станет называться секущей. Или можно сказать иначе — секущая к сфере содержит в себе ее хорду.

Объем шара

Формула для вычисления объема шара имеет вид:

V=4/3 πR3,

где R — радиус шара.

Если нужно найти объем шарового сегмента — воспользуйтесь формулой:

V сег=πh2(R-h/3),  h — высота шарового сегмента.

Площадь поверхности шара или сферы

Чтобы вычислить площадь сферы или площадь поверхности шара (это одно и то же):

S=4πR,

где R — радиус сферы.

Архимед очень любил шар и сферу, он даже попросил оставить на его гробницу рисунок, на котором в цилиндр вписан шар. Архимед считал, что объем шара и его поверхность равны двум третьим от объема и поверхности цилиндра, в который вписан шар»

 

 

 

novstudent.ru

Подготовка школьников к ЕГЭ в учебном центре «Резольвента» (Справочник по математике — Стереометрия

Шар, сфера и их части

      Введем следующие определения, связанные с шаром, сферой и их частями.

      Определение 1. Сферой с центром в точке   O   и радиусом   r   называют множество точек, расстояние от которых до точки   O   равно   r   (рис. 1).

      Определение 2. Шаром с центром в точке   O   и радиусом   r   называют множество точек, расстояние от которых до точки   O   не превосходит   r   (рис. 1).

Рис.1

      Таким образом, сфера с центром в точке   O   и радиусом   r   является поверхностью шара с центром в точке   O   и радиусом   r.

      Замечание. Радиусом сферы (радиусом шара) называют отрезок, соединяющий любую точку сферы с центром сферы. Длину этого отрезка также часто называют радиусом сферы (радиусом шара).

      Определение 3. Сферическим поясом (шаровым поясом) называют часть сферы, заключенную между двумя параллельными плоскостями параллельными плоскостями (рис. 2).

      Определение 4. Шаровым слоем называют часть шара, заключенную между двумя параллельными плоскостями параллельными плоскостями   (рис. 2).

Рис.2

      Окружности, ограничивающие сферический пояс, называют основаниями сферического пояса.

      Расстояние между плоскостями Расстояние между плоскостями оснований сферического пояса называют высотой сферического пояса.

      Из определений 3 и 4 следует, что шаровой слой ограничен сферическим поясом и двумя кругами, плоскости которых параллельны параллельны между собой. Эти круги называют основаниями шарового слоя.

      Высотой шарового слоя называют расстояние между плоскостями расстояние между плоскостями оснований шарового слоя.

      Определение 5. Сферическим сегментом называют каждую из двух частей, на которые делит сферу пересекающая ее плоскость (рис. 3).

      Определение 6. Шаровым сегментом называют каждую из двух частей, на которые делит шар пересекающая ее плоскость (рис. 3).

Рис.3

      Из определений 3 и 5 следут, что сферический сегмент представляет собой сферический пояс, у которого одна из плоскостей оснований касается сферы (рис. 4). Высоту такого сферического пояса и называют высотой сферического сегмента.

      Соответственно, шаровой сегмент – это шаровой слой, у которого одна из плоскостей оснований касается шара (рис. 4). Высоту такого шарового слоя называют высотой шарового сегмента.

Рис.4

      По той же причине всю сферу можно рассматривать как сферический пояс, у которого обе плоскости оснований касаются сферы (рис. 5). Соответственно, весь шар – это шаровой слой, у которого обе плоскости оснований касаются шара (рис. 5).

Рис.5

      Определение 7. Шаровым сектором называют фигуру, состоящую из всех отрезков, соединяющих точки сферического сегмента с центром сферы (рис. 6).

Рис.6

      Высотой шарового сектора называют высоту его сферического сегмента.

      Замечание. Шаровой сектор состоит из шарового сегмента и конуса с общим основанием. Вершиной конуса является центр сферы.

Площади сферы и ее частей. Объемы шара и его частей

      В следующей таблице приведены формулы, позволяющие вычислить объем шара и объемы его частей, а также площадь сферы и площади ее частей.

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

      У нас также для школьников организованы

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

www.resolventa.ru

Сфера, шар, сегмент и сектор. Формулы и свойства

Определение.

Сфера (поверхность шара) — это совокупность всех точек в трехмерном пространстве, которые находятся на одинаковом расстоянии от одной точки, называемой центром сферы (О).

Сферу можно описать, как объёмную фигуру, которая образуется вращением окружности вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение.

Шар — это совокупность всех точек в трехмерном пространстве, расстояние от которых не превышает определенного расстояния до точки, называемой центром шара (О) (совокупность всех точек трехмерного пространства ограниченных сферой).

Шар можно описать как объёмную фигуру, которая образуется вращением круга вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение. Радиус сферы (шара) (R) — это расстояние от центра сферы (шара) O к любой точке сферы (поверхности шара).

Определение. Диаметр сферы (шара) (D) — это отрезок, соединяющий две точки сферы (поверхности шара) и проходящий через ее центр.

Формула. Объём шара: Формула. Площадь поверхности сферы через радиус или диаметр:

S = 4πR2 = πD2

Уравнение сферы

1.
Уравнение сферы с радиусом R и центром в начале декартовой системе координат
:

x2 + y2 + z2 = R2

2. Уравнение сферы с радиусом R и центром в точке с координатами (x0, y0, z0) в декартовой системе координат:

(x — x0)2 + (y — y0)2 + (z — z0)2 = R2

3. Параметрическое уравнение сферы с центром в точке (x0, y0, z0):
x = x0 + R · sin θ · cos φy = y0 + R · sin θ · sin φz = z0 + R · cos θ
где θ ϵ [0,π], φ ϵ [0,2π].

Определение. Диаметрально противоположными точками называются любые две точки на поверхности шара (сфере), которые соединены диаметром.

Основные свойства сферы и шара

1. Все точки сферы одинаково удалены от центра.

2. Любое сечение сферы плоскостью является окружностью.

3. Любое сечение шара плоскостью есть кругом.

4. Сфера имеет наибольший объём среди всех пространственных фигур с одинаковой площадью поверхности.

5. Через любые две диаметрально противоположные точки можно провести множество больших окружностей для сферы или кругов для шара.

6. Через любые две точки, кроме диаметрально противоположных точек, можно провести только одну большую окружность для сферы или большой круг для шара.

7. Любые два больших круга одного шара пересекаются по прямой, проходящей через центр шара, а окружности пересекаются в двух диаметрально противоположных точках.

8. Если расстояние между центрами любых двух шаров меньше суммы их радиусов и больше модуля разности их радиусов, то такие шары пересекаются, а в плоскости пересечения образуется круг.


Секущая, хорда, секущая плоскость сферы и их свойства

Определение. Секущая сферы — это прямая, которая пересекает сферу в двух точках. Точки пересечения называются

точками протыкания поверхности или точками входа и выхода на поверхности.

Определение. Хорда сферы (шара) — это отрезок, соединяющий две точки сферы (поверхности шара).

Определение. Секущая плоскость — это плоскость, которая пересекает сферу.

Определение. Диаметральная плоскость — это секущая плоскость, проходящая через центр сферы или шара, сеченме образует соответственно большую окружность и большой круг. Большая окружность и большой круг имеют центр, который совпадают с центром сферы (шара).

Любая хорда, проходящая через центр сферы (шара) является диаметром.

Хорда является отрезком секущей прямой.

Расстояние d от центра сферы до секущей всегда меньше чем радиус сферы:

d < R

Расстояние m между секущей плоскостью и центром сферы всегда меньше радиуса R:

m < R

Местом сечения секущей плоскости на сфере всегда будет малая окружность, а на шаре местом сечения будет малый круг
. Малая окружность и малый круг имеют свои центры, не совпадающих с центром сферы (шара). Радиус r такого круга можно найти по формуле:

r = √R2 — m2,

где R — радиус сферы (шара), m — расстояние от центра шара до секущей плоскости.

Определение. Полусфера (полушар) — это половина сферы (шара), которая образуется при ее сечении диаметральной плоскостью.

Касательная, касательная плоскость к сфере и их свойства

Определение.Касательная к сфере — это прямая, которая касается сферы только в одной точке.

Определение.Касательная плоскость к сфере — это плоскость, которая соприкасается со сферой только в одной точке.

Касательная пряма (плоскость) всегда перпендикулярна радиусу сферы проведенному к точке соприкосновения

Расстояние от центра сферы до касательной прямой (плоскости) равно радиусу сферы.

Определение. Сегмент шара — это часть шара, которая отсекается от шара секущей плоскостью.
Основой сегмента
называют круг, который образовался в месте сечения. Высотой сегмента h называют длину перпендикуляра проведенного с середины основы сегмента к поверхности сегмента. Формула. Площадь внешней поверхности сегмента сферы с высотой h через радиус сферы R:

S = 2πRh

Формула. Объём сегмента сферы с высотой h через радиус сферы R: Определение. Срез шара — это часть шара, которая образуется в результате его сечения двумя параллельными плоскостями и находится между ними. Определение. Сектором называется часть шара, ограниченная совокупностью всех лучей, исходящих из центра шара О и образующих круг на его поверхности с радиусом r. Формула. Площадь поверхности сектора S с высотой O1H (h) через радиус шара OH (R):

S = πR(2h + √2hR — h2

)

Формула. Объём сектора V с высотой O1H (h) через радиус шара OH (R):

Определение. Касательными сферами (шарами) называются любые две сферы (шара), которые имеют одну общую точку соприкосновения. Если расстояние между центрами больше суммы радиусов, то фигуры не касаются и не пересекаются.

Определение. Концентрическими сферами называются любые две сферы, которые имеют общий центр и радиусы различной длины.

ru.onlinemschool.com

Формула объема шара

Шар это геометрическое тело, образованное в результате вращения полукруга на оси своего диаметра.

Вычислить объем шара

 

 

Объем шара можно вычислить по формуле:

 

R

– радиус шара

V – объем шара

π3.14

Задача:

Найти объем шара радиусом 10 сантиметров.

Решение:

Для того чтобы вычислить объем шара формула используется следующая:

где V – искомый объем шара, π3,14, R – радиус.

Таким образом, при радиусе 10 сантиметров объем шара равен:

V

=

4

3

3,14 × 103 = 4186,7

кубических сантиметров.

В геометрии шар определяется как некое тело, представляющее собой совокупность всех точек пространства, которые располагаются от центра на расстоянии, не более заданного, называемого радиусом шара. Поверхность шара именуется сферой, а сам он образуется путем вращения полукруга около его диаметра, остающегося неподвижным.

С этим геометрическим телом очень часто сталкиваются инженеры-конструкторы и архитекторы, которым часто приходится вычислять объем шара. Скажем, в конструкции передней подвески подавляющего большинства современных автомобилей используются так называемые шаровые опоры, в которых, как нетрудно догадаться из самого названия, одними из основных элементов являются именно шары. С их помощью происходит соединение ступиц управляемых колес и рычагов. От того, насколько правильно будет вычислен их объем, во многом зависит не только долговечность этих узлов и правильность их работы, но и безопасность движения.

В технике широчайшее распространение получили такие детали, как шариковые подшипники, с помощью которых происходит крепление осей в неподвижных частях различных узлов и агрегатов и обеспечивается их вращение. Следует заметить, что при их расчете конструкторам требуется найти объем шара (а точнее – шаров, помещаемых в обойму) с высокой степенью точности. Что касается изготовления металлических шариков для подшипников, то они производятся из металлической проволоки при помощи сложного технологического процесса, включающего в себя стадии формовки, закалки, грубой шлифовки, чистовой притирки и очистки. Кстати говоря, те шарики, которые входят в конструкцию всех шариковых ручек, изготавливаются по точно такой же технологии.

Достаточно часто шары используются и в архитектуре, причем там они чаще всего являются декоративными элементами зданий и других сооружений. В большинстве случаев они изготавливаются из гранита, что зачастую требует больших затрат ручного труда. Конечно, соблюдать столь высокую точность изготовления этих шаров, как тех, которые применяются в различных агрегатах и механизмах, не требуется.

Без шаров немыслима такая интересная и популярная игра, как бильярд. Для их производства используются различные материалы (кость, камень, металл, пластмассы) и используются различные технологические процессы. Одним из основных требований, предъявляемых к бильярдным шарам, является их высокая прочность и способность выдерживать высокие механические нагрузки (прежде всего, ударные). Кроме того, их поверхность должна представлять собой точную сферу для того, чтобы обеспечивалось плавное и ровное качение по поверхности бильярдных столов.

Наконец, без таких геометрических тел, как шары, не обходится ни одна новогодняя или рождественская елка. Изготавливаются эти украшения в большинстве случаев из стекла методом выдувания, и при их производстве наибольшее внимание уделяется не точности размеров, а эстетичности изделий. Технологический процесс при этом практически полностью автоматизирован и вручную елочные шары только упаковываются.

simple-math.ru

Объём шара и площадь сферы. Геометрия, 11 класс: уроки, тесты, задания.

1. Отношение радиусов и объёмов двух шаров

Сложность: лёгкое

1
2. Шар, вписанный в куб

Сложность: лёгкое

1
3. Два шаровых сегмента

Сложность: лёгкое

1
4. Oбъём шарового сегмента по формуле

Сложность: лёгкое

1
5. Цилиндр, вписанный в шар

Сложность: лёгкое

2
6. Конус, вписанный в шар

Сложность: лёгкое

1
7. Вычисление объёма шара с использованием площади сферической поверхности

Сложность: лёгкое

1
8. Площадь сферы

Сложность: лёгкое

2
9. Объём шарового сегмента

Сложность: среднее

3
10. Шар касается плоскости

Сложность: среднее

2
11. Площадь поверхности шара, вписанного в цилиндр

Сложность: среднее

2
12. Cумма объёмов трёх шаров

Сложность: среднее

2
13. Шар, вписанный в конус

Сложность: среднее

3
14. Цилиндрическое отверстие в шаре

Сложность: сложное

4
15. Толщина плёнки мыльного пузыря

Сложность: сложное

4
16. Цилиндр наибольшего объёма

Сложность: сложное

6

www.yaklass.ru

Объемы простых тел. Прямоугольный параллелепипед, Цилиндр, Пирамида, Конус, Сфера, Параллелепипед.

Объемы простых тел. Прямоугольный параллелепипед, Цилиндр, Пирамида, Конус, Сфера, Параллелепипед.

Объемы и площади поверхностей правильных тел.

Общая информация об объемах и площадях поверхностей правильных тел приведена в таблице.


Пример 1.Расчет объема прямоугольного бака.

Бак для воды имеет форму прямоугольного параллелепипеда длиной 1 м, шириной 65 см и высотой 30 см. Определить объем бака в м3, см3, литрах

Решение:

Объем прямоугольного параллелепипеда равен l*b*h

а)Vбака=1*0.65*03=0.195 м3

б) 1 м 315000 мм2=315000/100=3150 см2

1 м3=106 см3, значит, 0.195 м3=0.195*106=195000 см3

в) 1 литр=1000 см3, значит 195000 см3=195 л


Пример 2. Расчет объема и площади поверхности трапецеидальной призмы.

Вычислить объем и общую площадь поверхности призмы, показанной на рис.

Тело, показанное на рис. — это трапецеидальная призма.

Так как объем = площадь поперечного сечения * высота, то

V=1/2*(10+5)*4*20=30*20=600 cм3

Так как площадь поверхности вычисляется сложением суммы площадей двух трапеций и суммы площадей четырех прямоугольников, то

S=(2*30)+3(5*20)+(10*20)=560 см2

Пример 3. Расчет объема и общей площади поверхности правильной пирамиды.

Определить объем и общую площадь поверхности правильной пирамиды с квадратным основанием, показанной на рис., если ее высота равна 15 см.

Решение:

Так как объем пирамиды =1/3(площадь основания)*высота, то

V=1/3*(5*5)*15=125 см3

Общая площадь поверхности включает площадь квадратного основания и площади четырех равных треугольников.

Площадь треугольника ADE=1/2*основание*(высота грани).

Высоту грани АС можно найти по теореме Пифагора из треугольника АВС, где АВ=15 см, ВС=1/2*3=1.5 см, и АС2=AB2+BC2=225+2.25=227.25

AC=15.07 cм

Следовательно, площадь треугольника ADE

SADE=1/2*3*15.07=22.605 см2

Общая площадь пирамиды S=(3*3)+4*22.605=99.42 cм2.

Пример 4. Расчет объема и общей площади поверхности конуса.

Определить объем и общую площадь поверхности конуса радиусом 4 см и высотой 10 см.

Объем конуса V=1/3πr2h =1/3*π42*10=167.5см3

Общая площадь поверхности равна сумме площади конической поверхности и площади основания, т.е. S=πrl+πr2

Из рисунка видно, что длину образующей l можно найти по теореме Пифагора.

l2=102+42=116 см

l=10,8 cм

Следовательно, общая площадь поверхности равна

S=π*4*10.8)+(π*42=185.89 cм2

Пример 5. Расчет объема и общей площади поверхности призмы.

На рис. показан деревянный профиль. Найдем: а) его объем в м3

б) общую площадь его поверхности

Профиль представляет собой призму, поперечное сечение которой состоит из прямоугольника и полукруга. Поскольку радиус полукруга равен 6 см, диаметр равен 12 см.

Тогда размеры прямоугольника 12*11 см

Площадь поперечного сечения S.=(11*12)+1/2* π 62=188,52 см2

Поскольку объем деревянной детали равен произведению площади поперечного сечения на длину, то

a) V=188,52*200=37704 см3=37704 см3/106= 0,037704 м3

б) Общая площадь включает два торца (площадь каждого 188,52 см2), три прямоугольника и криволинейную поверхность (которая представляет собой полуцилиндр). Следовательно, общая площадь поверхности

S=(2*188,52)+2*(11*200)+(12*200)+1/2*(2π*6*200)=377,04+4400+2400+3768=10945,04 см2=1,094504 м2.

 

Пример 6. Расчет объема и общей площади поверхности сложного бойлера.

Бойлер состоит из цилиндрической секции длиной 9 м и диаметром 5 м, к одному концу которой присоединена полусферическая секция диаметром 5 м, а к другому концу — коническая секция высотой 3 м и диаметром основания 5 м. Вычислить объем бойлера и общую площадь его поверхности.

 

Vполусферы P =2/3*πr3 =2/3*π*2,53 =10,42 π м3

V цилиндра Q = π r2h=π*2,52*9=56,25 π м3

V конуса R =1/3 π r2=1/3*π*2,52*3=6,25π м 3

Общий объем бойлера V= 10,42 π м3+56,25 π м3+6,25π м 3=72,92π=228,97 м 3

S полусферы P. =2*(πr2)=2*π*2,52=12,5π м2

S бок. поверхности цилиндра Q. =2πrh=2*π*2,5*9=45π м2 (т.к. этот цилиндр представляет собой трубу без оснований)

Длина образующей конуса l рассчитывается по теореме Пифагора из треугольника ABC;

значит

l=(32+2,52)1/2=3,9 м.

S конуса R. =πrl=π*2,5*3,9=9,75 π м 2

Общая площадь поверхности бойлера

S= 12,5π+45π+9,75 π=67,25π=211,2 м 2

tehtab.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *