Сумма высшая математика – ?

Высшая математика. Теория рядов

Разделы: Математика


ВВЕДЕНИЕ

Методическое пособие предназначено для преподавателей математики в техникумах, а также для студентов второго курса, всех специальностей.

В данной работе излагаются основные понятия теории рядов. Теоретический материал соответствует требованиям Государственного образовательного стандарта среднего профессионального образования (Министерство образования Российской Федерации. М., 2002г.).

Изложение теоретического материала по всей теме сопровождается рассмотрением большого количества примеров и задач, ведется на доступном, по-возможности строгом языке. В конце пособия приведены примеры и задания, которые студенты могут выполнять в режиме самоконтроля.

Пособие предназначено для студентов заочной и дневной форм обучения.

Учитывая уровень подготовки учащихся техникума, а также крайне ограниченное число часов (12 часов + 4 ф.), отводимое программой для прохождения высшей математики в техникумах, строгие выводы, представляющие большие трудности для усвоения, опущены, ограничиваясь рассмотрением примеров.

ОСНОВНЫЕ ПОНЯТИЯ

Решение задачи, представленной в математических терминах, например, в виде комбинации различных функций, их производных и интегралов, нужно уметь “довести до числа”, которое чаще всего и служит окончательным ответом. Для этого в различных разделах математики выработаны различные методы.

Раздел математики, позволяющий решить любую корректно поставленную задачу с достаточной для практического использования точностью, называется теорией рядов.

Даже если некоторые тонкие понятия математического анализа появились вне связи с теорией рядов, они немедленно применялись к рядам, которые служили как бы инструментом для испытания значимости этих понятий. Такое положение сохраняется и сейчас.

Выражение вида

,

где ;;;…;;… — члены ряда; — n-ый или общий член ряда, называется бесконечным рядом (рядом).

Если члены ряда :

  • числа, то ряд называется числовым;
  • числа одного знака, то ряд называется знакопостоянным;
  • числа разных знаков, то ряд называется знакопеременным;
  • положительные числа, то ряд называется знакоположительным;
  • числа, знаки которых строго чередуются, то ряд называется знакочередующимся;
  • функции, то ряд называется функциональным;
  • степени, то ряд называется степенным;
  • тригонометрические функции, то ряд называется тригонометрическим.

I. Числовой ряд

1.1. Основные понятия числового ряда.

Числовым рядом называется сумма вида

, (1.1)

где ,,,…,,…, называемые членами ряда, образуют бесконечную последовательность; членназывается общим членом ряда.

Суммы

…………..

,

составленные из первых членов ряда (1.1), называются частичными суммами этого ряда.

Каждому ряду можно сопоставить последовательность частичных сумм .

Если при бесконечном возрастании номера n частичная сумма ряда стремится к пределу, то ряд называется сходящимся, а число - суммой сходящегося ряда, т.е.

и .

Эта запись равносильна записи

.

Если частичная сумма ряда (1.1) при неограниченном возрастании n не имеет конечного предела (стремится к или ), то такой ряд называется

расходящимся.

Если ряд сходящийся, то значение при достаточно большом n является приближенным выражением суммы ряда S.

Разность называется остатком ряда. Если ряд сходится, то его остаток стремится к нулю, т.е., и наоборот, если остаток стремится к нулю, то ряд сходится.

1.2. Примеры числовых рядов.

Пример 1. Ряд вида

(1.2)

называется геометрическим .

Геометрический ряд образован из членов геометрической прогрессии.

Известно, что сумма её первых n членов . Очевидно: это n-ая частичная сумма ряда (1.2).

Возможны случаи:

:

.

Ряд (1.2) принимает вид:

,

, ряд расходится;

Ряд (1.2) принимает вид:

,

не имеет предела, ряд расходится.

,

— конечное число, ряд сходится.

,

— ряд расходится.

Итак, данный ряд сходится при и расходится при .

Пример 2. Ряд вида

(1.3)

называется гармоническим.

Запишем частичную сумму этого ряда:

.

Сумма больше суммы, представленной следующим образом:

или .

Если , то , или .

Следовательно, если , то , т.е. гармонический ряд расходится.

Пример 3. Ряд вида

(1.4)

называется обобщенным гармоническим.

Если , то данный ряд обращается в гармонический ряд, который является расходящимся.

Если , то члены данного ряда больше соответствующих членов гармонического ряда и, значит, он расходится. При имеем геометрический ряд, в котором ; он является сходящимся.

Итак, обобщенный гармонический ряд сходится при и расходится при .

1.3. Необходимый и достаточные признаки сходимости.

Необходимый признак сходимости ряда.

Ряд может сходиться только при условии, что его общий член при неограниченном увеличении номера стремится к нулю: .

Если , то ряд расходится – это достаточный признак расходимости ряда.

Достаточные признаки сходимости ряда с положительными членами.

Признак сравнения рядов с положительными членами.

Исследуемый ряд сходится, если его члены не превосходят соответствующих членов другого, заведомо сходящегося ряда; исследуемый ряд расходится, если его члены превосходят соответствующие члены другого, заведомо расходящегося ряда.

Признак Даламбера.

Если для ряда с положительными членами

выполняется условие , то ряд сходится при и расходится при .

Признак Даламбера не дает ответа, если . В этом случае для исследования ряда применяются другие приемы.

Упражнения.

Записать ряд по его заданному общему члену:

;

;

.

Решение.

Полагая ,,,…, имеем бесконечную последовательность чисел:

,,. Сложив его члены, получим ряд

.

Поступая так же, получим ряд

.

Придаваязначения 1,2,3,… и учитывая, что,,,…, получим ряд

.

Найти n-ый член ряда по его данным первым членам:

;

.

Решение.

Знаменатели членов ряда, начиная с первого, являются четными числами; следовательно, n-ый член ряда имеет вид .

Числители членов ряда образуют натуральный ряд чисел, а соответствующие им знаменатели – натуральный ряд чисел, а соответствующие им знаменатели – натуральный ряд чисел, начиная с 3. Знаки чередуются по закону или по закону . Значит, n-й член ряда имеет вид . или .

Исследовать сходимость ряда, применяя необходимый признак сходимости и признак сравнения:

;

;

.

Решение.

Находим .

Необходимый признак сходимости ряда выполняется, но для решения вопроса о сходимости нужно применить один из достаточных признаков сходимости. Сравним данный ряд с геометрическим рядом

,

который сходится, так как.

Сравнивая члены данного ряда, начиная со второго, с соответствующими членами геометрического ряда, получим неравенства

т.е. члены данного ряда, начиная со второго, соответственно меньше членов геометрического ряда, откуда следует, что данный ряд сходится.

Имеем

.

Здесь выполняется достаточный признак расходимости ряда; следовательно, ряд расходится.

Находим .

Необходимый признак сходимости ряда выполняется. Сравним данный ряд с обобщенным гармоническим рядом

,

который сходится, поскольку, следовательно, сходится и данный ряд.

Исследовать сходимость ряда, используя признак Даламбера:

;

.

Решение.

Подставив в общий член ряда вместо

n число n+1, получим . Найдем предел отношения -го члена к n-му члену при :

.

Следовательно, данный ряд сходится.

Имеем

Значит, данный ряд расходится.

, т.е. ряд расходится.

II. Знакопеременный ряд

2.1 Понятие знакопеременного ряда.

Числовой ряд

называется знакопеременным, если среди его членов имеются как положительные, так и отрицательные числа.

Числовой ряд называется знакочередующимся, если любые два стоящие рядом члена имеют противоположные знаки.

,

где для всех (т.е. ряд, положительные и отрицательные члены которого следуют друг за другом поочередно). Например,

;

;

.

Для знакочередующихся рядов имеет место достаточный признак сходимости (установленный в 1714г. Лейбницем в письме к И.Бернулли).

2.2 Признак Лейбница. Абсолютная и условная сходимость ряда.

Теорема (Признак Лейбница).

Знакочередующийся ряд сходится, если:

Последовательность абсолютных величин членов ряда монотонно убывает, т.е. ;

Общий член ряда стремится к нулю:.

При этом сумма S ряда удовлетворяет неравенствам

.

Замечания.

Исследование знакочередующегося ряда вида

(с отрицательным первым членом) сводится путем умножения всех его членов на к исследованию ряда .

Ряды, для которых выполняются условия теоремы Лейбница, называются лейбницевскими (или рядами Лейбница).

Соотношение позволяет получить простую и удобную оценку ошибки, которую мы допускаем, заменяя сумму S данного ряда его частичной суммой .

Отброшенный ряд (остаток) представляет собой также знакочередующийся ряд , сумма которого по модулю меньше первого члена этого ряда, т.е.. Поэтому ошибка меньше модуля первого из отброшенных членов.

Пример. Вычислить приблизительно сумму ряда .

Решение: данный ряд Лейбницевского типа. Он сходится. Можно записать:

.

Взяв пять членов, т.е. заменивна

, сделаем ошибку, меньшую,

чем. Итак,.

Для знакопеременных рядов имеет место следующий общий достаточный признак сходимости.

Теорема. Пусть дан знакопеременный ряд

.

Если сходится ряд

,

составленный из модулей членов данного ряда, то сходится и сам знакопеременный ряд.

Признак сходимости Лейбница для знакочередующихся рядов служит достаточным признаком сходимости знакочередующихся рядов.

Знакопеременный ряд называется абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов, т.е. всякий абсолютно сходящийся ряд является сходящимся.

Если знакопеременный ряд сходится, а составленный из абсолютных величин его членов ряд расходится, то данный ряд называется условно (неабсолютно) сходящимся.

2.3. Упражнения.

Исследовать на сходимость (абсолютную или условную) знакочередующийся ряд:

;

Решение.

Члены данного ряда по абсолютной величине монотонно убывают:

и

Следовательно, согласно признаку Лейбница, ряд сходится. Выясним, сходится ли этот ряд абсолютно или условно.

Ряд , составленный из абсолютных величин данного ряда, является гармоническим рядом, который, расходится. Поэтому данный ряд сходится условно.

 

Решение.

Члены данного ряда по абсолютной величине монотонно убывают:

, но

.

Ряд расходится, так как признак Лейбница не выполняется.

;

Решение.

Используя признак Лейбница, получим

;,

т.е. ряд сходится.

Рассмотрим ряд, составленный из абсолютных величин членов данного ряда:

.

Это геометрический ряд вида, где, который сходится. Поэтому данный ряд сходится абсолютно.

;

Решение.

Используя признак Лейбница, имеем

;

, т.е. ряд сходится.

Рассмотрим ряд, составленный из абсолютных величин членов данного ряда:

, или

.

Это обобщенный гармонический ряд, который расходится, так как. Следовательно, данный ряд сходится условно.

III. Функциональный ряд

3.1. Понятие функционального ряда.

Ряд, членами которого являются функции от , называется функциональным:

xn--i1abbnckbmcl9fb.xn--p1ai

Примеры решения рядов

Формулы и уравнения рядов здесь.

Пример. Исследование на сходимость и сумма ряда.

Дано: ряд
Найти: сумму ряда в случае его сходимости.

Решение.

Представим члены ряда в виде суммы двух слагаемых:

Получается, что n-я частичная сумма ряда может быть записана в виде:

Отсюда следует, что .

Ряд сходится. Сумма ряда равна .

Пример. Необходимый признак сходимости рядов.

Дано: ряд
Найти:
Проверить выполнение необходимого признака сходимости рядов.

Решение.

Необходимый признак сходимости рядов заключается в том, что если числовой ряд сходится, то
Как следствие, если ≠ 0, то ряд расходится.

Для данного в задаче числового ряда:
≠ 0. Ряд расходится.

Примеры. Достаточные признаки сходимости положительных рядов.

Дано: ряды
1)
2)
3)
4)
5)
6)
Найти:
Исследовать ряды на сходимость.

Решение.

1) Исходя из того, что ≤ при всех n и обобщенный гармонический ряд сходится, следует то, что ряд с меньшими членами сходящийся.

2) Исходя из того, что если выполняются условия: ln n ≥ 0 при n ≥ 1, то ≥ при n ≥ 1.
Обобщенный гармонический ряд расходится, следовательно, ряд с большими членами также расходится.

3) Из ряда выделим главную часть n-го члена: при n→∞ ∼ .
Заданный ряд и ряд ведут себя одинаково, так как .
Геометрический ряд сходится, значит, ряд также сходится.

4) Из ряда выделим главную часть n-го члена: при n→∞ ∼ .
Порядок < 1, поэтому ряд расходится.

5) Из ряда выделяем главную часть n-го члена ряда:
при n→∞ ∼ .
Порядок > 1, поэтому ряд сходится.

6) Из ряда выделяем главную часть n-го члена ряда:
при n→∞ ∼
Порядок , поэтому ряд расходится.

matematika.electrichelp.ru

Ряд. Сумма ряда. | Primer.by

Определение:

Пусть задача бесконечная последовательность чисел:  

Выражение   называется числовым рядом. При этом числа  называются членами ряда.

Определение:

Рассмотрим конечные суммы:

……

Если существует конечный предел

 

 

Если  не существует, то говорят, что ряд расходится и суммы не имеет.

 

Теорема 1.

Если сходится ряд, получившийся из данного ряда отбрасыванием  нескольких его членов, то сходится и сам данный ряд.

Обратная теорема:

Если сходится данный ряд, то сходится и ряд, получившийся из данного отбрасыванием нескольких его членов.

 

На сходимость ряда не влияет отбрасывание конечного числа его членов.

 

Теорема 2.

Если ряд   сходится и его сумма равна S, то ряд

, где c=const, также сходится и его сумма равна cS.

 

Теорема 3.

Если ряды  и  сходятся и их суммы, соответственно, равны  и , то ряды

 и  также сходятся и их суммы, соответственно, равны  и .

 

При исследовании рядов одним из основных вопросов является вопрос о том, сходится ли данный ряд или расходится. Есть необходимый и достаточные признаки сходимости рядов.

 

Примеры:

Пример 1.

Пользуясь определением, доказать сходимость ряда и найти его сумму.

.

Решение.

Вычислим значение n-ой частичной суммы  данного ряда. Для этого представим общий член в виде суммы элементарных дробей: .

Неизвестные  определяются из тождества:

.

Приравнивая коэффициенты при одинаковых степенях n, получаем систему:

Отсюда находим: . Значит:

.

Теперь частичную сумму представим в виде:

Так как существует предел: , то по определению ряд сходится и его сумма равна .

Пример 2:

Пользуясь определением, доказать сходимость ряда  и найти его сумму.

Решение:

Вычислим значение n-ой частичной суммы

данного ряда. Для этого представим общий член ряда в виде суммы элементарных дробей.

Неизвестные при  и  определяем из тождества:

Приравнивая коэффициенты при одинаковых степенях n, получаем систему:

Следовательно,

Теперь частичную сумму ряда представим в виде:

Так как существует предел

то по определению ряд сходится и его сумма равна

Ответ: ряд сходится и его сумма равна

 

primer.by

Решение высшей математики онлайн


‹— Назад В математике для записи сумм, содержащих много слагаемых, или в случае, когда число слагаемых обозначено буквой, применяется следующая запись: которая расшифровывается так
(14.1)

где — функция целочисленного аргумента. Здесь символ (большая греческая буква «сигма») означает суммирование. Запись внизу символа суммирования показывает, что переменная, которая меняет свои значения от слагаемого к слагаемому, обозначена буквой и что начальное значение этой переменной равно . Запись вверху обозначает последнее значение, которое принимает переменная .

В курсе линейной алгебры чаще всего будут встречаться суммы вида . Здесь переменная с индексом рассматривается как функция от своего индекса. Поэтому

С помощью знака суммы формулу (10.1) скалярного произведения векторов можно записать так:
(14.2)

где для трехмерного пространства , для плоскости .

Для единообразия будем считать, что

и говорить, что это сумма, содержащая одно слагаемое.         Замечание 14.1   Буква, стоящая внизу под знаком суммы (индекс суммирования), не влияет на результат суммирования. Важно лишь, как от этого индекса зависит суммируемая величина. Например, Или в правой части никакой буквы нет, значит, и результат от не зависит.         

Доказательство этого предложения предоставляется читателю.

        Предложение 14.2  
(14.3)

Это предложение является частным случаем следующего утверждения.         Доказательство.     Пусть Тогда
Раскроем скобки в правой части этого равенства. Получим сумму элементов при всех допустимых значениях индексов суммирования. Слагаемые сгруппируем по-другому, а именно, сначала соберем все слагаемые, у которых первый индекс равен 1, потом, у которых первый индекс равен 2 и т.д. Получим
Заменив в этом равенстве в левой части его выражением через знаки суммирования, получим формулу (14.4).     
        Замечание 14.2   Двойные суммы из равенства (14.4) можно записывать и без использования скобок         

Нужно помнить, что двойная сумма означает сумму элементов для всех допустимых значений индексов суммирования. По этой же причине, если встречается запись, содержащая подряд три или более символов суммирования, то порядок расстановки этих символов можно менять произвольно.

Если границы изменения всех индексов суммирования одинаковы, то можно для суммирования по нескольким индексам использовать запись вида

Иногда под символом суммы указывают дополнительные условия, налагаемые на индексы суммирования. Так запись

означает, что в сумму не включаются величины , ,…, , то есть с равными индексами.

Иногда в записи суммы не указываются границы изменения индексов, например,

Такая запись используется, когда значения, которые могут принимать индексы, очевидны из предыдущего текста или будут оговорены сразу после окончания формулы.

Математика, вышка, высшая математика, математика онлайн, вышка онлайн, онлайн математика, онлайн решение математики, ход решения, процес решения, решение, задачи, задачи по математике, математические задачи, решение математики онлайн, решение математики online, online решение математики, решение высшей математики, решение высшей математики онлайн, матрицы, решение матриц онлайн, векторная алгебра онлайн, решение векторов онлайн, система линейных уравнений, метод Крамера, метод Гаусса, метод обратной матрицы, уравнения, системы уравнений, производные, пределы, интегралы, функция, неопределенный интеграл, определенный интеграл, решение интегралов, вычисление интегралов, решение производных, интегралы онлайн, производные онлайн, пределы онлайн, предел функции, предел последовательности, высшие производные, производная неявной функции

mathserfer.narod.ru

Высшая математика

Основные теоремы и определения

Определение. Сумма членов бесконечной числовой последовательности

называется числовым рядом.

При этом числа

будем называть членами ряда, а un – общим членом ряда.

Определение. Суммы

, n = 1, 2, … называются частными (частичными) суммами ряда.

Таким образом, возможно рассматривать последовательности частичных сумм ряда S1 , S2 , …,Sn , …

Определение. Ряд

называется сходящимся, если сходится последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм.

Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.

Свойства рядов.

1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.

2) Рассмотрим два ряда

и , где С – постоянное число.

Теорема. Если ряд

сходится и его сумма равна S, то ряд тоже сходится, и его сумма равна СS. (C¹ 0)

3) Рассмотрим два ряда

и . Суммой или разностью этих рядов будет называться ряд , где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами.

Теорема. Если ряды

и сходятся и их суммы равны соответственно S и s, то ряд тоже сходится и его сумма равна S + s.

Разность двух сходящихся рядов также будет сходящимся рядом.

Сумма сходящегося и расходящегося рядов будет расходящимся рядом.

О сумме двух расходящихся рядов общего утверждения сделать нельзя.

При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.

Критерий Коши.

(необходимые и достаточные условия сходимости ряда)

Для того, чтобы последовательность

была сходящейся, необходимо и достаточно, чтобы для любого существовал такой номер N, что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство: .

1.3 Определение. Ряд

называется равномерно сходящимся на отрезке [a,b], если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.

Теорема. (Критерий Коши равномерной сходимости ряда)

Для равномерной сходимости ряда

необходимо и достаточно, чтобы для любого числа e>0 существовал такой номер N(e), что при n>N и любом целом p>0 неравенство

выполнялось бы для всех х на отрезке [a,b].

Теорема. (Признак равномерной сходимости Вейерштрасса)

(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик)

Ряд

сходится равномерно и притом абсолютно на отрезке [a,b], если модули его членов на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами :

т.е. имеет место неравенство:

.

Еще говорят, что в этом случае функциональный ряд

мажорируется числовым рядом .

ряд

называется положительным, если Un ≥0, для всех n € N

Интегральный признак Коши.

Если j(х) – непрерывная положительная функция, убывающая на промежутке [1;¥), то ряд j(1) + j(2) + …+ j(n) + … =

и несобственный интеграл одинаковы в смысле сходимости.

Пример. Ряд

сходится при a>1 и расходится a£1 т.к. соответствующий несобственный интеграл сходится при a>1 и расходится a£1. Ряд называется общегармоническим рядом.

Следствие. Если f(x) и j(х) – непрерывные функции на интервале (a, b] и

то интегралы и ведут себя одинаково в смысле сходимости.

Степенные ряды.

Определение. Степенным рядом называется ряд вида

.

Для исследования на сходимость степенных рядов удобно использовать признак Даламбера.

Пример. Исследовать на сходимость ряд

Применяем признак Даламбера:

.

Получаем, что этот ряд сходится при

и расходится при .

Теперь определим сходимость в граничных точках 1 и –1.

При х = 1:

ряд сходится по признаку Лейбница (см. Признак Лейбница. ).

При х = -1:

ряд расходится (гармонический ряд).

1 теорема Абеля.

(Нильс Хенрик Абель (1802 – 1829) – норвежский математик)

Теорема. Если степенной ряд

сходится при x = x1 , то он сходится и притом абсолютно для всех .

Доказательство. По условию теоремы, так как члены ряда ограничены, то

где k- некоторое постоянное число. Справедливо следующее неравенство:

Из этого неравенства видно, что при x<x1 численные величины членов нашего ряда будут меньше ( во всяком случае не больше ) соответствующих членов ряда правой части записанного выше неравенства, которые образуют геометрическую прогрессию. Знаменатель этой прогрессии

по условию теоремы меньше единицы, следовательно, эта прогрессия представляет собой сходящийся ряд.

Поэтому на основании признака сравнения делаем вывод, что ряд

сходится, а значит ряд сходится абсолютно.

Таким образом, если степенной ряд

сходится в точке х1 , то он абсолютно сходится в любой точке интервала длины 2 с центром в точке х = 0.

Следствие. Если при х = х1 ряд расходится, то он расходится для всех

.

Таким образом, для каждого степенного ряда существует такое положительное число R, что при всех х таких, что

ряд абсолютно сходится, а при всех ряд расходится. При этом число R называется радиусом сходимости. Интервал (-R, R) называется интервалом сходимости.

mirznanii.com

Высшая математика онлайн

Высшая математика — интегралы

Рассмотрим несколько примеров по решению интегралов из задачника по высшей математике:

Определенный интеграл

∫(5x + 6)cos(2x) dx — Для этого, вводим на странице https://www.kontrolnaya-rabota.ru/s/integral/neopredelennyij/ это выражение и получим ответ:
>> здесь <<

Неопределенный интеграл

Чтобы найти подробное решение, вам надо будет оставить ссылку на сайт Контрольная-работа, и в течение 1 минуты вы получите подробное решение по введенному неопределенному интегралу.

Если же надо решить определенный интеграл, например такой:

∫x^3/(x^2+4) dx с пределами интегрирования от 0 до 2

Для этого, по ссылке https://www.kontrolnaya-rabota.ru/s/integral/opredelennyij/ вводим подинтегральную функции и данные пределы интегрирования, получим то, что находится по ссылке:

>> здесь <<

там видно, что сначала решается неопределенный интеграл, а потом в результат подставляются пределы интегрирования.
Но в задачах по высшей математике требуется не только ответ, но еще и решение.

Там вы можете получить подробное решение бесплатно, если разместите ссылку на этот сайт.

Несобственный интеграл

В высшей математике требуется иногда решать несобственные интегралы, дак этот сайт вам поможет решить их.

Например, требуется решить интеграл ∫1/(x^2+1) dx с пределами интегрирования от минус бесконечности -∞ до плюс бесконечности +∞;

Для этого на странице https://www.kontrolnaya-rabota.ru/s/integral/nesobstvennyij/ в форму вводим данные, и получим подробный ответ(!):

>> тут <<

Двойной интеграл

В курсе высшей математики иногда требуется посчитать двойной интеграл, и вот — данный сайт решит указанный вами двойной интеграл.

К примеру, если вам требуется решить интеграл ∫ dx ∫x*sin(x*y) dy с пределами интегрирования от 0 до x и числа пи на два до числа пи.

Для этого на странице https://www.kontrolnaya-rabota.ru/s/integral/dvoinoi/ вводим данные, и получим очень подробный ответ:

>> где-то тут <<

Тройной интеграл

Тройной интеграл вы с легкостью решите из курса высшей математики.

Воспользуйтесь сервисом, находящимся по адресу https://www.kontrolnaya-rabota.ru/s/integral/troinoi/

Видео пример для двойного интеграла

www.kontrolnaya-rabota.ru

Формулы и уравнения математического анализа

Формулы и уравнения математического анализа
    Предел последовательности
  • Арифметическая прогрессия { an } – числовая последовательность a1, a2, … , an, n ∈ N такая, что
    n > 1, an = an-1 + d (d – разность).
    (n > 1).
  • Геометрическая прогрессия { bn } – числовая последовательность b1, b2, … , bn, n ∈ N такая, что
    b1 ≠ 0 и ∀n > 1, bn = bn-1 × q (q – знаменатель).
    (n > 1)
    , q ≠ 1.
    , если 0 < |q| < 1.
  • Основные определения
    {xn} – последовательность xn.
    xn = f(n) — формула общего члена последовательности.
    — предел последовательности {xn}; если a ∈ R, последовательность {xn} называется сходящейся.
    {xn} бесконечно малая последовательность, если .
    {xn} бесконечно большая последовательность, если
    ∀M > 0 ∃N = N(M): ∀n > N(M) ⇒ |xn| > M.
  • Свойства сходящихся последовательностей



    если yn ≠ 0, b ≠ 0;

  • Если для любого n xn ≤ b, то ≤ b.
    Если для любого n xn ≥ b, то ≥ b.
    Если для любого n xn ≤ yn ≤ zx и то
    где {an} – бесконечно малая последовательность.
  • Свойства бесконечно малых и бесконечно больших последовательностей (б.м.п. и б.б.п.)
    1. Б.м.п. ограничена.
    2. Сумма, разность и произведение двух б.м.п. есть также б.м.п.
    3. Произведение ограниченной последовательности на б.м.п. есть также б.м.п.
    4. Если элементы б.м.п. {xn} не равны нулю, то
    последовательность – б.б.п.
    5. Если {xn} – б.б.п. и xn ≠ 0, то
    последовательность – б.м.п.
  • Важные соотношения:

    n!=1∙2∙3∙…∙n, формула Стирлинга: при n → ∞ n!≈
    Неравенство Бернулли: (1+α)n ≥ 1 + nα, α > -1, n ∈ N.
    Формула бинома Ньютона:



    Свойства функций, имеющих предел

  1. , если пределы f и ϕ существуют.
  2. , если пределы f и ϕ существуют.
  3. .
  4. , если пределы f и ϕ существуют и ≠0.
  5. f(x) ≤ ϕ(x) ≤
  6. f(x) ≤ ϕ(x) ≤ g(x), (теорема о пределе промежуточной функции).
    Замечательные пределы
  • Первый замечательный предел :
  • Второй замечательный предел :
    Таблица производных (с учетом u = ϕ(x))
  1. .
  2. (a > 0, a ≠ 1) .
  3. (a > 0, a ≠ 1) .
  4. .
  5. .
  6. .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. . Гиперболический синус .
  13. . Гиперболический косинус .
  14. . Гиперболический тангенс .
  15. . Гиперболический котангенс .
    Правила вычисления производной n-го порядка
  1. Производная суммы:
    [f(x)+g(x)](n)=f(n)(x)+g(n)(x).
  2. Формула Лейбница (производная произведения):
    , где
    – число сочетаний из n по k, .

Формулы, уравнения, теоремы, примеры решения задач

matematika.electrichelp.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *