Свойство факториала – Факториал. Понятие и свойство факториала.

Содержание

definition of ФАКТОРИАЛ and synonyms of ФАКТОРИАЛ (Russian)

Факториа́л числа n (обозначается n!, произносится эн факториа́л) — произведение всех натуральных чисел до n включительно:

.

Например:

По определению полагают . Факториал определён только для целых неотрицательных чисел.

Последовательность факториалов неотрицательных целых чисел начинается так:

1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, … (последовательность A000142 в OEIS)

Факториалы часто используются в комбинаторике, теории чисел и функциональном анализе.

  Свойства

  Рекуррентная формула

  Комбинаторная интерпретация

В комбинаторике факториал натурального числа n интерпретируется как количество перестановок (упорядочиваний) множества из n элементов. Например, для множества {A,B,C,D} из 4-х элементов существует 4! = 24 перестановки:

ABCD  BACD  CABD  DABC
ABDC  BADC  CADB  DACB
ACBD  BCAD  CBAD  DBAC
ACDB  BCDA  CBDA  DBCA
ADBC  BDAC  CDAB  DCAB
ADCB  BDCA  CDBA  DCBA

Комбинаторная интерпретация факториала служит обоснованием тождества 0! = 1, т. к. пустое множество упорядочено единственным способом.

  Связь с гамма-функцией

Факториал связан с гамма-функцией от целочисленного аргумента соотношением:

Таким образом, гамма-функцию рассматривают как обобщение факториала для положительных вещественных чисел.

  Амплитуда и фаза факториала комплексного аргумента.

Путём аналитического продолжения её также расширяют и на всю комплексную плоскость, исключая особые точки при .

  Формула Стирлинга

Формула Стирлинга — асимптотическая формула для вычисления факториала:

см. O-большое. Коэффициенты этого разложения дают последовательность A001163 в OEIS (числители) и последовательность A001164 в OEIS (знаменатели).

Во многих случаях для приближённого значения факториала достаточно рассматривать только главный член формулы Стирлинга:

При этом можно утверждать, что

  Разложение на простые числа

Каждое простое число

p входит в разложение на простые множители в степени

Таким образом,

где произведение берётся по всем простым числам. Нетрудно видеть, что для всякого простого p большего n соответствующий множитель в произведении равен 1, а потому произведение можно брать лишь по простым p, не превосходящим n.

  Другие свойства

  • Для натурального числа n

  Обобщения

  Двойной факториал

Двойной факториал числа n обозначается n!! и определяется как произведение всех натуральных чисел в отрезке [1,n], имеющих ту же чётность что и n. Таким образом,

По определению полагают .

Последовательность значений n!! начинается так:

1, 1, 2, 3, 8, 15, 48, 105, 384, 945, … (последовательность A006882 в OEIS)

  Кратный факториал

m-кратный факториал числа n обозначается и определяется следующим образом:

Пусть число n представимо в виде , где , . Тогда[1]

Двойной факториал является частным случаем

m-кратного факториала для m = 2.

  Связь с гамма-функцией

[2]

  Убывающий факториал

Убывающим факториалом (или неполным факториалом) называется выражение

Убывающий факториал даёт число размещений из n по k.

  Возрастающий факториал

Возрастающим факториалом называется выражение

  Праймориал или примориал

Праймориал или примориал (англ. primorial) числа n обозначается n#  и определяется как произведение простых чисел, не превышающих n. Например,

Последовательность праймориалов (включая ) начинается так:

1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, … (последовательность A002110 в OEIS)

  Суперфакториалы

Нейл Слоан и Саймон Плоуф (англ.) в 1995 году определили суперфакториал как произведение первых факториалов. Согласно этому определению суперфакториал четырёх равен (поскольку устоявшегося обозначения нет, используется функциональное)

В общем

Последовательность суперфакториалов чисел n⩾0 начинается так:

1, 1, 2, 12, 288, 34560, 24883200, … (последовательность A000178 в OEIS)

Идея была обобщена в 2000 году Генри Боттомли (англ.), что привело к гиперфакториалам (англ. Super-duper-factorial), которые являются произведением первых n суперфакториалов. Последовательность гиперфакториалов чисел n⩾0 начинается так:

1, 1, 2, 24, 6912, 238878720, 5944066965504000, … (последовательность A055462 в OEIS)

Продолжая рекуррентно, можно определить факториал кратного уровня, где m-уровневый факториал числа n как произведение первых n (m-1)-уровневых факториалов, то есть

где для и .

  Субфакториал

Субфакториал определяется как количество беспорядков порядка , то есть перестановок -элементного множества без неподвижных точек.

  Ссылки

  См. также

  Примечания

  1. "Энциклопедия для детей" Аванта+. Математика
  2. wolframalpha.com
   

dictionary.sensagent.com

свойства факториалов — Что такое факториал и зачем он нужен? — 22 ответа



В разделе Школы на вопрос Что такое факториал и зачем он нужен? заданный автором Анна Бурмус лучший ответ это n! — произведение всех натуральных чисел от 1 до n включительно:
7!=1*2*3*4*5*6*7
нужен для удобства записи таких произведений.

Ответ от 22 ответа[гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Что такое факториал и зачем он нужен?

Ответ от Невролог[новичек]
Факториа?л числа n (лат. factorialis — действующий, производящий, умножающий; обозначается n!, произносится эн факториа?л) — произведение всех натуральных чисел от 1 до n.Он нужен для вычисления простых функций в алгебраическом действие.

Ответ от Alex[новичек]
Факториа?л числа n (лат. factorialis — действующий, производящий, умножающий; обозначается n!, произносится эн факториа?л) — произведение всех натуральных чисел от 1 до n включительно:

Например:
.
По договорённости:. Также это равенство выполняется естественным образом:
Факториал определён только для целых неотрицательных чисел.
Последовательность факториалов неотрицательных целых чисел начинается так [1]:
1, 1, 2, 6, 24, 120, 720, 5040, 40 320, 362 880, 3 628 800, 39 916 800, 479 001 600, 6 227 020 800, 87 178 291 200, 1 307 674 368 000, 20 922 789 888 000, 355 687 428 096 000, 6 402 373 705 728 000, 121 645 100 408 832 000, 2 432 902 008 176 640 000, …
Факториалы часто используются в комбинаторике, теории чисел и функциональном анализе.
Факториал является чрезвычайно быстро растущей функцией. Он растёт быстрее, чем многочлен любой степени, и быстрее, чем экспоненциальная функция (но медленнее, чем двойная экспоненциальная функция ).
Свойства
Рекуррентная формула
Комбинаторная интерпретация
В комбинаторике факториал натурального числа n интерпретируется как количество перестановок (упорядочиваний) множества из n элементов. Например, для множества {A,B,C,D} из 4-х элементов существует 4! = 24 перестановки:
ABCD BACD CABD DABC
ABDC BADC CADB DACB
ACBD BCAD CBAD DBAC
ACDB BCDA CBDA DBCA
ADBC BDAC CDAB DCAB
ADCB BDCA CDBA DCBA
Комбинаторная интерпретация факториала служит обоснованием тождества 0! = 1, так как пустое множество упорядочено единственным способом.
Связь с гамма-функцией [править | править вики-текст]
Амплитуда и фаза факториала комплексного аргумента.
Факториал связан с гамма-функцией от целочисленного аргумента соотношением:
Таким образом, гамма-функцию рассматривают как обобщение факториала для положительных вещественных чисел.
Путём аналитического продолжения её также расширяют и на всю комплексную плоскость, исключая особые точки при .
Пи-функция, определённая для всех вещественных чисел, кроме отрицательных целых, и совпадающая при натуральных значениях аргумента с факториалом.
Более непосредственным обобщением факториала на множество вещественных (и комплексных) чисел является пи-функция, определяемая как
.
Поскольку то пи-функция натурального числа совпадает с его факториалом: Как факториал, пи-функция удовлетворяет рекурсивному соотношению
Формула Стирлинга
Основная статья: Формула Стирлинга
Формула Стирлинга — асимптотическая формула для вычисления факториала:
см. O-большое [2].
Во многих случаях для приближённого значения факториала достаточно рассматривать только главный член формулы Стирлинга:
При этом можно утверждать, что
Формула Стирлинга позволяет получить приближённые значения факториалов больших чисел без непосредственного перемножения последовательности натуральных чисел. Так, с помощью формулы Стирлинга легко подсчитать, что
•100! ? 9,33?10157;
•1000! ? 4,02?102567;
•10 000! ? 2,85?1035 659.
Разложение на простые числа
Каждое простое число p входит в разложение n! на простые множители в степени
Таким образом,
где произведение берётся по всем простым числам. Нетрудно видеть, что для всякого простого p большего n соответствующий множитель в произведении равен 1, а потому произведение можно брать лишь по простым p, не превосходящим n.
Связь с производной от степенной функции
Для целого неотрицательного числа n:
Например:
Другие свойства
•Для натурального числа n:
Обобщения
Двойной факториал
Запрос «!» перенаправляется сюда; см. также другие значения.
Двойной факториал числа n о


Факториал на Википедии
Посмотрите статью на википедии про Факториал

22oa.ru

Факториал — WiKi

Факториа́л — функция, определённая на множестве неотрицательных целых чисел. Название происходит от лат. factorialis — действующий, производящий, умножающий; обозначается n!, произносится эн факториа́л. Факториал натурального числа n определяется как произведение всех натуральных чисел от 1 до n включительно:

n!=1⋅2⋅…⋅n=∏k=1nk{\displaystyle n!=1\cdot 2\cdot \ldots \cdot n=\prod _{k=1}^{n}k}.

Например,

5!=1⋅2⋅3⋅4⋅5=120{\displaystyle 5!=1\cdot 2\cdot 3\cdot 4\cdot 5=120}.

Из определения факториала следует соотношение (n−1)!=n!n{\displaystyle (n-1)!={\frac {n!}{n}}}, откуда при n=1{\displaystyle n=1} формально находим

0!=1{\displaystyle 0!=1}.

Последнее равенство обычно принимают в качестве соглашения, хотя, как показано выше, оно следует из определения факториала для натуральных чисел при условии, что все значения функции связаны единым рекуррентным соотношением.

Факториалы всех чисел составляют последовательность A000142 в OEIS; значения в научной нотации округляются
n n!
0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880
10 3628800
11 39916800
12 479001600
13 6227020800
14 87178291200
15 1307674368000
16 20922789888000
17 355687428096000
18 6402373705728000
19 121645100408832000
20 2432902008176640000
25 ≈1,551121004⋅1025
50 ≈3,041409320⋅1064
70 ≈1,197857167⋅10100
100 ≈9,332621544⋅10157
450 ≈1,733368733⋅101000
1000 ≈4,023872601⋅102567
3249 ≈6,412337688⋅1010000
10000 ≈2,846259681⋅1035659
25206 ≈1,205703438⋅10100000
100000 ≈2,824229408⋅10456573
205023 ≈2,503898932⋅101000004
1000000 ≈8,263931688⋅105565708
10100 ≈109,956570552⋅10101
101000 ≈10101003
1010 000 ≈101010 004
10100 000 ≈1010100 005
1010100 ≈101010100

Факториал активно используется в различных разделах математики: комбинаторике, математическом анализе, теории чисел, функциональном анализе и др.

Факториал является чрезвычайно быстро растущей функцией. Он растёт быстрее, чем любая показательная функция или любая степенная функция, а также быстрее, чем любая сумма произведений этих функций. Однако, степенно-показательная функция nn{\displaystyle n^{n}} растёт быстрее факториала, так же как и большинство двойных степенных, например een{\displaystyle e^{e^{n}}}.

Свойства

Рекуррентная формула

Факториал может быть задан следующей рекуррентной формулой:

n!={1n=0,n⋅(n−1)!n>0.{\displaystyle n!={\begin{cases}1&n=0,\\n\cdot (n-1)!&n>0.\end{cases}}} 

Комбинаторная интерпретация

В комбинаторике факториал натурального числа n интерпретируется как количество перестановок (упорядочиваний) множества из n элементов. Например, для множества {A,B,C,D} из 4-х элементов существует 4! = 24 перестановки:

ABCD  BACD  CABD  DABC
ABDC  BADC  CADB  DACB
ACBD  BCAD  CBAD  DBAC
ACDB  BCDA  CBDA  DBCA
ADBC  BDAC  CDAB  DCAB
ADCB  BDCA  CDBA  DCBA

Комбинаторная интерпретация факториала подтверждает целесообразность соглашения 0!=1{\displaystyle 0!=1}  — количество перестановок пустого множества равно единице. Кроме того, формула для числа размещений из n{\displaystyle n}  элементов по m{\displaystyle m} 

Anm=n!(n−m)!{\displaystyle A_{n}^{m}={\frac {n!}{(n-m)!}}} 

при n=m{\displaystyle n=m}  обращается в формулу для числа перестановок из n{\displaystyle n}  элементов (порядка n{\displaystyle n} ), которое равно n!{\displaystyle n!} .

Связь с гамма-функцией

  Пи-функция, определённая для всех вещественных чисел, кроме отрицательных целых, и совпадающая при натуральных значениях аргумента с факториалом.

Факториал связан с гамма-функцией от целочисленного аргумента соотношением

n!=Γ(n+1){\displaystyle n!=\Gamma (n+1)} .

Это же выражение используют для обобщения понятия факториала на множество вещественных чисел. Используя аналитическое продолжение гамма-функции, область определения факториала также расширяют на всю комплексную плоскость, исключая особые точки при n=−1,−2,−3…{\displaystyle n=-1,-2,-3\ldots } .

Непосредственным обобщением факториала на множества вещественных и комплексных чисел служит пи-функция Π(z)=Γ(z+1){\displaystyle \Pi (z)=\Gamma (z+1)} , которая при Re(z)>−1{\displaystyle \mathrm {Re} (z)>-1}  может быть определена как

Π(z)=∫0∞tze−tdt{\displaystyle \Pi (z)=\int _{0}^{\infty }t^{z}e^{-t}\,\mathrm {d} t}  (интегральное определение).

Пи-функция натурального числа или нуля совпадает с его факториалом: Π(n)=n!{\displaystyle \Pi (n)=n!} . Как и факториал, пи-функция удовлетворяет рекуррентному соотношению Π(z)=zΠ(z−1){\displaystyle \Pi (z)=z\Pi (z-1)} .

Формула Стирлинга

Формула Стирлинга — асимптотическая формула для вычисления факториала:

n!=2πn(ne)n(1+112n+1288n2−13951840n3−5712488320n4+163879209018880n5+524681975246796800n6+O(n−7)),{\displaystyle n!={\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}\left(1+{\frac {1}{12n}}+{\frac {1}{288n^{2}}}-{\frac {139}{51840n^{3}}}-{\frac {571}{2488320n^{4}}}+{\frac {163879}{209018880n^{5}}}+{\frac {5246819}{75246796800n^{6}}}+O\left(n^{-7}\right)\right),} 

см. O-большое[1].

Во многих случаях для приближённого вычисления факториала достаточно рассматривать только главный член формулы Стирлинга:

n!≈2πn(ne)n.{\displaystyle n!\approx {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}.} 

При этом можно утверждать, что

2πn(ne)ne1/(12n+1)<n!<2πn(ne)ne1/(12n).{\displaystyle {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n+1)}<n!<{\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n)}.} 

Формула Стирлинга позволяет получить приближённые значения факториалов больших чисел без непосредственного перемножения последовательности натуральных чисел. Например, с помощью формулы Стирлинга легко подсчитать, что

  • 100! ≈ 9,33×10157;
  • 1000! ≈ 4,02×102567;
  • 10 000! ≈ 2,85×1035 659.

Разложение на простые числа

Каждое простое число p входит в разложение n! на простые множители в степени

⌊np⌋+⌊np2⌋+⌊np3⌋+….{\displaystyle \left\lfloor {\frac {n}{p}}\right\rfloor +\left\lfloor {\frac {n}{p^{2}}}\right\rfloor +\left\lfloor {\frac {n}{p^{3}}}\right\rfloor +\ldots .} 

Таким образом,

n!=∏pp⌊np⌋+⌊np2⌋+…,{\displaystyle n!=\prod _{p}p^{\lfloor {\frac {n}{p}}\rfloor +\lfloor {\frac {n}{p^{2}}}\rfloor +\ldots },} 

где произведение берётся по всем простым числам. Можно заметить, что для всякого простого p большего n соответствующий множитель в произведении равен 1; следовательно, произведение можно брать лишь по простым p, не превосходящим n.

Связь с производной от степенной функции

Для целого неотрицательного числа n:

(xn)(n)=n!{\displaystyle \left(x^{n}\right)^{(n)}=n!} 

Например:

(x5)(5)=(5⋅x4)(4)=(5⋅4⋅x3)‴=(5⋅4⋅3⋅x2)″=(5⋅4⋅3⋅2⋅x)′=5⋅4⋅3⋅2⋅1=5!{\displaystyle \left(x^{5}\right)^{(5)}=\left(5\cdot x^{4}\right)^{(4)}=\left(5\cdot 4\cdot x^{3}\right)'''=\left(5\cdot 4\cdot 3\cdot x^{2}\right)''=\left(5\cdot 4\cdot 3\cdot 2\cdot x\right)'={5\cdot 4\cdot 3\cdot 2\cdot 1}=5!} 

Другие свойства

Для натурального числа n:
n!2⩾nn⩾n!⩾n{\displaystyle n!^{2}\geqslant n^{n}\geqslant n!\geqslant n} 
Для любого n>1:
n!{\displaystyle n!}  не является квадратом целого числа.

История

Факториальные выражения появились ещё в ранних исследованиях по комбинаторике, хотя компактное обозначение n!{\displaystyle n!}  предложил французский математик Кристиан Крамп только в 1808 году[2]. Важным этапом стало открытие формулы Стирлинга, которую Джеймс Стирлинг опубликовал в своём трактате «Дифференциальный метод» (лат. Methodus differentialis, 1730 год). Немного ранее почти такую же формулу опубликовал друг Стирлинга Абрахам де Муавр, но в менее завершённом виде (вместо коэффициента 2π{\displaystyle {\sqrt {2\pi }}}  была неопределённая константа)[3].

Стирлинг подробно исследовал свойства факториала, вплоть до выяснения вопроса о том, нельзя ли распространить это понятие на произвольные вещественные числа. Он описал несколько возможных путей к реализации этой идеи и высказал мнение, что:

(12)!=π2{\displaystyle \left({1 \over 2}\right)!={\frac {\sqrt {\pi }}{2}}} 

Стирлинг не знал, что годом ранее решение проблемы уже нашёл Леонард Эйлер. В письме к Кристиану Гольдбаху Эйлер описал требуемое обобщение[4]:

x!=limm→∞mxm!(x+1)(x+2)…(x+m){\displaystyle x!=\lim _{m\to \infty }{\frac {m^{x}m!}{(x+1)(x+2)\dots (x+m)}}} 

Развивая эту идею, Эйлер в следующем, 1730 году ввёл понятие гамма-функции в виде классического интеграла. Эти результаты он опубликовал в журнале Санкт-Петербургской Академии наук в 1729—1730 годах.

Обобщения

Двойной факториал

Двойной факториал числа n обозначается n‼ и определяется как произведение всех натуральных чисел в отрезке [1,n], имеющих ту же чётность, что и n.

n!!=2⋅4⋅6⋅…⋅n=∏i=1n22i=21n2⋅(n2)!{\displaystyle n!!=2\cdot 4\cdot 6\cdot \ldots \cdot n=\prod _{i=1}^{\frac {n}{2}}2i=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!} 
  • Для нечётного n:
n!!=1⋅3⋅5⋅…⋅n=∏i=0n−12(2i+1)=n!21n−12⋅(n−12)!{\displaystyle n!!={1\cdot 3\cdot 5\cdot \ldots \cdot n}=\prod _{i=0}^{\frac {n-1}{2}}(2i+1)={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}} 

Связь между двойными факториалами двух соседних целых неотрицательных чисел и обычным факториалом одного из них.

n!!=(n+1)!(n+1)!!{\displaystyle n!!={\frac {(n+1)!}{(n+1)!!}}} 
  • Для нечётного n:
n!!=n!(n−1)!!{\displaystyle n!!={\frac {n!}{(n-1)!!}}} 

Выведение формул

Осуществив замену n=2k{\displaystyle n=2k}  для чётного n и n=2k+1{\displaystyle n=2k+1}  для нечётного n соответственно, где k{\displaystyle k}  — целое неотрицательное число, получим:

  • для чётного числа:
(2k)!!=2⋅4⋅6⋅…⋅2k=∏i=1k2i=2k⋅k!{\displaystyle (2k)!!=2\cdot 4\cdot 6\cdot \ldots \cdot 2k=\prod _{i=1}^{k}2i=2^{k}\cdot k!} 
  • для нечётного числа:
(2k+1)!!=1⋅3⋅5⋅…⋅(2k+1)=∏i=0k(2i+1)=(2k+1)!2k⋅k!{\displaystyle (2k+1)!!=1\cdot 3\cdot 5\cdot \ldots \cdot (2k+1)=\prod _{i=0}^{k}(2i+1)={\frac {(2k+1)!}{2^{k}\cdot k!}}} 

По договорённости: 0!!=1{\displaystyle 0!!=1} . Также это равенство выполняется естественным образом:

0!!=20⋅0!=1⋅1=1{\displaystyle 0!!=2^{0}\cdot 0!=1\cdot 1=1} 

Двойной факториал, также как и обычный факториал, определён только для целых неотрицательных чисел.

Последовательность значений n!! начинается так[5]:

1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, 10 395, 46 080, 135 135, 645 120, 2 027 025, 10 321 920, 34 459 425, 185 794 560, 654 729 075, 3 715 891 200, 13 749 310 575, 81 749 606 400, 316 234 143 225, 1 961 990 553 600, 7 905 853 580 625, 51 011 754 393 600, …

Кратный факториал

m-кратный факториал числа n обозначается n!!…!⏟m{\displaystyle \textstyle n\underbrace {!!\ldots !} _{m}}  и определяется следующим образом. Пусть число n представимо в виде n=mk−r,{\displaystyle n=mk-r,}  где k∈Z,{\displaystyle k\in \mathbb {Z} ,}  r∈{0,1,…,m−1}.{\displaystyle r\in \{0,1,\ldots ,m-1\}.}  Тогда[6]

n!!…!⏟m=∏i=1k(mi−r){\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)} 

Обычный и двойной факториалы являются частными случаями m-кратного факториала для m = 1 и m = 2 соответственно.

Кратный факториал связан с гамма-функцией следующим соотношением[7]:

n!!…!⏟m=∏i=1k(mi−r)=mk⋅Γ(k−rm+1)Γ(1−rm).{\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)=m^{k}\cdot {\frac {\Gamma \left(k-{\frac {r}{m}}+1\right)}{\Gamma \left(1-{\frac {r}{m}}\right)}}.} 

Неполный факториал

Убывающий факториал

Убывающим факториалом называется выражение

(n)k=nk_=n[k]=n⋅(n−1)⋅…⋅(n−k+1)=n!(n−k)!=∏i=n−k+1ni{\displaystyle (n)_{k}=n^{\underline {k}}=n^{[k]}=n\cdot (n-1)\cdot \ldots \cdot (n-k+1)={\frac {n!}{(n-k)!}}=\prod _{i=n-k+1}^{n}i} .

Например:

n = 7; k = 4,
(nk) + 1 = 4,
nk = 7 • 6 • 5 • 4 = 840.

Убывающий факториал даёт число размещений из n по k.

Возрастающий факториал

Возрастающим факториалом называется выражение

n(k)=nk¯=n⋅(n+1)⋅…⋅(n+k−1)=(n+k−1)!(n−1)!=∏i=n(n+k)−1i.{\displaystyle n^{(k)}=n^{\overline {k}}=n\cdot (n+1)\cdot \ldots \cdot (n+k-1)={\frac {(n+k-1)!}{(n-1)!}}=\prod _{i=n}^{(n+k)-1}i.} 

Праймориал или примориал

Праймориал или примориал (англ. primorial) числа n обозначается pn# и определяется как произведение n первых простых чисел. Например,

p5#=2×3×5×7×11=2310{\displaystyle p_{5}\#=2\times 3\times 5\times 7\times 11=2310} .

Иногда праймориалом называют число n#{\displaystyle n\#} , определяемое как произведение всех простых чисел, не превышающих заданное n.

Последовательность праймориалов (включая 1#≡1{\displaystyle {\textstyle {1\#\equiv 1}}} ) начинается так[8]:

1, 2, 6, 30, 210, 2310, 30 030, 510 510, 9 699 690, 223 092 870, 6 469 693 230, 200 560 490 130, 7 420 738 134 810, 304 250 263 527 210, 13 082 761 331 670 030, 614 889 782 588 491 410, 32 589 158 477 190 044 730, 1 922 760 350 154 212 639 070, …

Суперфакториалы

Нейл Слоан и Симон Плуффэ (англ.) в 1995 году определили суперфакториал как произведение первых n факториалов. Согласно этому определению, суперфакториал четырёх равен

sf⁡(4)=1!×2!×3!×4!=288{\displaystyle \operatorname {sf} (4)=1!\times 2!\times 3!\times 4!=288} 

(поскольку устоявшегося обозначения нет, используется функциональное).

В общем

sf⁡(n)=∏k=1nk!=∏k=1nkn−k+1=1n⋅2n−1⋅3n−2⋯(n−1)2⋅n1.{\displaystyle \operatorname {sf} (n)=\prod _{k=1}^{n}k!=\prod _{k=1}^{n}k^{n-k+1}=1^{n}\cdot 2^{n-1}\cdot 3^{n-2}\cdots (n-1)^{2}\cdot n^{1}.} 

Последовательность суперфакториалов чисел n⩾0{\displaystyle n\geqslant 0}  начинается так[9]:

1, 1, 2, 12, 288, 34 560, 24 883 200, 125 411 328 000, 5 056 584 744 960 000, 1 834 933 472 251 084 800 000, 6 658 606 584 104 736 522 240 000 000, 265 790 267 296 391 946 810 949 632 000 000 000, 127 313 963 299 399 416 749 559 771 247 411 200 000 000 000, …

Идея была обобщена в 2000 году Генри Боттомли (

ru-wiki.org

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *