1 | Найти точное значение | sin(30) | |
2 | Найти точное значение | sin(45) | |
3 | Найти точное значение | sin(60) | |
4 | Найти точное значение | sin(30 град. ) | |
5 | Найти точное значение | sin(60 град. ) | |
6 | Найти точное значение | tan(30 град. ) | |
7 | Найти точное значение | arcsin(-1) | |
8 | Найти точное значение | sin(pi/6) | |
9 | Найти точное значение | cos(pi/4) | |
10 | Найти точное значение | sin(45 град. ) | |
11 | Найти точное значение | sin(pi/3) | |
12 | Найти точное значение | arctan(-1) | |
13 | Найти точное значение | cos(45 град. ) | |
14 | Найти точное значение | cos(30 град. ) | |
15 | Найти точное значение | tan(60) | |
16 | Найти точное значение | csc(45 град. ) | |
17 | Найти точное значение | tan(60 град. ) | |
18 | Найти точное значение | sec(30 град. ) | |
19 | Преобразовать из радианов в градусы | (3pi)/4 | |
20 | График | y=sin(x) | |
21 | Преобразовать из радианов в градусы | pi/6 | |
22 | Найти точное значение | cos(60 град. ) | |
23 | Найти точное значение | cos(150) | |
24 | Найти точное значение | tan(45) | |
25 | Найти точное значение | sin(30) | |
26 | Найти точное значение | sin(60) | |
27 | Найти точное значение | cos(pi/2) | |
28 | Найти точное значение | tan(45 град. ) | |
29 | График | y=sin(x) | |
30 | Найти точное значение | arctan(- квадратный корень 3) | |
31 | Найти точное значение | csc(60 град. ) | |
32 | Найти точное значение | sec(45 град. ) | |
33 | Найти точное значение | csc(30 град. ) | |
34 | Найти точное значение | sin(0) | |
35 | Найти точное значение | sin(120) | |
36 | Найти точное значение | cos(90) | |
37 | Преобразовать из радианов в градусы | pi/3 | |
38 | Найти точное значение | sin(45) | |
39 | Найти точное значение | tan(30) | |
40 | Преобразовать из градусов в радианы | 45 | |
41 | Найти точное значение | tan(60) | |
42 | Упростить | квадратный корень x^2 | |
43 | Найти точное значение | cos(45) | |
44 | Упростить | sin(theta)^2+cos(theta)^2 | |
45 | Преобразовать из радианов в градусы | pi/6 | |
46 | Найти точное значение | cot(30 град. ) | |
47 | Найти точное значение | arccos(-1) | |
48 | Найти точное значение | arctan(0) | |
49 | График | y=cos(x) | |
50 | Найти точное значение | cot(60 град. ) | |
51 | Преобразовать из градусов в радианы | 30 | |
52 | Упростить | ( квадратный корень x+ квадратный корень 2)^2 | |
53 | Преобразовать из радианов в градусы | (2pi)/3 | |
54 | Найти точное значение | sin((5pi)/3) | |
55 | Упростить | 1/( кубический корень от x^4) | |
56 | Найти точное значение | sin((3pi)/4) | |
57 | Найти точное значение | tan(pi/2) | |
58 | Найти угол А | tri{}{90}{}{}{}{} | |
59 | Найти точное значение | sin(300) | |
60 | Найти точное значение | cos(30) | |
61 | Найти точное значение | cos(60) | |
62 | Найти точное значение | cos(0) | |
63 | Найти точное значение | arctan( квадратный корень 3) | |
64 | Найти точное значение | cos(135) | |
65 | Найти точное значение | cos((5pi)/3) | |
66 | Найти точное значение | cos(210) | |
67 | Найти точное значение | sec(60 град. ) | |
68 | Найти точное значение | sin(300 град. ) | |
69 | Преобразовать из градусов в радианы | 135 | |
70 | Преобразовать из градусов в радианы | 150 | |
71 | Преобразовать из радианов в градусы | (5pi)/6 | |
72 | Преобразовать из радианов в градусы | (5pi)/3 | |
73 | Преобразовать из градусов в радианы | 89 град. | |
74 | Преобразовать из градусов в радианы | 60 | |
75 | Найти точное значение | sin(135 град. ) | |
76 | Найти точное значение | sin(150) | |
77 | Найти точное значение | sin(240 град. ) | |
78 | Найти точное значение | cot(45 град. ) | |
79 | Преобразовать из радианов в градусы | (5pi)/4 | |
80 | Упростить | 1/( кубический корень от x^8) | |
81 | Найти точное значение | sin(225) | |
82 | Найти точное значение | sin(240) | |
83 | Найти точное значение | cos(150 град. ) | |
84 | Найти точное значение | tan(45) | |
85 | Вычислить | sin(30 град. ) | |
86 | Найти точное значение | sec(0) | |
87 | Упростить | arcsin(-( квадратный корень 2)/2) | |
88 | Найти точное значение | cos((5pi)/6) | |
89 | Найти точное значение | csc(30) | |
90 | Найти точное значение | arcsin(( квадратный корень 2)/2) | |
91 | Найти точное значение | tan((5pi)/3) | |
92 | Найти точное значение | tan(0) | |
93 | Вычислить | sin(60 град. ) | |
94 | Найти точное значение | arctan(-( квадратный корень 3)/3) | |
95 | Преобразовать из радианов в градусы | (3pi)/4 | |
96 | Вычислить | arcsin(-1) | |
97 | Найти точное значение | sin((7pi)/4) | |
98 | Найти точное значение | arcsin(-1/2) | |
99 | Найти точное значение | sin((4pi)/3) | |
100 | Найти точное значение | csc(45) |
www.mathway.com
y = cos(x/2)
Дано$$f{\left (x \right )} = \cos{\left (\frac{x}{2} \right )}$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0значит надо решить уравнение:
$$\cos{\left (\frac{x}{2} \right )} = 0$$
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение
$$x_{1} = \pi$$
$$x_{2} = 3 \pi$$
Численное решение
$$x_{1} = 9.42477796077$$
$$x_{2} = 84.8230016469$$
$$x_{3} = -53.407075111$$
$$x_{4} = 65.9734457254$$
$$x_{5} = 3.14159265359$$
$$x_{6} = 15.7079632679$$
$$x_{7} = -3.14159265359$$
$$x_{8} = 40.8407044967$$
$$x_{9} = -59.6902604182$$
$$x_{10} = 97.3893722613$$
$$x_{11} = 78.5398163397$$
$$x_{12} = -34.5575191895$$
$$x_{13} = 28.2743338823$$
$$x_{14} = 7517042.68028$$
$$x_{15} = -91.1061869541$$
$$x_{16} = 72.2566310326$$
$$x_{17} = -9.42477796077$$
$$x_{18} = -65.9734457254$$
$$x_{19} = -72.2566310326$$
$$x_{20} = 47.1238898038$$
$$x_{21} = -84.8230016469$$
$$x_{22} = -9591.28237141$$
$$x_{23} = 91.1061869541$$
$$x_{24} = 59.6902604182$$
$$x_{25} = -47.1238898038$$
$$x_{26} = -21.9911485751$$
$$x_{27} = -97.3893722613$$
$$x_{28} = 34.5575191895$$
$$x_{29} = 21.9911485751$$
$$x_{30} = -160.221225333$$
$$x_{31} = 53.407075111$$
$$x_{32} = -78.5398163397$$
$$x_{33} = -40.8407044967$$
$$x_{34} = -15.7079632679$$
$$x_{35} = -28.2743338823$$
подставляем x = 0 в cos(x/2).
$$\cos{\left (\frac{0}{2} \right )}$$
Результат:
$$f{\left (0 \right )} = 1$$
Точка:
(0, 1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
$$x_{2} = 2 \pi$$
Зн. экстремумы в точках:
(0, 1)
(2*pi, -1)
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{2} = 2 \pi$$
Максимумы функции в точках:
$$x_{2} = 0$$
(-oo, 0] U [2*pi, oo)
Возрастает на промежутках
Точки перегибов Найдем точки перегибов, для этого надо решить уравнение[0, 2*pi]
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = \pi$$
$$x_{2} = 3 \pi$$
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[pi, 3*pi]
Выпуклая на промежутках
(-oo, pi] U [3*pi, oo)
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo$$lim_{x to -\infty} \cos{\left (\frac{x}{2} \right )} = \langle -1, 1\rangle$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = \langle -1, 1\rangle$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции cos(x/2), делённой на x при x->+oo и x ->-oo
$$lim_{x to -\infty}\left(\frac{1}{x} \cos{\left (\frac{x}{2} \right )}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\cos{\left (\frac{x}{2} \right )} = \cos{\left (\frac{x}{2} \right )}$$
— Нет
$$\cos{\left (\frac{x}{2} \right )} = — \cos{\left (\frac{x}{2} \right )}$$
— Нет
значит, функция
не является
ни чётной ни нечётной
uchimatchast.ru
y = 1/cos(x)
Дано$$f{\left (x \right )} = \frac{1}{\cos{\left (x \right )}}$$
График функции
Область определения функции
Точки, в которых функция точно неопределена:
$$x_{1} = 1.5707963267949$$
$$x_{2} = 4.71238898038469$$
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\frac{1}{\cos{\left (x \right )}} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:подставляем x = 0 в 1/cos(x).
$$\frac{1}{\cos{\left (0 \right )}}$$
Результат:
$$f{\left (0 \right )} = 1$$
Точка:
(0, 1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
$$x_{2} = \pi$$
Зн. экстремумы в точках:
(0, 1)
(pi, -1)
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{2} = 0$$
Максимумы функции в точках:
$$x_{2} = \pi$$
Убывает на промежутках
[0, pi]
Возрастает на промежутках
Точки перегибов(-oo, 0] U [pi, oo)
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Вертикальные асимптоты
Есть:$$x_{1} = 1.5707963267949$$
$$x_{2} = 4.71238898038469$$
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$lim_{x to -\infty} \frac{1}{\cos{\left (x \right )}} = \langle -\infty, \infty\rangle$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = \langle -\infty, \infty\rangle$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 1/cos(x), делённой на x при x->+oo и x ->-ooTrue
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = x lim_{x to \infty}\left(\frac{1}{x \cos{\left (x \right )}}\right)$$
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\frac{1}{\cos{\left (x \right )}} = \frac{1}{\cos{\left (x \right )}}$$
— Да
$$\frac{1}{\cos{\left (x \right )}} = — \frac{1}{\cos{\left (x \right )}}$$
— Нет
значит, функция
является
чётной
uchimatchast.ru
Типовые задачи на производную с тригонометрическими функциями. Функция f(x)=cos2x-cosx
Тригонометрические функции имеют важную особенность – наличие периода. Всю методику, которую знаем для исследования функций без тригонометрических включений, используем, но надо учесть наличие периода.
Наличие периода дает возможность провести исследование функции и построение графика на отрезке длиной, равной периоду. Затем график функции периодически распространяется для всех значений аргумента из области определения функции.
Задача.
Построить график функции .
Преобразуем формулу: .
Найдем период данной функции. У функции наименьший период . У функции , если понизить степень и выразить через — период . Итак,
функция имеет наименьший период . Это означает, что график функции сначала можно построить на промежутке длиной , а потом продолжить по периодичности.
Функция четная, так как для всех из . График симметричный относительно оси .
Учитывая периодичность функции, можно построить график этой функции на любом промежутке, длиной . Свойство четности функции дает возможность задачу упростить, а именно, построить график на участке , а на участке — построить по симметрии.
Найдем интервалы знакопостоянства функции.
: .
, когда , отсюда
Знак функции на каждом интервале удобно определить с помощью единичной окружности (см. рис.1). Точки , , — точки, которые формируют интервалы знакопостоянства функции.
Рис. 1. Интервалы знакопостоянства функции на единичной окружности
Выясним знак функции на интервале . Для этого возьмем значение функции в какой-нибудь точке из этого интервала. Например,
, значит, на этом интервале функция отрицательна. Дальше, на интервале функция меняет знак. В силу симметрии, на интервале — функция отрицательна, а на интервале — функция положительна (см. рис.2).
Рис. 2 Интервалы знакопостоянства функции
Построим график функции в окрестности каждого корня.
Точка — является точкой максимума, так как на промежутках и — функция отрицательна, кривая находится под осью , и только в точке она равна нулю. Значит, функция в окрестности корней ведет себя следующим образом (см. рис.3):
Рис. 3. График функции в окрестности каждого корня
Понятно, что на интервалах и – функция будет иметь точки экстремума.
Исследуем функцию с помощью производной:
Приравняем ее к нулю:
, отсюда .
Найдем критические точки:
— это все критические точки, которые имеет функция. Но нам нужны те, которые попадают в выбранный промежуток: , , . Вычислим значение функции в точках , и определим – это точки максимума или минимума.
Найдем интервалы знакопостоянства производной на единичной окружности (см. рис.4).
Рис. 4. Интервалы знакопостоянства производной
Найдем знак производной, в какой- либо точке из интервала :
. Таким образом, точка — точка минимума, а — точка максимума. Вычислим:
; .
Построим график функции (см. рис.5-6).
Рис. 5. График функции на
Рис. 6. График функции
Одна из типовых задач – нахождение множества значений функции.
Ответ: .
На уроке рассмотрены особенности исследования и построения графика тригонометрической функции. Все типовые задачи решаются аналогично задачам из предыдущих уроков.
Список рекомендованной литературы
1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2009.
2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.
3. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.
4. Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.
5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М.И.Сканави).-М.:Высшая школа, 1992.
6. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер.-К.: А.С.К., 1997.
7. ЗвавичЛ.И., Шляпочник Л.Я., Чинкина Алгебра и начала анализа. 8-11 кл.: Пособие для школ и классов с углубленным изучением математики (дидактические материалы).-М.: Дрофа, 2002.
8. Саакян С.М., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.
9. Карп А.П. Сборник задач по алгебре и началам анализа : учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.
10. Глейзер Г.И. История математики в школе. 9-10 классы (пособие для учителей).-М.: Просвещение, 1983
Дополнительные веб-ресурсы
1. Интернет-портал Mathematics.ru (Источник).
2. Интернет-портал Exponenta.ru (Источник).
Домашнее задание
№ 726(а), 739(а) (Саакян С.М., Гольдман А.М., Денисов Д.В. Задачи по алгебре
interneturok.ru
1. |
Возрастание и убывание функции y = cosx
Сложность: лёгкое |
1 |
2. |
Сравнение чисел с использованием свойств функции y = cosx
Сложность: лёгкое |
2 |
3. |
Определение значений косинусов некоторых углов
Сложность: лёгкое |
1 |
4. | Преобразование выражения cos t и определение его значения Сложность: лёгкое | 1 |
5. |
Применение формул приведения к сравнению чисел
Сложность: среднее |
2 |
6. |
Построение графика функции y = cosx + b или y = cos(x + а)
Сложность: среднее |
1 |
7. |
Принадлежность точек графику функции y = k cos(x + a) + b
Сложность: среднее |
1 |
8. |
Нахождение наибольшего и наименьшего значений функции y = cosx
Сложность: среднее |
1 |
9. |
Область значений функции y = cosx
Сложность: среднее |
1 |
10. |
Определение чётности функции
Сложность: среднее |
1 |
11. |
Решение уравнения cosx = ax + b графически
Сложность: сложное |
1 |
12. |
Определение наибольшего и наименьшего значений функции
Сложность: сложное |
2 |
13. |
Построение графиков функций y = cos(x + a) + b
Сложность: сложное |
4 |
www.yaklass.ru
1 | Найти точное значение | sin(30) | |
2 | Найти точное значение | sin(45) | |
3 | Найти точное значение | sin(60) | |
4 | Найти точное значение | sin(30 град. ) | |
5 | Найти точное значение | sin(60 град. ) | |
6 | Найти точное значение | tan(30 град. ) | |
7 | Найти точное значение | arcsin(-1) | |
8 | Найти точное значение | sin(pi/6) | |
9 | Найти точное значение | cos(pi/4) | |
10 | Найти точное значение | sin(45 град. ) | |
11 | Найти точное значение | sin(pi/3) | |
12 | Найти точное значение | arctan(-1) | |
13 | Найти точное значение | cos(45 град. ) | |
14 | Найти точное значение | cos(30 град. ) | |
15 | Найти точное значение | tan(60) | |
16 | Найти точное значение | csc(45 град. ) | |
17 | Найти точное значение | tan(60 град. ) | |
18 | Найти точное значение | sec(30 град. ) | |
19 | Преобразовать из радианов в градусы | (3pi)/4 | |
20 | График | y=sin(x) | |
21 | Преобразовать из радианов в градусы | pi/6 | |
22 | Найти точное значение | cos(60 град. ) | |
23 | Найти точное значение | cos(150) | |
24 | Найти точное значение | tan(45) | |
25 | Найти точное значение | sin(30) | |
26 | Найти точное значение | sin(60) | |
27 | Найти точное значение | cos(pi/2) | |
28 | Найти точное значение | tan(45 град. ) | |
29 | График | y=sin(x) | |
30 | Найти точное значение | arctan(- квадратный корень 3) | |
31 | Найти точное значение | csc(60 град. ) | |
32 | Найти точное значение | sec(45 град. ) | |
33 | Найти точное значение | csc(30 град. ) | |
34 | Найти точное значение | sin(0) | |
35 | Найти точное значение | sin(120) | |
36 | Найти точное значение | cos(90) | |
37 | Преобразовать из радианов в градусы | pi/3 | |
38 | Найти точное значение | sin(45) | |
39 | Найти точное значение | tan(30) | |
40 | Преобразовать из градусов в радианы | 45 | |
41 | Найти точное значение | tan(60) | |
42 | Упростить | квадратный корень x^2 | |
43 | Найти точное значение | cos(45) | |
44 | Упростить | sin(theta)^2+cos(theta)^2 | |
45 | Преобразовать из радианов в градусы | pi/6 | |
46 | Найти точное значение | cot(30 град. ) | |
47 | Найти точное значение | arccos(-1) | |
48 | Найти точное значение | arctan(0) | |
49 | График | y=cos(x) | |
50 | Найти точное значение | cot(60 град. ) | |
51 | Преобразовать из градусов в радианы | 30 | |
52 | Упростить | ( квадратный корень x+ квадратный корень 2)^2 | |
53 | Преобразовать из радианов в градусы | (2pi)/3 | |
54 | Найти точное значение | sin((5pi)/3) | |
55 | Упростить | 1/( кубический корень от x^4) | |
56 | Найти точное значение | sin((3pi)/4) | |
57 | Найти точное значение | tan(pi/2) | |
58 | Найти угол А | tri{}{90}{}{}{}{} | |
59 | Найти точное значение | sin(300) | |
60 | Найти точное значение | cos(30) | |
61 | Найти точное значение | cos(60) | |
62 | Найти точное значение | cos(0) | |
63 | Найти точное значение | arctan( квадратный корень 3) | |
64 | Найти точное значение | cos(135) | |
65 | Найти точное значение | cos((5pi)/3) | |
66 | Найти точное значение | cos(210) | |
67 | Найти точное значение | sec(60 град. ) | |
68 | Найти точное значение | sin(300 град. ) | |
69 | Преобразовать из градусов в радианы | 135 | |
70 | Преобразовать из градусов в радианы | 150 | |
71 | Преобразовать из радианов в градусы | (5pi)/6 | |
72 | Преобразовать из радианов в градусы | (5pi)/3 | |
73 | Преобразовать из градусов в радианы | 89 град. | |
74 | Преобразовать из градусов в радианы | 60 | |
75 | Найти точное значение | sin(135 град. ) | |
76 | Найти точное значение | sin(150) | |
77 | Найти точное значение | sin(240 град. ) | |
78 | Найти точное значение | cot(45 град. ) | |
79 | Преобразовать из радианов в градусы | (5pi)/4 | |
80 | Упростить | 1/( кубический корень от x^8) | |
81 | Найти точное значение | sin(225) | |
82 | Найти точное значение | sin(240) | |
83 | Найти точное значение | cos(150 град. ) | |
84 | Найти точное значение | tan(45) | |
85 | Вычислить | sin(30 град. ) | |
86 | Найти точное значение | sec(0) | |
87 | Упростить | arcsin(-( квадратный корень 2)/2) | |
88 | Найти точное значение | cos((5pi)/6) | |
89 | Найти точное значение | csc(30) | |
90 | Найти точное значение | arcsin(( квадратный корень 2)/2) | |
91 | Найти точное значение | tan((5pi)/3) | |
92 | Найти точное значение | tan(0) | |
93 | Вычислить | sin(60 град. ) | |
94 | Найти точное значение | arctan(-( квадратный корень 3)/3) | |
95 | Преобразовать из радианов в градусы | (3pi)/4 | |
96 | Вычислить | arcsin(-1) | |
97 | Найти точное значение | sin((7pi)/4) | |
98 | Найти точное значение | arcsin(-1/2) | |
99 | Найти точное значение | sin((4pi)/3) | |
100 | Найти точное значение | csc(45) |
www.mathway.com
10 класс. Алгебра. Тригонометрические функции. Функции у=sinx, y=cosx, их свойства, графики, типовые задачи. — Функция y=cosx, ее основные свойства и график.
Комментарии преподавателя
Функция y=cost, её основные свойства и график
Функцией называется закон, по которому каждому значению независимого аргумента ставится в соответствие единственное значение функции.
Вспомним определение функции Пусть t – любое действительное число. Ему соответствует единственная точка Mна числовой окружности. У точки M есть единственная абсцисса. Она и называется косинусом числа t. Каждому значению аргумента t соответствует только одно значение функции (рис. 1).
Центральный угол численно равен величине дуги в радианах, т.е. числу Поэтому аргументом может быть и действительное число, и угол в радианах.
Если мы умеем для каждого значения определить то можем построить график функции
Можно получить график функции и другим способом. По формулам приведения поэтому график косинуса – это синусоида, сдвинутая по оси x на влево (рис.2).
Свойства функции
1) Об
www.kursoteka.ru