Подвижный и неподвижный блок, с примерами задач
Блоки относят к простым механизмам. В группу этих устройств, которые служат для преобразования силы, помимо блоков относят рычаг, наклонную плоскость.
Изготавливаются блоки в виде дисков (колес, низких цилиндров и т. п.), имеющих желоб, через который пропускают веревку (торс, канат, цепь).
Неподвижный блок
Неподвижным называется блок, с закрепленной осью (рис.1). Он не перемещается при подъеме груза. Неподвижный блок можно рассматривать как рычаг, который имеет равные плечи.
Условием равновесия блока является условие равновесия моментов сил, приложенных к нему:
Блок на рис.1 будет находиться в равновесии, если силы натяжения нитей равны:
так как плечи этих сил одинаковы (ОА=ОВ). Неподвижный блок не дает выигрыша в силе, но он позволяет изменить направление действия силы. Тянуть за веревку, которая идет сверху часто удобнее, чем за веревку, которая идет снизу.
Если масса груза, привязанного к одному из концов веревки, перекинутой через неподвижный блок равна m, то для того, чтобы его поднимать, к другому концу веревки следует прикладывать силу F, равную:
при условии, что силу трения в блоке мы не учитываем. Если необходимо учесть трение в блоке, то вводят коэффициент сопротивления (k), тогда:
Заменой блока может служить гладкая неподвижная опора. Через такую опору перекидывают веревку (канат), которая скользит по опоре, но при этом растет сила трения.
Неподвижный блок выигрыша в работе не дает. Пути, которые проходят точки приложения сил, одинаковы, равны силы, следовательно, равны работы.
Комбинация неподвижных блоков
Для того чтобы получить выигрыш в силе, применяя неподвижные блоки применяют комбинацию блоков, например, двойной блок. При блоки должны иметь разные диаметры. Их соединяют неподвижно между собой и насаживают на единую ось. К каждому блоку прикрепляется веревка, что она может наматываться на блок или сматываться с него без скольжения. Плечи сил в таком случае будут неравными. Двойной блок действует как рычаг с плечами разной длины. На рис.2 изображена схема двойного блока.
Условие равновесия для рычага на рис.2 станет формула:
Двойной блок может преобразовывать силу. Прикладывая меньшую силу к веревке, намотанной на блок большого радиуса, получают силу, которая действует со стороны веревки, навитой на блок меньшего радиуса.
Подвижный блок
Подвижным блоком называют блок, ось которого перемещается совместно с грузом. На рис. 2 подвижный блок можно рассматривать как рычаг с плечами разной величины. В этом случае точка О является точкой опоры рычага. OA – плечо силы ; OB – плечо силы . Рассмотрим рис. 3. Плечо силы в два раза больше, чем плечо силы , следовательно, для равновесия необходимо, чтобы величина силы F была в два раза меньше, чем модуль силы P:
Можно сделать вывод о том, что при помощи подвижного блока мы получаем выигрыш в силе в два раза. Условие равновесия подвижного блока без учета силы трения запишем как:
Если попытаться учесть силу трения в блоке, то вводят коэффициент сопротивления блока (k) и получают:
Иногда применяют сочетание подвижного и неподвижного блока. В таком сочетании неподвижный блок используют для удобства. Он не дает выигрыша в силе, но позволяет изменять направление действия силы. Подвижный блок применяют для изменения величины прилагаемого усилия. Если концы веревки, охватывающей блок, составляют с горизонтом одинаковые углы, то отношение силы, оказывающей воздействие на груз к весу тела, равна отношению радиуса блока к хорде дуги, которую охватывает веревка. В случае параллельности веревок, сила необходимая для подъема груза потребуется в два раза меньше, чем вес поднимаемого груза.
Золотое правило механики
Простые механизмы выигрыша в работе не дают. Во сколько мы получаем выигрыш в силе, во столько же раз проигрываем в расстоянии. Так как работа равна скалярному произведению сила на перемещение, следовательно, она не изменится при использовании подвижного (как и неподвижного) блоков.
В виде формулы «золотое правило№ можно записать так:
где – путь, который проходит точка приложения силы – путь проходимый точкой приложения силы .
Золотое правило является самой простой формулировкой закона сохранения энергии. Это правило распространяется на случаи, равномерного или почти равномерного движения механизмов. Расстояния поступательного движения концов веревок связаны с радиусами блоков ( и ) как:
Получим, что для выполнения «золотого правила» для двойного блока необходимо, чтобы:
Если силы и уравновешены, то блок покоится или движется равномерно.
Примеры решения задач
Простая физика — EASY-PHYSIC
Продолжаем подготовку к олимпиадам. Сегодня закрепляем тему «статика». Поговорим про блоки, посчитаем силы, установим равновесие.
Задача 1.
Черный ящик, привязанный через систему блоков и нитей к стенке, покоится на горизонтальной поверхности. Чтобы преодолеть трение и сдвинуть его с места, непосредственно к нему необходимо приложить горизонтальную силу чуть больше Н. Какую минимальную силу надо прикладывать к черному ящику, чтобы он оставался неподвижным, если к веревке приложена сила Н? Ответ дать в Ньютонах, округлив до целых. Считать, что м/c.
Рисунок 1
Расставим силы:
Рисунок 2
Теперь видно, что на блок действуют три силы , поэтому общая сила равна 45 Н. 16 из них «съест» сила трения, поэтому, чтобы удержать такой ящик, не хватает Н.
Ответ: 29 Н.
Задача 2.
Все блоки в системе, представленной на рисунке − невесомые. Масса левого тела кг. При какой массе правого тела система останется в равновесии? Ответ дать в килограммах, округлив до целых. Считать, что м/c.
Рисунок 3
Расставим силы:
Рисунок 4
Теперь запишем условия равновесия:
Откуда
И
Ответ: 2 кг.
Задача 3.
Спасатели с помощью веревок, перекинутых через систему блоков, перемещают равномерно и прямолинейно массивную плиту так, как показано на рисунке. С какой результирующей силой верёвки действуют на плиту? Спасатели тянут свой конец веревки с силой Н. Массами веревок и блоков пренебречь. Ответ дать в Н, округлив до целых. Считать, что м/c.
Замечание: требуется найти только силу, с которой нити действуют непосредственно на плиту. Силу, действующую на плиту со стороны верхнего крепления в ответ включать не надо.
Рисунок 5
Расставим силы:
Рисунок 6
Теперь видно, что «за нитки» плиту тянут Н, а полная сила (с учетом верхнего крепления — Н.
Ответ: 600 Н.
Задача 4.
Какую горизонтальную силу надо прикладывать к шкафу, чтобы удержать его на месте? Массы грузов равны кг, кг. Ответ дать в Ньютонах, округлив до целых. Считать, что м/c.
Рисунок 7
На шкаф действуют две силы тяжести: первого груза (20 Н) и второго (50 Н). Итого 70 Н.
Ответ: 70 Н.
Задача 5.
Два ящика покоятся на горизонтальной поверхности. Чтобы преодолеть трение и сдвинуть с места левый ящик, к нему необходимо приложить горизонтальную силу чуть больше 26 Н. Чтобы сдвинуть правый − чуть больше 14 Н. Ящики соединили нитью, переброшенной через блоки, прикреплённые к ящикам так, как показано на рисунке. Какую минимальную силу надо приложить к концу нити, чтобы расстояние между ящиками начало уменьшаться? Ответ дать в Ньютонах, округлив до целых.
Рисунок 8
Расстояние будет уменьшаться при сдвиге любого из ящиков, поэтому нужно выяснить, какой легче сдвинуть. Для этого расставляем силы:
Рисунок 9
Теперь видно, что на левый ящик действует сила , а на правый — . Если
То Н, а если
То Н. Поэтому ответ – 7 Н. Этого будет достаточно, чтобы сдвинуть правый ящик и тем самым сократить расстояние.
Задача о силе нескольких объектов: два блока, связанных вместе (машина Этвуда) — Физика
- Дом
- Особенности
- Практическое руководство
- Проблемы
Брусок массой 15 кг лежит на наклонной плоскости. Плоскость составляет с горизонталью угол , а угол между бруском и плоскостью равен 0,13. Блок массой 15 кг привязан ко второму блоку (масса = 38 кг), который висит над концом наклонной плоскости после того, как веревка пройдет над . Что такое каждый из двух блоков, и что такое ?
- Идентифицировать
- Нарисуй картинку
- Выберите отношение
- Решить
- Понять
В этой задаче вас просят связать движение (ускорение двух блоков) с силой (натяжение веревки, трение). Сила и движение одного объекта всегда связаны вторым законом Ньютона, так что это сила или проблема 2-го закона.
Кроме того, обратите внимание, что вы должны рассматривать блоки как отдельные системы. Вас просят найти натяжение веревки между ними, и вы не можете ответить на этот вопрос, не изучив взаимодействие между ними — другими словами, эффект, который каждый из них оказывает на другой. Поэтому вам нужно будет нарисовать картинку и составить уравнения для каждого блока в отдельности.
Шаг 1
Ваш FBD для Блока 1 еще не завершен, потому что mg имеет как x-, так и y-компоненты. Перейдите к шагу 2, когда будете готовы продолжить.
———————————————— ————————————————————
Шаг 2
В окончательной FBD, нарисованной здесь, все силы на блоке 1 разделены на компоненты. Вклад каждой силы в направлении x (вдоль наклона) показан явно, как и вклад каждой силы в направлении y. FBD теперь является визуальным представлением ∑F=ma в каждом направлении.
Ключевым уравнением для любой задачи, связывающей силы и движение, является второй закон Ньютона. Независимо от того, какое количество вас просят найти, начните со Второго закона. Если потребуется дополнительная информация, она станет очевидной по мере продвижения.
Для задач с несколькими объектами вам всегда потребуется дополнительная информация, обобщенная в виде третьего закона Ньютона (взаимодействие между двумя объектами ощущается обоими объектами в равной степени и в противоположном направлении). В этом примере это понимание уже использовалось — взаимодействие между двумя блоками происходит за счет натяжения веревки, и натяжение обозначалось одним и тем же символом для каждого. Если вы не заметили, что натяжение по всей веревке такое же, как вы нарисовали FBD, это нормально. Когда вы начнете решать уравнения, вы обнаружите, что у вас слишком много неизвестных, и вы можете использовать это понимание, чтобы уменьшить их в этот момент.
Шаг 1
Одним из ключей к успешному алгебраическому решению задачи с несколькими объектами является отслеживание переменных. Я использовал разные символы для масс двух блоков, потому что они не совпадают, но я использовал один и тот же символ для ускорения, потому что они движутся вместе. Я также использовал один и тот же символ для обозначения натяжения на каждом блоке.
На данный момент у вас есть два нерешенных уравнения и два неизвестных ( а и Т . ). Прокрутите вниз, чтобы продолжить это решение.
———————————————— ————————————————————-
Шаг 2Т – 79 Н = (15 кг)
Один из подходов, который всегда работает, состоит в том, чтобы решить одно уравнение для одной из переменных и подставить его в другую.
T = 370 Н – (38 кг)а из первого уравнения
370 Н – (38 кг)а — 79 Н = (15 кг)а подставляя во второе
290 Н = (38 кг + 15 кг)а
5,5 м/с 2 =аТеперь, когда вы нашли одну из неизвестных переменных, подставьте ее в любое из исходных уравнений, чтобы найти другую переменную. Подставлю во второе уравнение.
T – 79 Н = (15 кг)(5,5 м/с 2 )
T = 79 Н + 83 Н = 160 НВ этой задаче требуется только натяжение веревки и ускорение блоков.
В этой задаче нас просили найти ускорение двух блоков, связанных между собой веревкой, а также найти натяжение веревки между ними. В задаче не указано точно, в каком направлении движутся блоки, или даже если они двигаются. Основываясь на относительных массах блоков, мы сделали предположение, что висящий блок ускоряется вниз, а скользящий вверх по склону.
При таком предположении наше решение:
1.) Подвешенный блок ускоряется вниз с a=5,5 м/с 2 , а блок на наклонной поверхности ускоряется вверх по наклонной поверхности, также с a=5,5 м/с. с 2 . Это лишь немногим больше половины ускорения, которое мог бы иметь висящий блок только из-за гравитации, что имеет смысл. Можно было бы ожидать, что он будет иметь более низкое ускорение из-за натяжения веревки вверх из-за натяжения другого блока.
2.) Натяжение веревки равно 160 Н. Это значение примерно равно силе гравитации, действующей на массу 16 кг, опять-таки число, которое имеет смысл. Брусок массой 38 кг движется вниз с ускорением, поэтому натяжение веревки не полностью удерживает его от силы тяжести. Следовательно, вы знаете, что натяжение в канате должно быть менее (38 кг)g или менее 370 Н.
Следовательно, мы правильно выбрали направление ускорения и трения.
- Дом
- Особенности
- Практическое руководство
- Проблемы
- Висконсинский университет Грин Бэй
- 2420 Николет Доктор
- Грин Бэй, Висконсин, 54311
Проблемы
ПроблемыДалее: Об этом документе… Up: Работа и энергия Предыдущий: Мощность
а) Автомобиль массой 2000 кг движется со скоростью 50 миль в час. Найди кинетическая энергия в джоулях. б) Тот же автомобиль поднимают вертикально вверх, а затем выпал из состояния покоя. Найдите высоту, с которой он упадет, если ударится о землю со скоростью 50 миль в час (сопротивлением воздуха пренебречь).
Решение:
- а)
-
КЭ знак равно мв 2 знак равно (2 x 10 3 кг ) 2 знак равно 4,99 x 10 5 J (10) - б)
-
ПЭ и знак равно КЭ f мгч знак равно мв 2 ч знак равно знак равно 2 = 25,5 м (11)
Объект массой 1 кг, движущийся со скоростью 5,0 м/с, входит в область лед, где коэффициент кинетического трения равен 0,10. Используйте рабочую энергию Теорема, позволяющая найти расстояние, которое проходит тело до того, как остановится.
Решение:
Теорема об энергии работы дает Вт = КЭ . У нас есть W = — f k d = — Nd = — mgd и KE = mv f 2 — mv i 2 = — mv 2 i 4 9. Объединение,
— мгд | знак равно | — мв и 2 | |
д | знак равно | v i 2 | |
знак равно | (12) |
Ребенок весом 30 кг входит в финальную часть спуска с водной горки при 2,0 м/с. Последняя секция имеет длину 5,0 м и перепад высот 3,0 м. Сила трения, противодействующая движению ребенка, равна 50 Н. Найти а) потерю потенциальная энергия, б) работа, совершаемая трением на конечном участке, и в) скорость ребенка в конце секции (используя энергетические соображения).
Решение:
- а)
-
ПЭ знак равно мг ( ч f — ч i ) знак равно 30(9,8)(0 — 3) = — 882 Дж (13) - б)
-
W = — f k x = — 50(5) = — 250 J (14) - в)
-
Ш НЗ знак равно КЭ + ПЭ — 250 знак равно (30)( v f 2 ) — (30)(2. 0) 2 — 882 v f 2 знак равно v f знак равно 6,8 м / с (15)
Деревянный брусок весом 2,0 кг лежит на ровной доске и удерживается пружиной жесткости пружины k=100 Н/м, которая была сжата на 0,1 м. Блок отпустили и толкнули горизонтально через доску. Коэффициент трения между блоком и доской = 0,20. Найдите а) скорость бруска когда он покидает пружину и б) расстояние, которое проходит блок после того, как он покидает пружину весна.
Решение:
- а)
- Теорема об энергии работы дает:
Ш НЗ знак равно КЭ + ПЭ — ф к х знак равно ( мв ф 2 — 0) + (0 — кх 2 ) — мгх знак равно mv f 2 — kx 2 v f 2 знак равно знак равно v f знак равно 0,33 м / с . (16) - б)
- Теорема о работе энергии дает,
— мгд знак равно 0 — mv i 2 д знак равно v i 2 = = 0,028 м . (17)
Человек толкает коробку массой 100 кг по ровному полу с постоянной скорость 2,0 м/с в течение 10 с. Если коэффициент трения между коробкой и пол = 0,20, найдите среднюю мощность, выдаваемую человеком.
Решение: