❶ Что такое матрицы 🚩 все о матрицах 🚩 Математика
Правила математических действий с матрицами позволяют широко применять их для записи систем уравнений. При этом в строках матрицы записываются сами уравнения, а в столбцах – неизвестные. Таким образом, решение системы уравнений своидится к выполнению операций с матрицей.
Матрицы можно складывать и вычитать при условии, что все слагаемые матрицы имеют один и тот же размер. Кроме того, их можно умножать несколькими способами. Первый способ – умножение матрицы с определенным количеством столбцов справа на матрицу с тем же количеством строк. Второй способ – умножение на матрицу вектора при условии, что этот вектор рассматривается как отдельный случай матрицы. Третий способ – умножение матрицы на скалярную величину.
Впервые матрицы стали применять математики Древнего Китая для решения линейных уравнений. Одновременно с ними матрицы начали использовать и арабские математики, которые разработали для них принципы и правила сложения. Однако сам термин «матрица» был введен только в 1850г. До этого их называли «волшебными квадратами».
Обозначаются матрицы заглавными буквами А:MxN, где А – имя матрицы, M– количество строк в матрице, а N– количество столбцов. Элементы – соответствующими строчными буквами с индексами, обозначающими их номер в строке и в столбце a (m, n).
Наиболее часто распространены матрицы прямоугольной формы, хотя в далеком прошлом математики рассматривали и треугольные. Если количество строк и столбцов матрицы одинаково, она называется квадратной. При этом M=N уже имеет наименование порядка матрицы. Матрица, имеющая всего одну строку, именуется строкой. Матрица с всего одним столбцом называется столбцом. Диагональная матрица – это квадратная матрица, в которой не равны нулю только элементы, расположенные по диагонали. Если все элементы равны единице, матрица называется единичной, если нулю – нулевой.
Если в матрице поменять местами строки и столбцы, она станет транспонированной. Если все элементы заменить комплексно-сопряженными, она станет комплексно-сопряженной. Кроме того, существуют и другие виды матриц, определяющиеся условиями, которые накладываются на матричные элементы. Но большинство таких условий применимо только к квадратным матрицам.
www.kakprosto.ru
что такое матрица в математике и для чего она нужна? простым языком
Таблица чисел. Нужна не только для простоты. Нужна для решения систем уравнений (обычных школьных и неведомых каких-нибудь типа дифференциальных) и для описания линейных/афинных преобразований. Например, описать изменение положения тела в трехмерном пространстве можно матрицей 3 x 4, или перевод цвета из RGB в другое цветовое пространство тоже можно описать матрицей и тп.
Матрица это таблица состоящая из строк и столбцов. Применений куча. Более подробно смотри в книгах по линейной алгебре.
Матрица это двумерный массив. Простой пример — таблица. Зачем нужны таблицы? Для простоты восприятия данных.
Обобщение понятия числа на прямоугольные таблицы обычных чисел (в более продвинутом виде — и векторов, полиномов, функций и т. д. ) . Позволяет очень просто записывать и выполнять операции с таблицами чисел, например, коэффициентами систем уравнений, преобразованиями координат и т. п. Как и для обычных чисел, для матриц определены сложение, умножение, возведение в степень, тригонометрические и другие функции.Меня учили, что для компактности записи. А так любую задачу можно решить без применения матриц.
touch.otvet.mail.ru
Матрица (математика) Википедия
У этого термина существуют и другие значения, см. Матрица.Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых, действительных или комплексных чисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов задает размер матрицы. Хотя исторически рассматривались, например, треугольные матрицы[1], в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Матрицы широко применяются в математике для компактной записи систем линейных алгебраических или дифференциальных уравнений. В этом случае количество строк матрицы соответствует числу уравнений, а количество столбцов — количеству неизвестных. В результате решение систем линейных уравнений сводится к операциям над матрицами.
Для матрицы определены следующие алгебраические операции:
- сложение матриц, имеющих один и тот же размер[⇨];
- умножение матриц подходящего размера (матрицу, имеющую n{\displaystyle n} столбцов, можно умножить справа на матрицу, имеющую n{\displaystyle n} строк)[⇨];
- в том числе умножение на матрицу вектора (по обычному правилу матричного умножения; вектор является в этом смысле частным случаем матрицы)[⇨];
- умножение матрицы на элемент основного кольца или поля (то есть скаляр)[⇨].
Относительно сложения матрицы образуют абелеву группу; если же рассматривать ещё и умножение на скаляр, то матрицы образуют модуль над соответствующим кольцом (векторное пространство над полем). Множество квадратных матриц замкнуто относительно матричного умножения, поэтому квадратные матрицы одного размера образуют ассоциативное кольцо с единицей относительно матричного сложения и матричного умножения.
Доказано, что каждому линейному оператору, действующему в n-мерном линейном пространстве, можно сопоставить единственную квадратную матрицу порядка n; и обратно — каждой квадратной матрице порядка n может быть сопоставлен единственный линейный оператор, действующий в этом пространстве.[2] Свойства матрицы соответствуют свойствам линейного оператора. В частности, собственные числа матрицы — это собственные числа оператора, отвечающие соответствующим собственным векторам.
То же можно сказать о представлении матрицами билинейных (квадратичных) форм.
В математике рассматривается множество различных типов и видов матриц. Таковы, например, единичная, симметричная, кососимметричная, верхнетреугольная (нижнетреугольная) и т. п. матрицы.
Особое значение в теории матриц занимают всевозможные нормальные формы, то есть канонический вид, к которому можно привести матрицу заменой координат. Наиболее важной (в теоретическом значении) и проработанной является теория жордановых нормальных форм. На практике, однако, используются такие нормальные формы, которые обладают дополнительными свойствами, например, устойчивостью.
ru-wiki.ru
Матрица (в математике) | Авторская платформа Pandia.ru
Матрица в математике, система элементов aij (чисел, функций или иных величин, над которыми можно производить алгебраические операции), расположенных в виде прямоугольной схемы. Если схема имеет m строк и n столбцов, то говорят о (m ´ n)-матрице. Обозначения:
или .
Короче:, . Наряду с конечными М. рассматриваются М. с бесконечным числом строк или столбцов.
М., состоящая из одной строки, называется строкой, из одного столбца — столбцом. Если m = n, то М. называется квадратной, а число n — её порядком. Квадратная М., у которой отличны от нуля лишь диагональные элементы ai = aii называется диагональной и обозначается diag(a1, …, an). Если все ai = a, получают скалярную М. При a = 1 М. называется единичной и обозначается Е. М., все элементы которой равны нулю, называется нулевой.
Переставив в М. строки со столбцами, получают транспонированную М. A’, или AT. Если элементы М. заменяют на комплексно-сопряжённые, получают комплексно-сопряжённую М. А. Если элементы транспонированной М. A’ заменяют на комплексно-сопряжённые, то получают М. А*, называется сопряжённой с А. Определитель квадратной М. А обозначается ½A½ или det A. Минором k-го порядка М. А называется определитель k
-го порядка, составленный из элементов, находящихся на пересечении некоторых k строк и k столбцов М. A в их естественном расположении. Рангом М. А называется максимальный порядок отличных от нуля миноров матрицы.Действия над матрицами. Произведением прямоугольной (m ´ n)-матрицы А на число ее называют М., элементы которой получены из элементов aij умножением на число a:
Сумма определяется для прямоугольных М. одинакового строения, и элементы суммы равны суммам соответствующих слагаемых, то есть
Умножение М. определяется только для прямоугольных М. таких, что число столбцов первого множителя равно числу строк второго. Произведением (m ´ р)-матрицы А на (р ´ n)-матрицу В будет (m ´ n)-матрица С с элементами
cij = ai1b1j + ai2b2j + … + aipbpj,
i = 1, …, m, j = 1, …,
Введённые три действия над М. обладают свойствами, близкими к свойствам действий над числами. Исключением является отсутствие коммутативного закона при умножении М.: равенство AB = BA может не выполняться. Матрицы А и В называются перестановочными, если AB = BA. Кроме того, произведение двух М. может равняться нулевой М., хотя каждый сомножитель отличен от нулевой. Справедливы правила:
Определитель произведения двух квадратных М. равен произведению определителей перемножаемых М.
Часто удобно разбивать М. на клетки, являющиеся М. меньших размеров, проводя разделительные линии через всю М. слева направо или сверху вниз. При умножении такой так называемой клеточной М. на число, нужно умножить все её клетки на то же число. При надлежащем согласовании разбиений действия сложения и умножения клеточных М. осуществляются так, как будто вместо клеток стоят числа.
Квадратная М. А = (aij) называется неособенной, или невырожденной, если её определитель не равен нулю; в противном случае М. называется особенной (вырожденной). М. А-1 называется обратной к квадратной М. А, если AA-1 = E, при этом . Неособенность М. А есть необходимое и достаточное условие существования обратной М., которая при этом оказывается единственной и перестановочной с исходной М. Верна формула: (AB)-1 = B-1A-1.
Большой интерес приобретает обобщённая обратная (или псевдообратная) М. А+, определяемая как для любой прямоугольной М., так и для особенной квадратной. Эта М. определяется из четырёх равенств:
AA+A = A, А+АА+ = А, AA+ = (AA+)*, А+А = (А+А)*.
Квадратные матрицы. Степенью An М. А называется произведение n сомножителей, равных А. Выражение вида a0Аn + a1An-1 + … + anE, где a0, a1, …, an — числа, называется значением полинома a0
есть сходящийся на всей комплексной плоскости ряд (например, ), то и бесконечный ряд оказывается сходящимся при любой М. А, его сумму естественно считать равной f(A). Если же ряд f(t) сходится в некотором конечном круге сходимости, то f(A) задаётся этим рядом для достаточно «малых» М.
Аналитические функции от М. играют большую роль в теории дифференциальных уравнений. Так, система обыкновенных дифференциальных уравнений с постоянными коэффициентами, записанных в матричных обозначениях в виде
(здесь Х — столбец из неизвестных функций), имеет решение х = eAtC, где С — столбец из произвольных постоянных.
Ненулевой столбец Х такой, что AX = lХ, называется собственным вектором М. А. В этом равенстве коэффициент l может быть лишь одним из корней многочлена
который называется характеристическим многочленом М. А. Эти корни называются собственными значениями, или характеристическими числами, М. А. Коэффициенты характеристического многочлена выражаются через суммы некоторых миноров М. А. В частности, p1 = a11 + … + a1n = SpA (след A), . Справедливо соотношение Кэли — Гамильтона: если j(f) есть характеристический многочлен М. А, то j(A) = 0, так что М. А является «корнем» своего характеристического многочлена.
М. А называется подобной М. В, если существует такая неособенная М. С, что В = С-1AС. Легко проверяется, что подобные М. имеют одинаковые характеристические многочлены.
Исчисление матриц. М. — полезный аппарат для исследования многих задач теоретической и прикладной математики. Одной из важнейших задач является задача нахождения решения систем линейных алгебраических уравнений. В матричных обозначениях такие системы записываются в виде
AX = F,
где A есть М. коэффициентов, Х — искомое решение, записанное в виде столбца из n элементов, F — столбец свободных членов из m элементов. Если А — квадратная неособенная М., то система имеет единственное решение Х = A -1F. Если A прямоугольная (m ´ n-матрица ранга k, то решение может не существовать или быть не единственным. В случае несуществования решения имеет смысл обобщённое решение, дающее минимум сумме квадратов невязок (см. Наименьших квадратов метод). При отсутствии единственности точного или обобщённого решения часто выбирают нормальное решение, то есть решение с наименьшей суммой квадратов компонент. Нормальное обобщённое решение находится по формуле Х = A + F. Наиболее важен случай переопределённой системы: k = n < m. В этом случае обобщённое решение единственно. При k = m < n (недоопределённая система) точных решений бесконечно много и формула даёт нормальное решение.
Не менее важной для многочисленных приложений (в теории дифференциальных уравнений, в теории малых колебаний, в квантовой механике и т. д.) является задача решения полной или частичной проблемы собственных значений. Здесь ищутся все или часть собственных значений М. и принадлежащие им собственные или корневые (некоторые обобщения собственных) векторы. К этой задаче близко примыкает и обобщённая проблема собственных значений, в которой ищутся числа и векторы такие, что AX = lBX (А и В — заданные М.), и многие родственные проблемы.
С полной проблемой непосредственно связана также задача о приведении преобразованиями подобия квадратной М. к каноническjй форме. Такой формой будет diag (l1, …, ln), если М. имеет n различных собственных значений l1, …, ln, или форма Жордана [см. Нормальная (жорданова) форма матрицы] в общем случае.
Ввиду большой практической важности поставленных задач для их численного решения имеется большое число различных методов. Наряду с нахождением численного решения важно оценивать качество найденного решения и исследовать устойчивость решаемой задачи.
Матрицы специального типа. Существует большое число различных типов М. в зависимости от выполнения различных соотношений между элементами.
Название матрицы | Определяющее условие |
Симметричная | |
Кососимметричная | |
Ортогональная | или |
Стохастическая | |
Эрмитова | |
Унитарная | или |
Некоторые типы естественно возникают в приложениях. Приведённая таблица даёт ряд важных типов квадратных М.
Следует отметить также ленточные М. — такие М., ненулевые элементы которых могут располагаться на главной диагонали и на диагоналях, соседних с главной, например, двухдиагональные и трёхдиагональные М. Не менее важны специальные типы М., употребляемых в качестве вспомогательных. Это элементарные М. — М., отличающиеся от единичной одним элементом; М. вращения и отражения.
Имеются унитарные аналоги М. вращения и отражения; правые (левые) треугольные М. — М., у которых равны нулю элементы под (над) главной диагональю; правые (левые) почти треугольные М. (М. типа Хессенберга) — М., у которых равны нулю элементы под (над) диагональю, соседней снизу (сверху) с главной.
Преобразование матриц. Численные методы решения систем линейных уравнений основываются обычно на преобразовании систем посредством цепочки левых умножений на подходящие вспомогательные М. с тем, чтобы перейти к легко решаемой системе. В качестве вспомогательных для вещественных М. употребляются элементарные М., М. вращения или М. отражения. Система с неособенной М. приводится либо к системе с треугольной М., либо с ортогональной. В теоретическом аспекте это равносильно представлению М. коэффициентов в виде произведения двух треугольных М. (при выполнении некоторых дополнительных условий) или в виде произведения треугольной на ортогональную (в том или другом порядке).
Для переопределённой системы умножением слева на цепочку М. вращения или отражения можно прийти к системе с треугольной М. порядка n, решение которой даёт обобщённое решение исходной системы.
Для решения проблемы собственных значений, раньше чем применять наиболее эффективные итерационные методы, целесообразно подобно преобразовать М. общего вида к М. типа Хессенберга или к трёх диагональной в случае симметрии. Этого можно добиться за счёт цепочки подобных преобразований элементарными М., М. вращения или М. отражения.
Историческая справка. Понятие М. было введено в работах У. Гамильтона и А. Кэли в середине 19 века. Основы теории созданы К. Вейерштрассом и Ф. Фробениусом (2-я половина 19 века и начало 20 века). И. А. Лаппо-Данилевский разработал теорию аналитических функций от многих матричных аргументов и применил эту теорию к исследованию систем дифференциальных уравнений с аналитическими коэффициентами. Матричные обозначения получили распространение в современной математике и её приложениях. Исчисление М. развивается в направлении построения эффективных алгоритмов для численного решения основных задач.
Лит.: Смирнов В. И., Курс высшей математики, 9 изд., т. 3, ч. 1, М., 1967; Мальцев А. И., Основы линейной алгебры, 3 изд., М., 1970; Гантмахер Ф. Р., Теория матриц, 3 изд., М., 1967; Уилкинсон Дж. Х., Алгебраическая проблема собственных значений, перевод с английского, М., 1970; Фаддеев Д. К., Фаддеева В. Н., Вычислительные методы линейной алгебры, 2 изд., М. — Л., 1963; Воеводин В. В., Численные методы алгебры. Теория и алгорифмы, М., 1966; Лаппо-Данилевский И. А., Применение функций от матриц к теории линейных систем обыкновенных дифференциальных уравнений, М., 1957; Фрезер Р. А., Дункан В., Коллар А., Теория матриц и её приложения к дифференциальным уравнениям и динамике, перевод с английского, М., 1950; Вазов В., Форсайт Дж., Разностные методы решения дифференциальных уравнений в частных производных, перевод с английского, М., 1963.
В. Н. Фаддеева.
pandia.ru