Ответы@Mail.Ru: знак суммы в математике?
сигма на клавиатуре нету на Е похожа
∑ это знак Суммы.
Плюс (+) или << (расположи эти 2 значка один под другим).
touch.otvet.mail.ru
Символ (Символ (Unicode) | Название | Значение | Пример | |
---|---|---|---|---|
Произношение | ||||
Раздел математики | ||||
⇒ | Импликация, следование | означает «если A верно, то B также верно». Иногда вместо него используют . | верно, но неверно (так как x = − 2 также является решением). | |
«влечёт» или «если…, то» | ||||
везде | ||||
⇔ | Равносильность | означает «A верно тогда и только тогда, когда B верно». | ||
«если и только если» или «равносильно» | ||||
везде | ||||
∧ | Конъюнкция | истинно тогда и только тогда, когда A и B оба истинны. | , если n — натуральное число. | |
«и» | ||||
Математическая логика | ||||
∨ | Дизъюнкция | истинно, когда хотя бы одно из условий A и B истинно. | , если n — натуральное число. | |
«или» | ||||
Математическая логика | ||||
¬ | Отрицание | истинно тогда и только тогда, когда ложно A. | ||
«не» | ||||
Математическая логика | ||||
∀ | Квантор всеобщности | обозначает «P(x) верно для всех x». | ||
«Для любых», «Для всех» | ||||
Математическая логика | ||||
∃ | Квантор существования | означает «существует хотя бы один x такой, что верно P(x)» | (подходит число 5) | |
«существует» | ||||
Математическая логика | ||||
= | Равенство | x = y обозначает « | 1 + 2 = 6 − 3 | |
«равно» | ||||
везде | ||||
: = | := :⇔ | Определение | x: = y означает «x по определению равен y». означает «P по определению равносильно Q» | (Гиперболический косинус) (Исключающее или) |
«равно/равносильно по определению» | ||||
везде | ||||
{,} | { , } | Множество элементов | означает множество, элементами которого являются a, b и c. | (множество натуральных чисел) |
«Множество…» | ||||
Теория множеств | ||||
{ | } {:} | { | } { : } | Множество элементов, удовлетворяющих условию | означает множество всех x таких, что верно P(x). | |
«Множество всех… таких, что верно…» | ||||
Теория множеств | ||||
{} | ∅ {} | Пустое множество | {} и означают множество, не содержащее ни одного элемента. | |
«Пустое множество» | ||||
Теория множеств | ||||
∈ ∉ | Принадлежность/непринадлежность к множеству | означает «a является элементом множества S» означает «a не является элементом множества S» | ||
«принадлежит», «из» «не принадлежит» | ||||
Теория множеств | ||||
⊆ ⊂ | Подмножество | означает «каждый элемент из A также являестя элементом из B». обычно означает то же, что и . Однако некоторые авторы используют , чтобы показать строгое включение (то есть ). | ||
«является подмножеством», «включено в» | ||||
Теория множеств | ||||
⫋ | Собственное подмножество | означает и . | ||
«является собственным подмножеством», «строго включается в» | ||||
Теория множеств | ||||
∪ | Объединение | означает множество элементов, принадлежащих A или B (или обоим сразу). | ||
«Объединение … и …», «…, объединённое с …» | ||||
Теория множеств | ||||
⋂ | Пересечение | означает множество элементов, принадлежащих и A, и B. | ||
«Пересечение … и … », «…, пересечённое с …» | ||||
Теория множеств | ||||
\ | Разность множеств | означает множество элементов, принадлежащих A, но не принадлежащих B. | ||
«разность … и … », «минус», «… без …» | ||||
Теория множеств | ||||
→ | Функция | означает функцию f с областью определения X и областью прибытия Y. | Функция , определённая как f(x) = x2 | |
«из … в», | ||||
везде | ||||
↦ | Отображение | означает, что образом x после применения функции f будет f(x). | Функцию, определённую как f(x) = x2, можно записать так: | |
«отображается в» | ||||
везде | ||||
N или ℕ | Натуральные числа | означает множество или (в зависимости от ситуации). | ||
«Эн» | ||||
Числа | ||||
Z или ℤ | Целые числа | означает множество | ||
«Зед» | ||||
Числа | ||||
Q или ℚ | Рациональные числа | означает | ||
«Ку» | ||||
Числа | ||||
R или ℝ | Вещественные числа, или действительные числа | означает множество всех пределов последовательностей из | (i — комплексное число: i2 = − 1) | |
«Эр» | ||||
Числа | ||||
C или ℂ | Комплексные числа | означает множество | ||
«Це» | ||||
Числа | ||||
< > | Сравнение | x < y обозначает, что x строго меньше y. x > | ||
«меньше чем», «больше чем» | ||||
Отношение порядка | ||||
≤ или ⩽ ≥ или ⩾ | Сравнение | означает, что x меньше или равен y. означает, что x больше или равен y. | ||
«меньше или равно»; «больше или равно» | ||||
Отношение порядка | ||||
≈ | Приблизительное равенство | с точностью до 10 − 3 означает, что 2,718 отличается от e не больше чем на 10 − 3. | с точностью до 10 − 7. | |
«приблизительно равно» | ||||
Числа | ||||
√ | Арифметический квадратный корень | означает положительное действительное число, которое в квадрате даёт x. | ||
«Корень квадратный из …» | ||||
Числа | ||||
∞ | Бесконечность | и суть элементы расширенного множества действительных чисел. Эти символы обозначают числа, меньшее/большее всех действительных чисел. | ||
«Плюс/минус бесконечность» | ||||
Числа | ||||
| | | Модуль числа (абсолютное значение), модуль комплексного числа или мощность множества | обозначает абсолютную величину x. | A | обозначает мощность множества A и равняется, если A конечно, числу элементов A. | ||
«Модуль»; «Мощность» | ||||
Числа и Теория множеств | ||||
∑ | Сумма, сумма ряда | означает «сумма ak, где k принимает значения от 1 до n», то есть . означает сумму ряда, состоящего из ak. | = 12 + 22 + 32 + 42 = 30 | |
«Сумма … по … от … до …» | ||||
Арифметика, Математический анализ | ||||
∏ | Произведение | означает «произведение ak для всех k от 1 до n», то есть | ||
«Произведение … по … от … до …» | ||||
Арифметика | ||||
∫ | Интеграл | означает «интеграл от a до b функции f от x по переменной x». | ||
«Интеграл (от … до …) функции … по (или d)…» | ||||
Математический анализ | ||||
f‘(x) | df/dx f'(x) | Производная | или f‘(x) означает «(первая) производная функции f от x по переменной x». | |
«Производная … по …» | ||||
Математический анализ | ||||
f(n)(x) | dnf / dxn f(n)(x) | Производная n-го порядка | или f(n)(x) (во втором случае если n — фиксированное число, то оно пишется римскими цифрами) означает «n-я производная функции f от x по переменной x». | |
«n-я производная … по …» | ||||
Математический анализ |
dic.academic.ru
что такое сумма в математике
Сумма — это результат сложения. То есть, если 3 + 8 = 11, то 11 это и есть сумма.
Сумма — это сложение, прибавление. Знак +, 2+2 = 4
Су́мма (лат. summa — итог, общее количество) , результат сложения величин (чисел, функций, векторов, матриц и т. д.) . Общими для всех случаев являются свойства коммутативности, ассоциативности, а также дистрибутивности по отношению к умножению (если для рассматриваемых величин умножение определено) , то есть выполнение соотношений: а + b = b + a а + (b + с) = (а + b) + с (а + b) с = ас + bc с (а + b) = ca + cb
это результат сложения чисел
конечный результат любого математического действия
Сумма в математике — это «присовокупление» величин: если все они одного знака, то их «ядра» — т. е. те же числа, но без знака — слагаются по способу, изучаемому в 1-м классе, и перед результатом ставится знак этих чисел. Если суммируемые числа разного знака, то это.. . -в общем, длинная история, чьей доведению до умов и обязаны заниматься учителя за определенную зарплату.
сумма — это сложение тоесть знак +
touch.otvet.mail.ru
Основные математические знаки и символы :: SYL.ru
Как известно, математика любит точность и краткость – недаром одна-единственная формула может в словесной форме занимать абзац, а порой и целую страницу текста. Таким образом, графические элементы, используемые во всем мире в науке, призваны увеличить скорость написания и компактность представления данных. Кроме того, стандартизованные графические изображения может распознать носитель любого языка, имеющий базовые знания в соответствующей сфере.
История математических знаков и символов насчитывает много столетий – некоторые из них были придуманы случайным образом и предназначались для обозначения иных явлений; другие же стали продуктом деятельности ученых, целенаправленно формирующих искусственный язык и руководствующихся исключительно практическими соображениями.
Плюс и минус
История происхождения символов, обозначающих простейшие арифметические операции, доподлинно неизвестна. Однако существует достаточно вероятная гипотеза происхождения знака «плюс», имеющего вид перекрещенных горизонтальной и вертикальной черт. В соответствии с ней символ сложения берет начало в латинском союзе et, который переводится на русский язык как «и». Постепенно, с целью ускорения процесса записи, слово было сокращено до вертикально ориентированного креста, напоминающего букву t. Самый ранний достоверный пример подобного сокращения датируется XIV веком.
Общепринятый знак «минус» появился, по всей видимости, позже. В XIV и даже XV веке в научной литературе использовался целый ряд символов, обозначающих операцию вычитания, и лишь к XVI веку «плюс» и «минус» в их современном виде стали встречаться в математических трудах вместе.Умножение и деление
Как ни странно, математические знаки и символы для этих двух арифметических действий не полностью стандартизованы и сегодня. Популярным обозначением умножения является предложенный математиком Отредом в XVII веке диагональный крестик, который можно увидеть, например, на калькуляторах. На уроках математики в школе ту же операцию обычно представляют в виде точки – данный способ предложил в том же веке Лейбниц. Ещё один способ представления – звёздочка, которая наиболее часто используется при компьютерном представлении различных расчётов. Использовать её предложил всё в том же XVII веке Иоганн Ран.
Для операции деления предусмотрены знак наклонной черты (предложен Отредом) и горизонтальная линия с точками сверху и снизу (символ ввел Иоганн Ран). Первый вариант обозначения является более популярным, однако второй также достаточно распространен.
Математические знаки и символы и их значения порой изменяются во времени. Однако все три способа графического представления умножения, а также оба способа для деления являются в той или иной степени состоятельными и актуальными на сегодняшний день.
Равенство, тождество, эквивалентность
Как и в случае многих других математических знаков и символов, обозначение равенства изначально было словесным. Достаточно продолжительное время общепринятым обозначением служило сокращение ae от латинского aequalis («равны»). Однако в XVI веке математик из Уэльса по имени Роберт Рекорд предложил в качестве символа две горизонтальные прямые, расположенные друг под другом. Как утверждал ученый, нельзя придумать ничего более равного между собой, чем два параллельных отрезка.
Несмотря на то что аналогичный знак использовался для обозначения параллельности прямых, новый символ равенства постепенно получил распространение. К слову, такие знаки как «больше» и «меньше», изображающие развернутые в разные стороны галочки, появились лишь в XVII-XVIII веке. Сегодня же они кажутся интуитивно понятными любому школьнику.Несколько более сложные знаки эквивалентности (две волнистые линии) и тождества (три горизонтальные параллельные прямые) вошли в обиход лишь во второй половине XIX века.
Знак неизвестного – «Икс»
История возникновения математических знаков и символов знает и весьма интересные случаи переосмысления графики по мере развития науки. Знак обозначения неизвестного, именуемый сегодня «иксом», берет своё начало на Ближнем Востоке на заре прошлого тысячелетия.
Ещё в X веке в арабском мире, славящемся в тот исторический период своими учеными, понятие неизвестного обозначалось словом, буквально переводящимся как «нечто» и начинающимся со звука «Ш». С целью экономии материалов и времени слово в трактатах стало сокращаться до первой буквы.
Спустя многие десятилетия письменные труды арабских ученых оказались в городах Пиренейского полуострова, на территории современной Испании. Научные трактаты стали переводиться на национальный язык, но возникла трудность — в испанском отсутствует фонема «Ш». Заимствованные арабские слова, начинающиеся с неё, записывались по особому правилу и предварялись буквой X. Научным языком того времени была латынь, в которой соответствующий знак имеет название «Икс».Таким образом, знак, на первый взгляд являющийся лишь случайно выбранным символом, имеет глубокую историю и изначально является сокращением арабского слова «нечто».
Обозначение других неизвестных
В отличие от «Икса», знакомые нам со школьной скамьи Y и Z, а также a, b, c имеют гораздо более прозаичную историю происхождения.
В XVII веке была издана книга Декарта под названием «Геометрия». В этой книге автор предлагал стандартизировать символы в уравнениях: в соответствии с его идеей, последние три буквы латинского алфавита (начиная от «Икса») стали обозначать неизвестные, а три первые – известные значения.
Тригонометрические термины
По-настоящему необычна история такого слова, как «синус».
Первоначально соответствующие тригонометрические функции получили название в Индии. Слово, соответствующее понятию синуса, буквально означало «тетива». В эпоху расцвета арабской науки индийские трактаты были переведены, а понятие, аналога которому не оказалось в арабском языке, транскрибировано. По стечению обстоятельств, то, что получилось на письме, напоминало реально существующее слово «впадина», семантика которого не имела никакого отношения к исходному термину. В результате, когда в 12 веке арабские тексты были переведены на латынь, возникло слово «синус», означающее «впадина» и закрепившееся в качестве нового математического понятия.
А вот математические знаки и символы для тангенса и котангенса до сих пор не стандартизованы – в одних странах их принято писать как tg, а в других – как tan.Некоторые другие знаки
Как видно из примеров, описанных выше, возникновение математических знаков и символов в значительной мере пришлось на XVI-XVII века. На этот же период пришлось возникновение привычных сегодня форм записи таких понятий, как процент, квадратный корень, степень.
Процент, т. е. сотая доля, долгое время обозначался как cto (сокращение от лат. cento). Считается, что общепринятый на сегодняшний день знак появился в результате опечатки около четырехсот лет назад. Получившееся изображение было воспринято как удачный способ сокращения и прижилось.
Знак корня изначально представлял собой стилизованную букву R (сокращение от латинского слова radix — «корень»). Верхняя черта, под которую сегодня записывается выражение, выполняла функцию скобок и являлась отдельным символом, обособленным от корня. Круглые скобки были придуманы позже — в повсеместное обращение они вошли благодаря деятельности Лейбница (1646-1716). Благодаря его же трудам был введен в науку и символ интеграла, выглядящий как вытянутая буква S — сокращение от слова «сумма».Наконец, знак операции возведения в степень был придуман Декартом и доработан Ньютоном во второй половине XVII века.
Более поздние обозначения
Учитывая, что знакомые нам графические изображения «плюса» и «минуса» были введены в обращение всего несколько столетий назад, не кажется удивительным, что математические знаки и символы, обозначающие сложные явления, стали использоваться лишь в позапрошлом веке.
Так, факториал, имеющий вид восклицательного знака после числа или переменной, появился лишь в начале XIX века. Приблизительно тогда же появились заглавная «П» для обозначения произведения и символ предела.
Несколько странно, что знаки для числа Пи и алгебраической суммы появились лишь в XVIII веке – позже, чем, например, символ интеграла, хотя интуитивно кажется, что они являются более употребительными. Графическое изображение отношения длины окружности к диаметру происходит от первой буквы греческих слов, означающих «окружность» и «периметр». А знак «сигма» для алгебраической суммы был предложен Эйлером в последней четверти XVIII столетия.Названия символов на разных языках
Как известно, языком науки в Европе на протяжении многих веков была латынь. Физические, медицинские и многие другие термины часто заимствовались в виде транскрипций, значительно реже – в виде кальки. Таким образом, многие математические знаки и символы на английском называются почти так же, как на русском, французском или немецком. Чем сложнее суть явления, тем выше вероятность, что в разных языках оно будет иметь одинаковое название.
Компьютерная запись математических знаков
Простейшие математические знаки и символы в «Ворде» обозначаются обычной комбинацией клавиш Shift+цифра от 0 до 9 в русской или английской раскладке. Отдельные клавиши отведены под некоторые широкоупотребительные знаки: плюс, минус, равенство, наклонная черта.
Если же требуется использовать графические изображения интеграла, алгебраической суммы или произведения, числа Пи и т. д., требуется открыть в «Ворде» вкладку «Вставка» и найти одну из двух кнопок: «Формула» или «Символ». В первом случае откроется конструктор, позволяющий выстроить целую формулу в рамках одного поля, а во втором – таблица символов, где можно найти любые математические знаки.Как запомнить математические символы
В отличие от химии и физики, где количество символов для запоминания может превосходить сотню единиц, математика оперирует относительно небольшим числом знаков. Простейшие из них мы усваиваем ещё в глубоком детстве, учась складывать и вычитать, и только в университете на определенных специальностях знакомимся с немногочисленными сложными математическими знаками и символами. Картинки для детей помогают за считанные недели достичь мгновенного узнавания графического изображения требуемой операции, гораздо больше времени может понадобиться для овладения навыком самого осуществления этих операций и понимания их сущности.
Таким образом, процесс запоминания знаков происходит автоматически и не требует особых усилий.
В заключение
Ценность математических знаков и символов заключается в том, что их без труда понимают люди, говорящие на разных языках и являющиеся носителями различных культур. По этой причине крайне полезно понимать и уметь воспроизводить графические изображения различных явлений и операций.
Высокий уровень стандартизации этих знаков обуславливает их использование в самых различных сферах: в области финансов, информационных технологий, инженерном деле и др. Для каждого, кто хочет заниматься делом, связанным с числами и расчетами, знание математических знаков и символов и их значений становится жизненной необходимостью.
www.syl.ru