150 градусов в пи: Mathway | Популярные задачи

Содержание

Mathway | Популярные задачи

1Найти точное значениеsin(30)
2Найти точное значениеsin(45)
3Найти точное значениеsin(30 град. )
4Найти точное значениеsin(60 град. )
5Найти точное значениеtan(30 град. )
6Найти точное значениеarcsin(-1)
7Найти точное значениеsin(pi/6)
8
Найти точное значение
cos(pi/4)
9Найти точное значениеsin(45 град. )
10Найти точное значениеsin(pi/3)
11Найти точное значениеarctan(-1)
12Найти точное значениеcos(45 град. )
13Найти точное значениеcos(30 град. )
14Найти точное значениеtan(60)
15
Найти точное значение
csc(45 град. )
16Найти точное значениеtan(60 град. )
17Найти точное значениеsec(30 град. )
18Найти точное значениеcos(60 град. )
19Найти точное значениеcos(150)
20Найти точное значениеsin(60)
21Найти точное значениеcos(pi/2)
22Найти точное значениеtan(45 град. )
23Найти точное значениеarctan(- квадратный корень из 3)
24Найти точное значениеcsc(60 град. )
25Найти точное значениеsec(45 град. )
26Найти точное значениеcsc(30 град. )
27Найти точное значение sin(0)
28Найти точное значениеsin(120)
29Найти точное значениеcos(90)
30Преобразовать из радианов в градусыpi/3
31Найти точное значениеtan(30)
32Преобразовать из градусов в радианы45
33Найти точное значениеcos(45)
34Упроститьsin(theta)^2+cos(theta)^2
35Преобразовать из радианов в градусыpi/6
36Найти точное значениеcot(30 град. )
37Найти точное значениеarccos(-1)
38Найти точное значениеarctan(0)
39Найти точное значениеcot(60 град. )
40Преобразовать из градусов в радианы30
41Преобразовать из радианов в градусы(2pi)/3
42Найти точное значениеsin((5pi)/3)
43Найти точное значениеsin((3pi)/4)
44Найти точное значениеtan(pi/2)
45Найти точное значениеsin(300)
46Найти точное значениеcos(30)
47Найти точное значениеcos(60)
48Найти точное значениеcos(0)
49Найти точное значениеcos(135)
50Найти точное значениеcos((5pi)/3)
51Найти точное значениеcos(210)
52Найти точное значениеsec(60 град. )
53Найти точное значениеsin(300 град. )
54Преобразовать из градусов в радианы135
55Преобразовать из градусов в радианы150
56Преобразовать из радианов в градусы(5pi)/6
57Преобразовать из радианов в градусы(5pi)/3
58Преобразовать из градусов в радианы89 град.
59Преобразовать из градусов в радианы60
60Найти точное значениеsin(135 град. )
61Найти точное значениеsin(150)
62Найти точное значениеsin(240 град. )
63Найти точное значениеcot(45 град. )
64Преобразовать из радианов в градусы(5pi)/4
65Найти точное значениеsin(225)
66Найти точное значениеsin(240)
67Найти точное значениеcos(150 град. )
68Найти точное значениеtan(45)
69Вычислитьsin(30 град. )
70Найти точное значениеsec(0)
71Найти точное значениеcos((5pi)/6)
72Найти точное значениеcsc(30)
73Найти точное значениеarcsin(( квадратный корень из 2)/2)
74Найти точное значениеtan((5pi)/3)
75Найти точное значениеtan(0)
76Вычислитьsin(60 град. )
77Найти точное значениеarctan(-( квадратный корень из 3)/3)
78Преобразовать из радианов в градусы(3pi)/4
79Найти точное значениеsin((7pi)/4)
80Найти точное значениеarcsin(-1/2)
81
Найти точное значениеsin((4pi)/3)
82Найти точное значениеcsc(45)
83Упроститьarctan( квадратный корень из 3)
84Найти точное значениеsin(135)
85Найти точное значениеsin(105)
86Найти точное значениеsin(150 град. )
87Найти точное значениеsin((2pi)/3)
88Найти точное значениеtan((2pi)/3)
89Преобразовать из радианов в градусыpi/4
90Найти точное значениеsin(pi/2)
91Найти точное значениеsec(45)
92Найти точное значениеcos((5pi)/4)
93Найти точное значениеcos((7pi)/6)
94Найти точное значениеarcsin(0)
95Найти точное значениеsin(120 град. )
96Найти точное значениеtan((7pi)/6)
97Найти точное значениеcos(270)
98Найти точное значениеsin((7pi)/6)
99Найти точное значениеarcsin(-( квадратный корень из 2)/2)
100Преобразовать из градусов в радианы88 град.

Перевод градусов в радианы и обратно. Градусная мера угла

(pi / 4) тремя способами.

Первый.
Этим способом чаще всего пользуются при решении тригонометрических уравнений в школе. Он заключается в использовании , в которой содержатся значения четырех тригонометрических функций от самых распространенных аргументов.

Такие таблицы существуют в нескольких вариантах. Различаются они тем, что значения углов представлены в градусах, в радианах или и в градусах и радианах (что наиболее удобно).
В таблице находим угол (в данном случае pi / 4) и нужную функцию (нам нужна функция косинус) и на пересечении этих значений получаем число корень из 2 / 2.
Математически это записывают так:

Второй.
Также распространенный способ, который всегда можно использовать, если таблицы нет. Заключается в использовании (или тригонометрической окружности).


На таком тригонометрическом круге значения косинуса расположены на горизонтальной оси — оси абсцисс, а аргументы — на кривой самой окружности.
В нашем случае аргумент косинуса равен pi / 4. Определим, где находится это значение на окружности. Далее опустим перпендикуляр на ось Ох. Значение, в котором окажется конец этого перпендикуляра, и будет значением заданного косинуса. Следовательно, косинус от pi / 4 равен корень из 2 / 2.

Третий.
Удобно использовать также график соответствующей функции — . Несложно запомнить, как он выглядит.


При использовании графика необходимы некоторые знания для определения значения косинуса pi / 4, который равен . В этом случае нужно понимать, что значение дроби больше 0,5 и меньше 1.
Есть, конечно, еще несколько способов. Например, вычисление значения косинуса с помощью калькулятора. Но для этого нужно предварительно угол pi / 4 перевести в градусы. Также могут быть полезными и таблицы Брадиса.

Градусная мера угла. Радианная мера угла. Перевод градусов в радианы и обратно.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень…»
И для тех, кто «очень даже…»)

В предыдущем уроке мы освоили отсчёт углов на тригонометрическом круге. Узнали, как отсчитывать положительные и отрицательные углы. Осознали, как нарисовать угол больше 360 градусов. Пришла пора разобраться с измерением углов. Особенно с числом «Пи», которое так и норовит запутать нас в хитрых заданиях, да…

Стандартные задания по тригонометрии с числом «Пи» решаются неплохо. Зрительная память выручает. А вот любое отклонение от шаблона — валит наповал! Чтобы не свалиться — понимать надо. Что мы с успехом сейчас и сделаем. В смысле — всё поймём!

Итак, в чём считаются углы? В школьном курсе тригонометрии используются две меры: градусная мера угла и радианная мера угла . Разберём эти меры. Без этого в тригонометрии — никуда.

Градусная мера угла.

К градусам мы как-то привыкли. Геометрию худо-бедно проходили… Да и в жизни частенько встречаемся с фразой «повернул на 180 градусов», например. Градус, короче, штука простая…

Да? Ответьте мне тогда, что такое градус? Что, не получается с ходу? То-то…

Градусы придумали в Древнем Вавилоне. Давненько это было… Веков 40 назад… И придумали просто. Взяли и разбили окружность на 360 равных частей. 1 градус — это 1/360 часть окружности. И всё. Могли разбить на 100 частей. Или на 1000. Но разбили на 360. Кстати, почему именно на 360? Чем 360 лучше 100? 100, вроде, как-то ровнее… Попробуйте ответить на этот вопрос. Или слабо против Древнего Вавилона?

Где-то в то же время, в Древнем Египте мучились другим вопросом. Во сколько раз длина окружности больше длины её диаметра? И так измеряли, и этак… Всё получалось немного больше трёх. Но как-то лохмато получалось, неровно… Но они, египтяне не виноваты. После них ещё веков 35 мучились. Пока окончательно не доказали, что как бы мелко не нарезать окружность на равные кусочки, из таких кусочков составить ровно длину диаметра нельзя… В принципе нельзя. Ну, во сколько раз окружность больше диаметра установили, конечно. Примерно. В 3,1415926… раз.

Это и есть число «Пи». Вот уж лохматое, так лохматое. После запятой — бесконечное число цифр без всякого порядка… Такие числа называются иррациональными. Это, кстати, и означает, что из равных кусочков окружности диаметр ровно не сложить. Никогда.

Для практического применения принято запоминать всего две цифры после запятой. Запоминаем:

Раз уж мы поняли, что длина окружности больше диаметра в «Пи» раз, имеет смысл запомнить формулу длины окружности:

Где L — длина окружности, а d — её диаметр.

В геометрии пригодится.

Для общего образования добавлю, что число «Пи» сидит не только в геометрии… В самых различных разделах математики, а особенно в теории вероятности, это число возникает постоянно! Само по себе. Вне наших желаний. Вот так.

Но вернёмся к градусам. Вы сообразили, почему в Древнем Вавилоне круг разбили на 360 равных частей? А не на 100, к примеру? Нет? Ну ладно. Выскажу версию. У древних вавилонян не спросишь… Для строительства, или, скажем, астрономии, круг удобно делить на равные части. А теперь прикиньте, на какие числа делится нацело 100, и на какие — 360? И в каком варианте этих делителей нацело — больше? Людям такое деление очень удобно. Но…

Как выяснилось много позже Древнего Вавилона, не всем нравятся градусы. Высшей математике они не нравятся… Высшая математика — дама серьёзная, по законам природы устроена. И эта дама заявляет: «Вы сегодня на 360 частей круг разбили, завтра на 100 разобьёте, послезавтра на 245… И что мне делать? Нет уж…» Пришлось послушаться. Природу не обманешь…

Пришлось ввести меру угла, не зависящую от человеческих придумок. Знакомьтесь — радиан!

Радианная мера угла.

Что такое радиан? В основе определения радиана — всё равно окружность. Угол в 1 радиан, это угол, который вырезает из окружности дугу, длина которой (L ) равна длине радиуса (R ). Смотрим картинки.

Маленький такой угол, почти и нет его… Наводим курсор на картинку (или коснёмся картинки на планшете) и видим примерно один радиан . L = R

Чувствуете разницу?

Один радиан много больше одного градуса. А во сколько раз?

Смотрим следующую картинку. На которой я нарисовал полукруг. Развёрнутый угол размером, естественно, в 180°.

А теперь я нарежу этот полукруг радианами! Наводим курсор на картинку и видим, что в 180° укладывается 3 с хвостиком радиана.

Кто угадает, чему равен этот хвостик!?

Да! Этот хвостик — 0,1415926…. Здравствуй, число «Пи», мы тебя ещё не забыли!

Действительно, в 180° градусах укладывается 3,1415926… радиан. Как вы сами понимаете, всё время писать 3,1415926… неудобно. Поэтому вместо этого бесконечного числа всегда пишут просто:

А вот в Интернете число

писать неудобно… Поэтому я в тексте пишу его по имени — «Пи». Не запутаетесь, поди?…

Вот теперь совершенно осмысленно можно записать приближённое равенство:

Или точное равенство:

Определим, сколько градусов в одном радиане. Как? Легко! Если в 3,14 радианах 180° градусов, то в 1 радиане в 3,14 раз меньше! То есть, мы делим первое уравнение (формула — это тоже уравнение!) на 3,14:

Это соотношение полезно запомнить В одном радиане примерно 60°. В тригонометрии очень часто приходится прикидывать, оценивать ситуацию. Вот тут это знание очень помогает.

Но главное умение этой темы — перевод градусов в радианы и обратно.

Если угол задан в радианах с числом «Пи», всё очень просто. Мы знаем, что «Пи» радиан = 180°. Вот и подставляем вместо «Пи» радиан — 180°. Получаем угол в градусах. Сокращаем, что сокращается, и ответ готов. Например, нам нужно выяснить, сколько градусов в угле «Пи»/2 радиан ? Вот и пишем:

Или, более экзотическое выражение:

Легко, верно?

Обратный перевод чуть сложнее. Но не сильно. Если угол дан в градусах, мы должны сообразить, чему равен один градус в радианах, и умножить это число на количество градусов. Чему равен 1° в радианах?

Смотрим на формулу и соображаем, что если 180° = «Пи» радиан, то 1° в 180 раз меньше. Или, другими словами, делим уравнение (формула — это тоже уравнение!) на 180. Представлять «Пи» как 3,14 никакой нужды нет, его всё равно всегда буквой пишут. Получаем, что один градус равен:

Вот и всё. Умножаем число градусов на это значение и получаем угол в радианах. Например:

Или, аналогично:

Как видите, в неспешной беседе с лирическими отступлениями выяснилось, что радианы — это очень просто. Да и перевод без проблем… И «Пи» — вполне терпимая штука… Так откуда путаница!?

Вскрою тайну. Дело в том, что в тригонометрических функциях значок градусов — пишется. Всегда. Например, sin35°. Это синус 35 градусов . А значок радианов (рад ) — не пишется! Он подразумевается. То ли лень математиков обуяла, то ли ещё что… Но решили не писать. Если внутри синуса — котангенса нет никаких значков, то угол — в радианах ! Например, cos3 — это косинус трёх радианов .

Это и приводит к непоняткам… Человек видит «Пи» и считает, что это 180°. Всегда и везде. Это, кстати, срабатывает. До поры до времени, пока примеры — стандартные. Но «Пи» — это число! Число 3,14, а никакие не градусы! Это «Пи» радиан = 180°!

Ещё раз: «Пи» — это число! 3,14. Иррациональное, но число. Такое же, как 5 или 8. Можно, к примеру, сделать примерно «Пи» шагов. Три шага и ещё маленько. Или купить «Пи» килограммов конфет. Если продавец образованный попадётся…

«Пи» — это число! Что, достал я вас этой фразой? Вы уже всё давно поняли? Ну ладно. Проверим. Скажите-ка, какое число больше?

Или, что меньше?

Это из серии слегка нестандартных вопросов, которые могут и в ступор вогнать…

Если вы тоже в ступор впали, вспоминаем заклинание: «Пи» — это число! 3,14. В самом первом синусе четко указано, что угол — в градусах ! Стало быть, заменять «Пи» на 180° — нельзя! «Пи» градусов — это примерно 3,14°. Следовательно, можно записать:

Во втором синусе обозначений никаких нет. Значит, там — радианы ! Вот здесь замена «Пи» на 180° вполне прокатит. Переводим радианы в градусы, как написано выше, получаем:

Осталось сравнить эти два синуса. Что. забыли, как? С помощью тригонометрического круга, конечно! Рисуем круг, рисуем примерные углы в 60° и 1,05°. Смотрим, какие синусы у этих углов. Короче, всё, как в конце темы про тригонометрический круг расписано. На круге (даже самом кривом!) будет чётко видно, что sin60° существенно больше, чем sin1,05° .

Совершенно аналогично поступим и с косинусами. На круге нарисуем углы примерно 4 градуса и 4 радиана (не забыли, чему примерно равен 1 радиан?). Круг всё и скажет! Конечно, cos4 меньше cos4°.

Потренируемся в обращении с мерами угла.

Переведите эти углы из градусной меры в радианную:

360°; 30°; 90°; 270°; 45°; 0°; 180°; 60°

У вас должны получиться такие значения в радианах (в другом порядке!)

Я, между прочим, специально выделил ответы в две строчки. Ну-ка, сообразим, что за углы в первой строчке? Хоть в градусах, хоть в радианах?

Да! Это оси системы координат! Если смотреть по тригонометрическому кругу, то подвижная сторона угла при этих значениях точно попадает на оси . Эти значения нужно знать железно. И угол 0 градусов (0 радиан) я отметил не зря. А то некоторые этот угол никак на круге найти не могут… И, соответственно, в тригонометрических функциях нуля путаются… Другое дело, что положение подвижной стороны в нуле градусов совпадает с положением в 360°, так совпадения на круге — сплошь и рядом.

Во второй строчке — тоже углы специальные… Это 30°, 45° и 60°. И что в них такого специального? Особо — ничего. Единственное отличие этих углов от всех остальных — именно про эти углы вы должны знать всё . И где они располагаются, и какие у этих углов тригонометрические функции. Скажем, значение sin100° вы знать не обязаны. А sin45° — уж будьте любезны! Это обязательные знания, без которых в тригонометрии делать нечего… Но об этом подробнее — в следующем уроке.

А пока продолжим тренировку. Переведите эти углы из радианной меры в градусную:

У вас должны получиться такие результаты (в беспорядке):

210°; 150°; 135°; 120°; 330°; 315°; 300°; 240°; 225°.

Получилось? Тогда можно считать, что перевод градусов в радианы и обратно — уже не ваша проблема. ) Но перевод углов — это первый шаг к постижению тригонометрии. Там же ещё с синусами-косинусами работать надо. Да и с тангенсами, котангенсами тоже…

Второй мощный шаг — это умение определять положение любого угла на тригонометрическом круге. И в градусах, и в радианах. Про это самое умение я буду вам во всей тригонометрии занудно намекать, да…) Если вы всё знаете (или думаете, что всё знаете) про тригонометрический круг, и отсчёт углов на тригонометрическом круге, можете провериться. Решите эти несложные задания:

1. В какую четверть попадают углы:

45°, 175°, 355°, 91°, 355° ?

Легко? Продолжаем:

2. В какую четверть попадают углы:

402°, 535°, 3000°, -45°, -325°, -3000°?

Тоже без проблем? Ну, смотрите…)

3. Сможете разместить по четвертям углы:

Смогли? Ну вы даёте..)

4. На какие оси попадёт уголок:

и уголок:

Тоже легко? Хм…)

5. В какую четверть попадают углы:

И это получилось!? Ну, тогда я прям не знаю. ..)

6. Определить, в какую четверть попадают углы:

1, 2, 3 и 20 радианов.

Ответ дам только на последний вопрос (он слегка хитрый) последнего задания. Угол в 20 радианов попадёт в первую четверть.

Остальные ответы не дам не из жадности.) Просто, если вы не решили чего-то, сомневаетесь в результате, или на задание №4 потратили больше 10 секунд, вы слабо ориентируетесь в круге. Это будет вашей проблемой во всей тригонометрии. Лучше от неё (проблемы, а не тригонометрии!)) избавиться сразу. Это можно сделать в теме: Практическая работа с тригонометрическим кругом в разделе 555.

Там рассказано, как просто и правильно решать такие задания. Ну и эти задания решены, разумеется. И четвёртое задание решено за 10 секунд. Да так решено, что любой сможет!

Если же вы абсолютно уверены в своих ответах и вас не интересуют простые и безотказные способы работы с радианами — можете не посещать 555. Не настаиваю.)

Хорошее понимание — достаточно веская причина, чтобы двигаться дальше!)

Если Вам нравится этот сайт. ..

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

Примечание . В данной таблице значений тригонометрических функций используется знак √ для обозначения квадратного корня. Для обозначения дроби — символ «/».

См. также полезные материалы:

Для определения значения тригонометрической функции , найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов — ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой «30 градусов», на их пересечении считываем результат — одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2) и т. д. Точно так же находятся значения синусов, косинусов и тангенсов других «популярных» углов.

Синус пи, косинус пи, тангенс пи и других углов в радианах

Приведенная ниже таблица косинусов, синусов и тангенсов также подходит для нахождения значения тригонометрических функций, аргумент которых задан в радианах . Для этого воспользуйтесь второй колонкой значений угла. Благодаря этому можно перевести значение популярных углов из градусов в радианы. Например, найдем угол 60 градусов в первой строке и под ним прочитаем его значение в радианах. 60 градусов равно π/3 радиан.

Число пи однозначно выражает зависимость длины окружности от градусной меры угла. Таким образом, пи радиан равны 180 градусам.

Любое число, выраженное через пи (радиан) можно легко перевести в градусную меру, заменив число пи (π) на 180 .

Примеры :
1. Синус пи .
sin π = sin 180 = 0
таким образом, синус пи — это тоже самое, что синус 180 градусов и он равен нулю.

2. Косинус пи .
cos π = cos 180 = -1
таким образом, косинус пи — это тоже самое, что косинус 180 градусов и он равен минус единице.

3. Тангенс пи
tg π = tg 180 = 0
таким образом, тангенс пи — это тоже самое, что тангенс 180 градусов и он равен нулю.

Таблица значений синуса, косинуса, тангенса для углов 0 — 360 градусов (часто встречающиеся значения)


значение угла α
(градусов)

значение угла α
в радианах

(через число пи)

sin
(синус)
cos
(косинус)
tg
(тангенс)
ctg
(котангенс)
sec
(секанс)
cosec
(косеканс)
0 0 0 1 0 1
15 π/12 2 — √3 2 + √3
30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
45 π/4 √2/2 √2/2 1 1 √2 √2
60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
75 5π/12 2 + √3 2 — √3
90 π/2 1 0 0 1
105 7π/12
— 2 — √3 √3 — 2
120 2π/3 √3/2 -1/2 -√3 -√3/3
135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
150 5π/6 1/2 -√3/2 -√3/3 -√3
180 π 0 -1 0 -1
210 7π/6 -1/2 -√3/2 √3/3 √3
240 4π/3 -√3/2 -1/2 √3 √3/3
270 3π/2 -1 0 0 -1
360 0 1 0 1

Если в таблице значений тригонометрических функций вместо значения функции указан прочерк (тангенс (tg) 90 градусов, котангенс (ctg) 180 градусов) значит при данном значении градусной меры угла функция не имеет определенного значения. Если же прочерка нет — клетка пуста, значит мы еще не внесли нужное значение. Мы интересуемся, по каким запросам к нам приходят пользователи и дополняем таблицу новыми значениями, несмотря на то, что текущих данных о значениях косинусов, синусов и тангенсов самых часто встречающихся значений углов вполне достаточно для решения большинства задач.

Таблица значений тригонометрических функций sin, cos, tg для наиболее популярных углов


0, 15, 30, 45, 60, 90 … 360 градусов
(цифровые значения «как по таблицам Брадиса»)
значение угла α (градусов) значение угла α в радианах sin (синус) cos (косинус) tg (тангенс) ctg (котангенс)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18

Мэтуэй | Популярные задачи

92
1 Найти точное значение грех(30)
2 Найти точное значение грех(45)
3 Найти точное значение грех(30 градусов)
4 Найти точное значение грех(60 градусов)
5 Найти точное значение загар (30 градусов)
6 Найти точное значение угловой синус(-1)
7 Найти точное значение грех(пи/6)
8 Найти точное значение cos(pi/4)
9 Найти точное значение грех(45 градусов)
10 Найти точное значение грех(пи/3)
11 Найти точное значение арктан(-1)
12 Найти точное значение cos(45 градусов)
13 Найти точное значение cos(30 градусов)
14 Найти точное значение желтовато-коричневый(60)
15 Найти точное значение csc(45 градусов)
16 Найти точное значение загар (60 градусов)
17 Найти точное значение сек(30 градусов)
18 Найти точное значение cos(60 градусов)
19 Найти точное значение cos(150)
20 Найти точное значение грех(60)
21 Найти точное значение cos(pi/2)
22 Найти точное значение загар (45 градусов)
23 Найти точное значение arctan(- квадратный корень из 3)
24 Найти точное значение csc(60 градусов)
25 Найти точное значение сек(45 градусов)
26 Найти точное значение csc(30 градусов)
27 Найти точное значение грех(0)
28 Найти точное значение грех(120)
29 Найти точное значение соз(90)
30 Преобразовать из радианов в градусы пи/3
31 Найти точное значение желтовато-коричневый(30)
32
35 Преобразовать из радианов в градусы пи/6
36 Найти точное значение детская кроватка(30 градусов)
37 Найти точное значение арккос(-1)
38 Найти точное значение арктан(0)
39 Найти точное значение детская кроватка(60 градусов)
40 Преобразование градусов в радианы 30
41 Преобразовать из радианов в градусы (2 шт. )/3
42 Найти точное значение sin((5pi)/3)
43 Найти точное значение sin((3pi)/4)
44 Найти точное значение тан(пи/2)
45 Найти точное значение грех(300)
46 Найти точное значение соз(30)
47 Найти точное значение соз(60)
48 Найти точное значение соз(0)
49 Найти точное значение соз(135)
50 Найти точное значение cos((5pi)/3)
51 Найти точное значение cos(210)
52 Найти точное значение сек(60 градусов)
53 Найти точное значение грех(300 градусов)
54 Преобразование градусов в радианы 135
55 Преобразование градусов в радианы 150
56 Преобразовать из радианов в градусы (5 дюймов)/6
57 Преобразовать из радианов в градусы (5 дюймов)/3
58 Преобразование градусов в радианы 89 градусов
59 Преобразование градусов в радианы 60
60 Найти точное значение грех(135 градусов)
61 Найти точное значение грех(150)
62 Найти точное значение грех(240 градусов)
63 Найти точное значение детская кроватка(45 градусов)
64 Преобразовать из радианов в градусы (5 дюймов)/4
65 Найти точное значение грех(225)
66 Найти точное значение грех(240)
67 Найти точное значение cos(150 градусов)
68 Найти точное значение желтовато-коричневый(45)
69 Оценить грех(30 градусов)
70 Найти точное значение сек(0)
71 Найти точное значение cos((5pi)/6)
72 Найти точное значение КСК(30)
73 Найти точное значение arcsin(( квадратный корень из 2)/2)
74 Найти точное значение загар((5pi)/3)
75 Найти точное значение желтовато-коричневый(0)
76 Оценить грех(60 градусов)
77 Найти точное значение arctan(-( квадратный корень из 3)/3)
78 Преобразовать из радианов в градусы (3 пи)/4 
79 Найти точное значение sin((7pi)/4)
80 Найти точное значение угловой синус(-1/2)
81 Найти точное значение sin((4pi)/3)
82 Найти точное значение КСК(45)
83 Упростить арктан(квадратный корень из 3)
84 Найти точное значение грех(135)
85 Найти точное значение грех(105)
86 Найти точное значение грех(150 градусов)
87 Найти точное значение sin((2pi)/3)
88 Найти точное значение загар((2pi)/3)
89 Преобразовать из радианов в градусы пи/4
90 Найти точное значение грех(пи/2)
91 Найти точное значение сек(45)
92 Найти точное значение cos((5pi)/4)
93 Найти точное значение cos((7pi)/6)
94 Найти точное значение угловой синус(0)
95 Найти точное значение грех(120 градусов)
96 Найти точное значение желтовато-коричневый ((7pi)/6)
97 Найти точное значение соз(270)
98 Найти точное значение sin((7pi)/6)
99 Найти точное значение arcsin(-( квадратный корень из 2)/2)
100 Преобразование градусов в радианы 88 градусов

Sin 150 градусов — Найти значение Sin 150 градусов

LearnPracticeDownload

Значение sin 150 градусов равно 0,5 . Sin 150 градусов в радианах записывается как sin (150° × π/180°), то есть sin (5π/6) или sin (2,617993…). В этой статье мы обсудим способы нахождения значения sin 150 градусов на примерах.

  • Sin 150°: 0,5
  • Sin 150° в дробях: 1/2
  • Грех (-150 градусов): -0,5
  • Sin 150° в радианах: грех (5π/6) или грех (2,6179938 . . .)

Сколько стоит грех 150 градусов?

Значение sin 150 градусов в десятичной системе равно 0,5. Sin 150 градусов также можно выразить с помощью эквивалента заданного угла (150 градусов) в радианах (2,61799 . . .).

Мы знаем, используя преобразование градусов в радианы, что θ в радианах = θ в градусах × (pi/180°)
⇒ 150 градусов = 150° × (π/180°) рад = 5π/6 или 2,6179. . .
∴ sin 150° = sin(2,6179) = 1/2 или 0,5

Объяснение:

Для sin 150 градусов угол 150° лежит между 90° и 180° (второй квадрант). Поскольку функция синуса положительна во втором квадранте, значение sin 150° = 1/2 или 0,5
Поскольку функция синуса является периодической функцией, мы можем представить sin 150° как sin 150 градусов = sin(150° + n × 360°), n ∈ Z.
⇒ sin 150° = sin 510° = sin 870° и так далее.
Примечание: Поскольку синус является нечетной функцией, значение sin(-150°) = -sin(150°).

Методы определения значения Sin 150 градусов

Функция синуса положительна во 2-м квадранте. Значение sin 150° принимается равным 0,5. Мы можем найти значение sin 150 градусов по:

  • Используя единичный круг
  • Использование тригонометрических функций

Sin 150 градусов с помощью единичной окружности

Чтобы найти значение sin 150 градусов с помощью единичной окружности:

  • Поверните ‘r’ против часовой стрелки, чтобы образовать угол 150° с положительной осью x.
  • Грех в 150 градусов равен координате y(0,5) точки пересечения (-0,866, 0,5) единичной окружности и r.

Следовательно, значение sin 150° = y = 0,5

Sin 150° в терминах тригонометрических функций

Используя формулы тригонометрии, мы можем представить sin 150° как: ))

  • ± тангенс 150°/√(1 + тангенс²(150°))
  • ± 1/√(1 + раскладушка²(150°))
  • ± √(сек²(150°) — 1)/сек 150°
  • 1/косек 150°
  • Примечание. Поскольку 150° лежит во 2-м квадранте, конечное значение sin 150° будет положительным.

    Мы можем использовать тригонометрические тождества для представления sin 150° как

    • sin(180° — 150°) = sin 30°
    • -sin(180° + 150°) = -sin 330°
    • cos(90° — 150°) = cos(-60°)
    • -cos(90° + 150°) = -cos 240°

    ☛ Также проверьте:

    • sin 50 градусов
    • грех 30 градусов
    • грех 90 градусов
    • грех 8 градусов
    • грех 89 градусов
    • грех 32 градуса

    Примеры использования Sin 150 градусов

    1. Пример 1. Найдите значение 2 × (sin 75° cos 75°). [Подсказка: используйте sin 150° = 0,5]

      Решение:

      Используя формулу sin 2a,
      2 sin 75° cos 75° = sin(2 × 75°) = sin 150°
      ∵ sin 150° = 0,5
      ⇒ 2 × (sin 75° cos 75°) = 0,5

    2. Пример 2: Упростить: 2 (sin 150°/sin 510°)

      Решение:

      Мы знаем sin 150° = sin 510°
      ⇒ 2 sin 150°/sin 510° = 2(sin 150°/sin 150°)
      = 2(1) = 2

    3. Пример 3. Найдите значение 5 sin(150°)/7 cos(-60°).

      Решение:

      Используя тригонометрические тождества, мы знаем, что sin(150°) = cos(90° — 150°) = cos(-60°).
      ⇒ sin(150°) = cos(-60°)
      ⇒ Значение 5 sin(150°)/7 cos(-60°) = 5/7

    перейти к слайдуперейти к слайдуперейти к слайду

     

    Готовы посмотреть на мир глазами математика?

    Математика лежит в основе всего, что мы делаем. Наслаждайтесь решением реальных математических задач на живых уроках и станьте экспертом во всем.

    Забронируйте бесплатный пробный урок

    Часто задаваемые вопросы о Sin 150 Degrees

    Что такое Sin 150 Degrees?

    Sin 150 градусов — значение тригонометрической функции синуса для угла, равного 150 градусам. Значение sin 150° равно 1/2 или 0,5.

    Каково значение Sin 150° в пересчете на Cosec 150°?

    Поскольку функция косеканса является обратной величиной функции синуса, мы можем записать sin 150° как 1/cosec(150°). Значение cosec 150° равно 2.

    Как найти Sin 150° в терминах других тригонометрических функций?

    Используя формулу тригонометрии, значение sin 150° можно выразить через другие тригонометрические функции следующим образом:

    • ± √(1-cos²(150°))
    • ± тангенс 150°/√(1 + тангенс²(150°))
    • ± 1/√(1 + раскладушка²(150°))
    • ± √(сек²(150°) — 1)/сек 150°
    • 1/косек 150°

    ☛ Также проверьте: тригонометрическую таблицу

    Как найти значение Sin 150 градусов?

    Значение sin 150 градусов можно рассчитать, построив угол 150° с осью x и затем найдя координаты соответствующей точки (-0,866, 0,5) на единичной окружности.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *