2 sin 3 cos 3: Mathway | Популярные задачи

36Risolvere per ?cos(x)=1/27Risolvere per xsin(x)=-1/28Преобразовать из градусов в радианы2259Risolvere per ?cos(x)=( квадратный корень из 2)/210Risolvere per xcos(x)=( квадратный корень из 3)/211Risolvere per xsin(x)=( квадратный корень из 3)/212Графикg(x)=3/4* корень пятой степени из x
13Найти центр и радиусx^2+y^2=914Преобразовать из градусов в радианы120 град. 2+n-72)=1/(n+9)

5 Разрешение неопределенностей. Зачечательные пределы

Похожие презентации:

Введение в математический анализ

Предел функции в точке

Введение в математический анализ

Предел функции в точке

Введение в анализ. Функции (лекция 1)

Виды неопределенностей и методы их разрешения

Предел функции

Предел функции

Предел последовательности

Понятие предела функции

1. Введение в математический анализ

2. Неопределенности Способы разрешения неопределенностей

Существует несколько видов неопределенностей:
0
0
1 0 0
1. Неопределенность вида 0 .
При возникновении такой неопределенности
возможны два случая:
а) выражение, стоящее под знаком предела,
представляет собой дробно-рациональную функцию;
б) выражение, стоящее под знаком предела,
содержит дробно-иррациональную функцию.
0
а) выражение, стоящее под знаком предела,
представляет собой дробно-рациональную функцию
Если числитель и знаменатель такой функции
обращаются в 0, это означает, что число, к которому
стремится аргумент является корнем многочленов
числителя и знаменателя.
Поэтому числитель и знаменатель необходимо
разложить на множители и сократить на общий
множитель.
Многочлены
второй
степени
раскладывают на множители по корням x1 è x2 :
ax2 bx c a x x1 x x2
x2 4
Пример: Вычислить предел: lim
.
x 2 x 2
Решение:
Для решения задачи необходимо воспользоваться
формулой разности квадратов:
a 2 b 2 a b a b .
Разложим числитель на множители:
x 2 x 2
x 4 0
lim
lim
lim x 2 4.
x 2 x 2
x 2
x 2
0 x 2
2
x2 4x 5
Пример. Вычислить предел: lim 2
.
x 1 x 3 x 2
Решение:
Разложим числитель и знаменатель на множители,
для этого определим корни многочленов:
b D
2
D b 4ac, x1,2
.
2a
x 2 4 x 5 0, D 36, x1 1, x2 5.
x 2 3x 2 0, D 1, x1 1, x2 2.
x 1 x 5
x2 4 x 5 0
x 5 6
lim 2
lim
lim
6.
x 1 x 3 x 2
0 x 1 x 1 x 2 x 1 x 2 1
3x 2 2 x 5
Пример: Вычислить предел: lim 2
x 1 2 x 7 x 5
Решение:
При разложении числителя и знаменателя на
множители можно производить деление многочлена
на многочлен в столбик:
3x 2 2 x 5 x 1
2
3x 5
3x 3x
2 x2 7 x 5 x 1
2
2x 5
2x 2x
5x 5
5x 5
5x 5
5x 5
0
0
3x 2 2 x 5 0
x 1 3x 5 lim 3x 5 8 8
lim 2
lim
x 1 2 x 7 x 5
3
0 x 1 x 1 2 x 5 x 1 2 x 5 3
б) выражение, стоящее под знаком предела,
содержит дробно-иррациональную функцию.
В этом случае для раскрытия неопределенности и
числитель и знаменатель дроби умножают на
сопряженное выражение к иррациональному
выражению, используя формулу разности квадратов:
a b a b a b .
2
2
3 1 4x
Пример: Вычислить предел: xlim
2
x 2
Решение:
Здесь числитель дроби является иррациональным
выражением, поэтому домножим и числитель и
знаменатель дроби на выражение сопряженное к
числителю:
3 1 4x 0
(3 1 4 x )(3 1 4 x )
lim
lim
x 2
x
2
x 2
( x 2)(3 1 4 x )
0
9 (1 4 x)
8 4x
lim
lim
x 2 ( x 2)(3 1 4 x )
x 2 ( x 2)(3 1 4 x )
4(2 x)
4
4 2
lim
lim
x 2 ( x 2)(3 1 4 x )
x 2 3 1 4 x
6 3
Пример. Вычислить предел: lim 2 x .
x 4
3 2x 1
Решение:
Здесь и числитель и знаменатель дроби являются
иррациональными выражениями, поэтому домножим и
числитель и знаменатель дроби на выражения сопряженные и
к числителю и к знаменателю:
2 x
(2 x )(2 x )(3 2 x 1)
0
lim
lim
x 4 3 2 x 1
0 x 4 (3 2 x 1)(3 2 x 1)(2 x )
(4 x)(3 2 x 1)
(4 x)(3 2 x 1)
lim
lim
x 4 (9 (2 x 1))(2
x ) x 4 (8 2 x)(2 x )
(4 x)(3 2 x 1)
3 2x 1 6 3
lim
lim
.
x 4
x
4
2(4 x)(2 x )
2(2 x ) 8 4
2. Неопределенность вида
делить на бесконечность).
(бесконечность
В этом случае выражение, стоящее под знаком
предела, представляет собой частное многочленов.
Pn ( x)
.
Pm ( x)
Для разрешения такого вида неопределенности
необходимо разделить все слагаемые числителя и
знаменателя на переменную х в старшей степени и
рассмотреть
предел
каждого
слагаемого
в
отдельности.
3 x 2 10 x 8
Пример. Вычислить предел: lim 2
.
x x 5 x 4
Решение:
3 x 2 10 x 8
2 2
2
3 x 2 10 x 8
x
lim 2
lim x 2 x
x x 5 x 4
x x 5 x 4
x2 x2 x2
10 8
3 2
x x 3.
lim
x
5 4
1 2
x
x
2 x 2 3x 1
Пример. Вычислить предел: lim
.
x
5x 1
Решение:
2 x 2 3x 1
2 2
2
2
2 x 3x 1
x
x
lim
lim x
x
5x 1
x 5 x 1
x2 x2
3 1
2 2
2
x
x
lim
.
x
5 1
б. м.
2
x x
3x 2 5
Пример. Вычислить предел: lim 3
.
x x x 4
Решение:
3x 2 5
3
2
3
3x 5
x
lim 3
lim 3 x
x x x 4
x x x 4
x3 x3 x3
б.м.
lim
0.
x
1 4
1 2 3
x
x
3х 2 2 х 7
Пример: Вычислить предел: lim
.
x
2x 1
Решение:
3х 2 2 х 7
2 2
2
2
3х 2 х 7
х
х
lim
lim х
x
2x 1
2x 1
x
x x
2 7
3 2
3
х
х
lim
.
x
1
2
2
x
3. Неопределенность вида .
Для разрешения неопределенности такого вида,
необходимо умножить и разделить на выражение
сопряженное иррациональному выражению.
Пример. Вычислить предел: lim(2 х 4 x 2 3 x ).
x
Решение:
lim(2 х 4 x 2 3 x )
x
lim
(2 х 4 x 2 3x )(2 х 4 x 2 3x )
(2 х 4 x 3x )
x
2
4 x 2 (4 x 2 3 х)
lim
lim
2
2
x
x
2 х 4 x 3x
2 х 4 x 3x
3x
3 x
3 x
3
lim
lim
.
2
x
x 4 x
4
2х 4x

18. I замечательный предел

Первый
замечательный
предел
разрешает
неопределенность вида 0 и имеет вид:
0
sin x
x
lim
1
lim
1
x 0
x 0 sin x
x
Первый замечательный предел используют в тех
случаях, когда выражение, стоящее под знаком
предела содержит тригонометрические функции.
Частные случаи первого замечательного предела:
sin kx
lim
1
x 0
kx
kx
lim
1
x 0 sin kx
tg x
.
Пример. Вычислить предел: lim
x 0 x
Решение:
tg x 0
sin x
sin x
1
lim
lim
lim
lim
1.
x 0 x
0 x 0 x cos x x 0 x x 0 cos x
Пример. Вычислить предел: limsin 3 x ctg 5 x.
x 0
Решение:
cos5 x
limsin 3x ctg 5 x 0 limsin 3 x
x 0
x 0
sin 5 x
3x sin 3x cos5 x 5 x
3x cos5 x 3
lim
lim
.
x 0
x 0
3x sin 5 x 5 x
5x
5
1
cos6
x
Пример: Вычислить предел: lim
.
x 0 x sin x
Решение:
1 cos6 x 0
2sin 2 3 x
lim
lim
x 0 x sin x
0 x 0 x sin x
2sin 3x sin 3x x 3x 3x
18 x 2
lim
lim 2 18.
x 0
x 0 x
3x 3x x sin x x
arctg 4 x
.
Пример. Вычислить предел: lim
x 0
3x
Решение:
y arctg 4 x
4 x tgy
arctg 4 x 0
y
lim
lim
1
x 0
y 0
1
3x
0 x tgy
3 tgy
4
4
x 0 y 0
4
y cos y 4
4
lim
limcos y .
3 y 0 sin y
3 y 0
3

24. II замечательный предел

Второй
замечательный
предел
разрешает
неопределенность вида 1 и имеет вид:
x
1
lim 1 e
x
x
1
x
lim 1 x e
x 0
где e 2,7
Показательная функция с основанием е имеет
x
y
e
вид:
и называется экспонентой.
Логарифм с основанием е имеет вид:log e x ln x и
называется натуральным.
Если e y x , то y ln x.
3x
1
Пример. Вычислить предел: lim 1 .
x
x
Решение:
х 3
1
1
lim 1 1 lim 1 e3 .
x
x
x х
3x
3
Пример. Вычислить предел: lim 1
x
2
x
1
Решение:
3
lim 1
x
2
x
1
3 x
e
9 3 x
x 2 x 1
e
3 х
2 x 1
3
1
lim 1
x
2x 1
3
3x
x 2 x
lim
3
2
e .
.
3 х
1
lim 1
x
2х 1
3
lim
3
1 lim 1
x
2
х
1
3 x
3
(3 х )
2 х 1
2x 3
Пример. Вычислить предел: lim
x 2 x 5
2 x 1
.
Решение:
2 x 1
2 x 1
(2 x 5) 5 3
2x 3
lim
1 lim
x 2 x 5
x
2x 5
2 x 5
8
2 x 1
8
1
2x 5
lim
lim
1
x
x
2
x
5
2
x
5
2
x
5
8
e
16 x 8
x 2 x 5
lim
e
16 x
x 2 x
lim
8
e .
8
(2 x 1)
2 x 5
Пример. Вычислить предел: lim(5 2 x)
3x
2 x
x 2
.
Решение:
lim(5 2 x)
x 2
3x
2 x
y x 2
1 x y 2
x 2 y 0
lim(5 2( y 2))
3( y 2)
2 ( y 2)
y 0
1
2 y
lim (1 ( 2 y ))
y 0
lim(5 2 y 4)
3 y 6
y
y 0
2 y 3 y 6
1 y
e
lim (6 y 12)
y 0
e12 .
2x 3
Пример. Вычислить предел: lim
x 4 x 3
Решение:
2x 3
lim
x 4 x 3
3 x 1
2x
lim
x 4 x
3 x 1
1
lim
x 2
3 x 1
.
3 x 1
В дальнейшем решении возможны два случая:
1
lim
x 2
1
lim
x 2
3 x 1
3 x 1
1
lim
x 2
1
lim
x 2
б .б .
б .б .
2 б .б . б.б. .
1
1
б .б .
0.
2
б.б.

English     Русский Правила

3 6 Решить для ? cos(x)=1/2 7 Найти x sin(x)=-1/2 8 Преобразование градусов в радианы 225 9 Решить для ? cos(x)=(квадратный корень из 2)/2 10 Найти x cos(x)=(квадратный корень из 3)/2 11 Найти x sin(x)=(квадратный корень из 3)/2
92=9 14 Преобразование градусов в радианы 120 градусов 15 Преобразование градусов в радианы 180 16 Найти точное значение желтовато-коричневый(195) 92-4 38 Найти точное значение грех(255) 39 Оценить лог база 27 из 36 40 Преобразовать из радианов в градусы
2 шт. 92-3sin(x)+1=0 43 Найти x tan(x)+ квадратный корень из 3=0 44 Найти x sin(2x)+cos(x)=0 45 Упростить (1-cos(x))(1+cos(x)) 92=25 59 График f(x)=- натуральный логарифм x-1+3 60 Найдите значение с помощью единичного круга угловой синус(-1/2)
61 Найти домен квадратный корень из 36-4x^2 92=0 66 Найти x cos(2x)=(квадратный корень из 2)/2 67 График у=3 68 График f(x)=- логарифмическая база 3 x-1+3 92 71 Найти x квадратный корень из x+4+ квадратный корень из x-1=5 72 Решить для ? cos(2x)=-1/2 73 Найти x логарифмическая база x из 16=4 9х 75 Упростить (cos(x))/(1-sin(x))+(1-sin(x))/(cos(x)) 76 Упростить сек(х)sin(х) 77 Упростить кубический корень из 24 кубический корень из 18 92=0 96 Найти x 3x+2=(5x-11)/(8г) 97 Решить для ? sin(2x)=-1/2 98 Найти x (2x-1)/(x+2)=4/5 92+n-72)=1/(n+9)

Мэтуэй | Популярные задачи

92
1 Найти точное значение грех(30)
2 Найти точное значение грех(45)
3 Найти точное значение грех(30 градусов)
4 Найти точное значение грех(60 градусов)
5 Найти точное значение загар (30 градусов)
6 Найти точное значение угловой синус (-1)
7 Найти точное значение грех(пи/6)
8 Найти точное значение cos(pi/4)
9 Найти точное значение грех(45 градусов)
10 Найти точное значение грех(пи/3)
11 Найти точное значение арктан(-1)
12 Найти точное значение cos(45 градусов)
13 Найти точное значение cos(30 градусов)
14 Найти точное значение желтовато-коричневый(60)
15 Найти точное значение csc(45 градусов)
16 Найти точное значение загар (60 градусов)
17 Найти точное значение сек(30 градусов)
18 Найти точное значение cos(60 градусов)
19 Найти точное значение соз(150)
20 Найти точное значение грех(60)
21 Найти точное значение cos(pi/2)
22 Найти точное значение загар (45 градусов)
23 Найти точное значение arctan(- квадратный корень из 3)
24 Найти точное значение csc(60 градусов)
25 Найти точное значение сек(45 градусов)
26 Найти точное значение csc(30 градусов)
27 Найти точное значение грех(0)
28 Найти точное значение грех(120)
29 Найти точное значение соз(90)
30 Преобразовать из радианов в градусы пи/3
31 Найти точное значение желтовато-коричневый(30)
35 Преобразовать из радианов в градусы
пи/6
36 Найти точное значение детская кроватка(30 градусов)
37 Найти точное значение арккос(-1)
38 Найти точное значение арктан(0)
39 Найти точное значение детская кроватка(60 градусов)
40 Преобразование градусов в радианы 30
41 Преобразовать из радианов в градусы (2 шт.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

© 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

Карта сайта