А х производная: Производная показательной функции (a^x)’

Содержание

Найти производную функции 4. Что такое производная

На этом занятии мы будем учиться применять формулы и правила дифференцирования.

Примеры. Найти производные функций.

1. y=x 7 +x 5 -x 4 +x 3 -x 2 +x-9. Применяем правило I , формулы 4, 2 и 1 . Получаем:

y’=7x 6 +5x 4 -4x 3 +3x 2 -2x+1.

2. y=3x 6 -2x+5. Решаем аналогично, используя те же формулы и формулу 3.

y’=3∙6x 5 -2=18x 5 -2.

Применяем правило I , формулы 3, 5 и 6 и 1.

Применяем правило IV , формулы 5 и 1 .

В пятом примере по правилу I производная суммы равна сумме производных, а производную 1-го слагаемого мы только что находили (пример 4 ), поэтому, будем находить производные 2-го и 3-го слагаемых, а для 1-го слагаемого можем сразу писать результат.

Дифференцируем 2-ое и 3-е слагаемые по формуле 4 . Для этого преобразуем корни третьей и четвертой степеней в знаменателях к степеням с отрицательными показателями, а затем, по

4 формуле, находим производные степеней.

Посмотрите на данный пример и полученный результат. Уловили закономерность? Хорошо. Это означает, что мы получили новую формулу и можем добавить ее в нашу таблицу производных.

Решим шестой пример и выведем еще одну формулу.

Используем правило IV и формулу 4 . Получившиеся дроби сократим.

Смотрим на данную функцию и на ее производную. Вы, конечно, поняли закономерность и готовы назвать формулу:

Учим новые формулы!

Примеры.

1. Найти приращение аргумента и приращение функции y=x 2 , если начальное значение аргумента было равно 4 , а новое —4,01 .

Решение.

Новое значение аргумента х=х 0 +Δx . Подставим данные: 4,01=4+Δх, отсюда приращение аргумента Δх =4,01-4=0,01. Приращение функции, по определению, равно разности между новым и прежним значениями функции, т.

е. Δy=f (х 0 +Δх) — f (x 0). Так как у нас функция y=x 2 , то Δу =(х 0 +Δx) 2 — (х 0) 2 =(х 0) 2 +2x 0 · Δx+(Δx) 2 — (х 0) 2 =2x 0 · Δx+(Δx) 2 =

2 · 4 · 0,01+(0,01) 2 =0,08+0,0001=0,0801.

Ответ: приращение аргумента Δх =0,01; приращение функции Δу =0,0801.

Можно было приращение функции найти по-другому: Δy =y (х 0 +Δx) -y (х 0)=у(4,01) -у(4)=4,01 2 -4 2 =16,0801-16=0,0801.

2. Найти угол наклона касательной к графику функции y=f (x) в точке х 0 , если f «(х 0) = 1 .

Решение.

Значение производной в точке касания х 0 и есть значение тангенса угла наклона касательной (геометрический смысл производной). Имеем: f «(х 0) = tgα = 1 → α = 45°,

так как tg45°=1.

Ответ: касательная к графику данной функции образует с положительным направлением оси Ох угол, равный 45° .

3. Вывести формулу производной функции y=x n .

Дифференцирование — это действие нахождения производной функции.

При нахождении производных применяют формулы, которые были выведены на основании определения производной, так же, как мы вывели формулу производной степени: (x n)» = nx n-1 .

Вот эти формулы.

Таблицу производных легче будет заучить, проговаривая словесные формулировки:

1. Производная постоянной величины равна нулю.

2. Икс штрих равен единице.

3. Постоянный множитель можно вынести за знак производной.

4. Производная степени равна произведению показателя этой степени на степень с тем же основанием, но показателем на единицу меньше.

5. Производная корня равна единице, деленной на два таких же корня.

6. Производная единицы, деленной на икс равна минус единице, деленной на икс в квадрате.

7. Производная синуса равна косинусу. nx. Формулы производных высших порядков.

Производная экспоненты равна самой экспоненте (производная e в степени x равна e в степени x):
(1) (e x )′ = e x .

Производная показательной функции с основанием степени a равна самой функции, умноженной на натуральный логарифм от a :
(2) .

Вывод формулы производной экспоненты, e в степени x

Экспонента — это показательная функция, у которой основание степени равно числу e , которое является следующим пределом:
.
Здесь может быть как натуральным, так и действительным числом. Далее мы выводим формулу (1) производной экспоненты.

Вывод формулы производной экспоненты

Рассмотрим экспоненту, e в степени x :
y = e x .
Эта функция определена для всех . Найдем ее производную по переменной x . По определению, производная является следующим пределом:
(3) .

Преобразуем это выражение, чтобы свести его к известным математическим свойствам и правилам. Для этого нам понадобятся следующие факты:
А) Свойство экспоненты :
(4) ;
Б) Свойство логарифма :
(5) ;
В) Непрерывность логарифма и свойство пределов для непрерывной функции:
(6) .
Здесь — некоторая функция, у которой существует предел и этот предел положителен.
Г) Значение второго замечательного предела:
(7) .

Применяем эти факты к нашему пределу (3). Используем свойство (4):
;
.

Сделаем подстановку . Тогда ; .
В силу непрерывности экспоненты,

.
Поэтому при , . В результате получаем:
.

Сделаем подстановку . Тогда . При , . И мы имеем:
.

Применим свойство логарифма (5):
. Тогда
.

Применим свойство (6). Поскольку существует положительный предел и логарифм непрерывен, то:
.
Здесь мы также воспользовались вторым замечательным пределом (7). Тогда
.

Тем самым мы получили формулу (1) производной экспоненты.

Вывод формулы производной показательной функции

Теперь выведем формулу (2) производной показательной функции с основанием степени a . Мы считаем, что и . Тогда показательная функция
(8)
Определена для всех .

Преобразуем формулу (8). Для этого воспользуемся свойствами показательной функции и логарифма .
;
.
Итак, мы преобразовали формулу (8) к следующему виду:
.

Производные высших порядков от e в степени x

Теперь найдем производные высших порядков. Сначала рассмотрим экспоненту:

(14) .
(1) .

Мы видим, что производная от функции (14) равна самой функции (14). Дифференцируя (1), получаем производные второго и третьего порядка:
;
.

Отсюда видно, что производная n-го порядка также равна исходной функции:
.

Производные высших порядков показательной функции

Теперь рассмотрим показательную функцию с основанием степени a :
.
Мы нашли ее производную первого порядка:
(15) .

Дифференцируя (15), получаем производные второго и третьего порядка:
;
.

Мы видим, что каждое дифференцирование приводит к умножению исходной функции на . Поэтому производная n-го порядка имеет следующий вид:
.

Вычисление производной — одна из самых важных операций в дифференциальном исчислении. Ниже приводится таблица нахождения производных простых функций. Более сложные правила дифференцирования смотрите в других уроках:

  • Таблица производных экспоненциальных и логарифмических функций

Приведенные формулы используйте как справочные значения. Они помогут в решении дифференциальных уравнений и задач. На картинке, в таблице производных простых функций, приведена «шпаргалка» основных случаев нахождения производной в понятном для применения виде, рядом с ним даны пояснения для каждого случая.

Производные простых функций

1. Производная от числа равна нулю
с´ = 0
Пример:
5´ = 0

Пояснение :
Производная показывает скорость изменения значения функции при изменении аргумента. Поскольку число никак не меняется ни при каких условиях — скорость его изменения всегда равна нулю.

2. Производная переменной равна единице

x´ = 1

Пояснение :
При каждом приращении аргумента (х) на единицу значение функции (результата вычислений) увеличивается на эту же самую величину. Таким образом, скорость изменения значения функции y = x точно равна скорости изменения значения аргумента.

3. Производная переменной и множителя равна этому множителю
сx´ = с
Пример:
(3x)´ = 3
(2x)´ = 2
Пояснение :
В данном случае, при каждом изменении аргумента функции (х ) ее значение (y) растет в с раз. Таким образом, скорость изменения значения функции по отношению к скорости изменения аргумента точно равно величине с .

Откуда следует, что
(cx + b)» = c
то есть дифференциал линейной функции y=kx+b равен угловому коэффициенту наклона прямой (k).

4. Производная переменной по модулю

равна частному этой переменной к ее модулю
|x|» = x / |x| при условии, что х ≠ 0
Пояснение :
Поскольку производная переменной (см. формулу 2) равна единице, то производная модуля отличается лишь тем, что значение скорости изменения функции меняется на противоположное при пересечении точки начала координат (попробуйте нарисовать график функции y = |x| и убедитесь в этом сами. Именно такое значение и возвращает выражение x / |x| . Когда x 0 — единице. То есть при отрицательных значениях переменной х при каждом увеличении изменении аргумента значение функции уменьшается на точно такое же значение, а при положительных — наоборот, возрастает, но точно на такое же значение.

5. Производная переменной в степени равна произведению числа этой степени и переменной в степени, уменьшенной на единицу
(x c)»= cx c-1 , при условии, что x c и сx c-1 ,определены а с ≠ 0
Пример:
(x 2)» = 2x

(x 3)» = 3x 2
Для запоминания формулы :
Снесите степень переменной «вниз» как множитель, а потом уменьшите саму степень на единицу. Например, для x 2 — двойка оказалась впереди икса, а потом уменьшенная степень (2-1=1) просто дала нам 2х. То же самое произошло для x 3 — тройку «спускаем вниз», уменьшаем ее на единицу и вместо куба имеем квадрат, то есть 3x 2 . Немного «не научно», но очень просто запомнить.

6. Производная дроби 1/х
(1/х)» = — 1 / x 2
Пример:
Поскольку дробь можно представить как возведение в отрицательную степень
(1/x)» = (x -1)» , тогда можно применить формулу из правила 5 таблицы производных
(x -1)» = -1x -2 = — 1 / х 2

7. Производная дроби с переменной произвольной степени в знаменателе
(1 / x c)» = — c / x c+1
Пример:
(1 / x 2)» = — 2 / x 3

8. Производная корня (производная переменной под квадратным корнем)
(√x)» = 1 / (2√x) или 1/2 х -1/2
Пример:
(√x)» = (х 1/2)» значит можно применить формулу из правила 5
(х 1/2)» = 1/2 х -1/2 = 1 / (2√х)

9. Производная переменной под корнем произвольной степени
(n √x)» = 1 / (n n √x n-1)

Вычисление производной часто встречается в заданиях ЕГЭ. Данная страница содержит список формул для нахождения производных.

Правила дифференцирования

  1. (k⋅ f(x))′=k⋅ f ′(x).
  2. (f(x)+g(x))′=f′(x)+g′(x).
  3. (f(x)⋅ g(x))′=f′(x)⋅ g(x)+f(x)⋅ g′(x).
  4. Производная сложной функции. Если y=F(u), а u=u(x), то функция y=f(x)=F(u(x)) называется сложной функцией от x. Равна y′(x)=Fu′⋅ ux′.
  5. Производная неявной функции. Функция y=f(x) называется неявной функцией, заданной соотношением F(x,y)=0, если F(x,f(x))≡0.
  6. Производная обратной функции. Если g(f(x))=x, то функция g(x) называется обратной функцией для функции y=f(x).
  7. Производная параметрически заданной функции. Пусть x и y заданы как функции от переменной t: x=x(t), y=y(t). Говорят, что y=y(x) параметрически заданная функция на промежутке x∈ (a;b), если на этом промежутке уравнение x=x(t) можно выразить в виде t=t(x) и определить функцию y=y(t(x))=y(x).
  8. Производная степенно-показательной функции. Находится путем логарифмирования по основанию натурального логарифма.

Советуем сохранить ссылку, так как эта таблица может понадобиться еще много раз.


Дата: 20.11.2014

Таблица производных.

Производная — одно из главных понятий высшей математики. В этом уроке мы познакомимся с этим понятием. Именно познакомимся, без строгих математических формулировок и доказательств.

Это знакомство позволит:

Понимать суть несложных заданий с производной;

Успешно решать эти самые несложные задания;

Подготовиться к более серьёзным урокам по производной.

Сначала — приятный сюрприз.)

Строгое определение производной основано на теории пределов и штука достаточно сложная. Это огорчает. Но практическое применение производной, как правило, не требует таких обширных и глубоких знаний!

Для успешного выполнения большинства заданий в школе и ВУЗе достаточно знать всего несколько терминов — чтобы понять задание, и всего несколько правил — чтобы его решить. И всё. Это радует.

Приступим к знакомству?)

Термины и обозначения.

В элементарной математике много всяких математических операций. Сложение, вычитание умножение, возведение в степень, логарифмирование и т.д. Если к этим операциям добавить ещё одну, элементарная математика становится высшей. Эта новая операция называется дифференцирование. Определение и смысл этой операции будут рассмотрены в отдельных уроках.

Здесь же важно понять, что дифференцирование — это просто математическая операция над функцией. Берём любую функцию и, по определённым правилам, преобразовываем её. В результате получится новая функция. Вот эта новая функция и называется: производная.

Дифференцирование — действие над функцией.

Производная — результат этого действия.

Так же, как, например, сумма — результат сложения. Или частное — результат деления.

Зная термины, можно, как минимум, понимать задания.) Формулировки бывают такие: найти производную функции; взять производную; продифференцировать функцию; вычислить производную и т. п. Это всё одно и то же. Разумеется, бывают и более сложные задания, где нахождение производной (дифференцирование) будет всего лишь одним из шагов решения задания.

Обозначается производная с помощью штришка вверху справа над функцией. Вот так: или f»(x) или S»(t) и так далее.

Читается игрек штрих, эф штрих от икс, эс штрих от тэ, ну вы поняли…)

Штрих также может обозначать производную конкретной функции, например: (2х+3)» , (x 3 , (sinx)» и т.д. Часто производная обозначается с помощью дифференциалов, но такое обозначение в этом уроке мы рассматривать не будем.

Предположим, что понимать задания мы научились. Осталось всего ничего — научиться их решать.) Напомню ещё раз: нахождение производной — это преобразование функции по определённым правилам. Этих правил, на удивление, совсем немного.

Чтобы найти производную функции, надо знать всего три вещи. Три кита, на которых стоит всё дифференцирование. Вот они эти три кита:

1. Таблица производных (формулы дифференцирования).

3. Производная сложной функции.

Начнём по порядку. В этом уроке рассмотрим таблицу производных.

Таблица производных.

В мире — бесконечное множество функций. Среди этого множества есть функции, которые наиболее важны для практического применения. Эти функции сидят во всех законах природы. Из этих функций, как из кирпичиков, можно сконструировать все остальные. Этот класс функций называется элементарные функции. Именно эти функции и изучаются в школе — линейная, квадратичная, гипербола и т.п.

Дифференцирование функций «с нуля», т.е. исходя из определения производной и теории пределов — штука достаточно трудоёмкая. А математики — тоже люди, да-да!) Вот и упростили себе (и нам) жизнь. Они вычислили производные элементарных функций до нас. Получилась таблица производных, где всё уже готово.)

Вот она, эта табличка для самых популярных функций. Слева — элементарная функция, справа — её производная.

Функция
y
Производная функции y
1C (постоянная величина)C» = 0
2xx» = 1
3x n (n — любое число)(x n)» = nx n-1
x 2 (n = 2)(x 2)» = 2x
4sin x(sin x)» = cosx
cos x(cos x)» = — sin x
tg x
ctg x
5arcsin x
arccos x
arctg x
arcctg x
4a x
e x
5log a x
ln x (a = e )

Рекомендую обратить внимание на третью группу функций в этой таблице производных. Производная степенной функции — одна из самых употребительных формул, если только не самая употребительная! Намёк понятен?) Да, таблицу производных желательно знать наизусть. Кстати, это не так трудно, как может показаться. Попробуйте решать побольше примеров, таблица сама и запомнится!)

Найти табличное значение производной, как вы понимаете, задание не самое трудное. Поэтому очень часто в подобных заданиях встречаются дополнительные фишки. Либо в формулировке задания, либо в исходной функции, которой в таблице — вроде и нету…

Рассмотрим несколько примеров:

1. Найти производную функции y = x 3

Такой функции в таблице нет. Но есть производная степенной функции в общем виде (третья группа). В нашем случае n=3. Вот и подставляем тройку вместо n и аккуратно записываем результат:

(x 3) » = 3·x 3-1 = 3x 2

Вот и все дела.

Ответ: y» = 3x 2

2. Найти значение производной функции y = sinx в точке х = 0.

Это задание означает, что надо сначала найти производную от синуса, а затем подставить значение х = 0 в эту самую производную. Именно в таком порядке! А то, бывает, сразу подставляют ноль в исходную функцию… Нас же просят найти не значение исходной функции, а значение её производной. Производная, напомню — это уже новая функция.

По табличке находим синус и соответствующую производную:

y» = (sin x)» = cosx

Подставляем ноль в производную:

y»(0) = cos 0 = 1

Это и будет ответ.

3. Продифференцировать функцию:

Что, внушает?) Такой функции в таблице производных и близко нет.

Напомню, что продифференцировать функцию — это просто найти производную этой функции. Если забыть элементарную тригонометрию, искать производную нашей функции достаточно хлопотно. Таблица не помогает…

Но если увидеть, что наша функция — это косинус двойного угла , то всё сразу налаживается!

Да-да! Запомните, что преобразование исходной функции до дифференцирования вполне допускается! И, случается, здорово облегчает жизнь. По формуле косинуса двойного угла:

Т.е. наша хитрая функция есть не что иное, как y = cosx . А это — табличная функция. Сразу получаем:

Ответ: y» = — sin x .

Пример для продвинутых выпускников и студентов:

4. Найти производную функции:

Такой функции в таблице производных нет, разумеется. Но если вспомнить элементарную математику, действия со степенями… То вполне можно упростить эту функцию. Вот так:

А икс в степени одна десятая — это уже табличная функция! Третья группа, n=1/10. Прямо по формуле и записываем:

Вот и всё. Это будет ответ.

Надеюсь, что с первым китом дифференцирования — таблицей производных — всё ясно. Осталось разобраться с двумя оставшимися китами. В следующем уроке освоим правила дифференцирования.

64. Вывод табличных производных. Производная постоянной.

При выводе самой первой формулы таблицы будем исходить из определения производнойфункции в точке. Возьмем , где x – любое действительное число, то есть, x – любое число из области определения функции . Запишем предел отношения приращения функции к приращению аргумента при :

Следует заметить, что под знаком предела получается выражение , которое не являетсянеопределенностью ноль делить на ноль, так как в числителе находится не бесконечно малая величина, а именно ноль. Другими словами, приращение постоянной функции всегда равно нулю.

Таким образом, производная постоянной функции равна нулю на всей области определения.

Производная степенной функции.

Формула производной степенной функции имеет вид , где показатель степени p – любое действительное число.

Докажем сначала формулу для натурального показателя степени, то есть, для p = 1, 2, 3, …

Будем пользоваться определением производной. Запишем предел отношения приращения степенной функции к приращению аргумента:

Для упрощения выражения в числителе обратимся к формуле бинома Ньютона:

Следовательно,

Этим доказана формула производной степенной функции для натурального показателя.

Производная показательной функции.

Вывод формулы производной приведем на основе определения:

Пришли к неопределенности. Для ее раскрытия введем новую переменную , причем при . Тогда . В последнем переходе мы использовали формулу перехода к новому основанию логарифма.

Выполним подстановку в исходный предел:

Если вспомнить второй замечательный предел, то придем к формуле производной показательной функции:

Производная логарифмической функции.

Докажем формулу производной логарифмической функции для всех x из области определения и всех допустимых значениях основания a логарифма. По определению производной имеем:

Как Вы заметили, при доказательстве преобразования проводились с использованием свойств логарифма. Равенство справедливо в силу второго замечательного предела.

Производные тригонометрических функций.

Для вывода формул производных тригонометрических функций нам придется вспомнить некоторые формулы тригонометрии, а также первый замечательный предел.

По определению производной для функции синуса имеем .

Воспользуемся формулой разности синусов:

Осталось обратиться к первому замечательному пределу:

Таким образом, производная функции sin x есть cos x.

Абсолютно аналогично доказывается формула производной косинуса.

Следовательно, производная функции cos x есть –sin x.

Вывод формул таблицы производных для тангенса и котангенса проведем с использованием доказанных правил дифференцирования (производная дроби).

Производные гиперболических функций.

Правила дифференцирования и формула производной показательной функции из таблицы производных позволяют вывести формулы производных гиперболического синуса, косинуса, тангенса и котангенса.

Производная обратной функции.

Перед началом изучения данной статьи рекомендуем вспомнить определение и свойства обратной функции.

Чтобы при изложении не было путаницы, давайте обозначать в нижнем индексе аргумент функции, по которому выполняется дифференцирование, то есть, — это производная функции f(x) по x.

Теперь сформулируем правило нахождения производной обратной функции.

Пусть функции y = f(x) и x = g(y) взаимно обратные, определенные на интервалах и соответственно. Если в точке существует конечная отличная от нуля производная функции f(x), то в точке существует конечная производная обратной функции g(y), причем . В другой записи .

Можно это правило переформулировать для любого x из промежутка , тогда получим .

Давайте проверим справедливость этих формул.

Найдем обратную функцию для натурального логарифма (здесь y – функция, а x— аргумент). Разрешив это уравнение относительно x, получим (здесь x – функция, а y – ее аргумент). То есть, и взаимно обратные функции.

Из таблицы производных видим, что и .

Убедимся, что формулы нахождения производных обратной функции приводят нас к этим же результатам:

Как видите, получили такие же результаты как и в таблице производных.

Теперь мы обладаем знаниями для доказательства формул производных обратных тригонометрических функций.

Начнем с производной арксинуса.

Для обратной функцией является . Тогда по формуле производной обратной функции получаем

Осталось провести преобразования.

Так как областью значений арксинуса является интервал , то (смотрите раздел основные элементарные функции, их свойства и графики). Поэтому , а не рассматриваем.

Следовательно, . Областью определения производной арксинуса является промежуток (-1; 1).

Для арккосинуса все делается абсолютно аналогично:

Найдем производную арктангенса.

Для обратной функцией является .

Выразим арктангенс через арккосинус, чтобы упростить полученное выражение.

Пусть arctgx = z, тогда

Следовательно,

Схожим образом находится производная арккотангенса:

чему равна, формула, примеры решения задач

Понятие производной, чему равна Х* корня из Х

Определение

Производной функции \(y=f(x)\) называется предел отношения приращения функции к приращению независимой переменной при стремлении последнего к нулю (если этот предел существует).

Говоря проще, производная есть скорость изменения функции в конкретной точке. Скорость оценивается с помощью вычисления отношения изменения функции \(\triangle y\) к изменению аргумента \(\triangle x\). Данное отношение рассматривается в пределе, где \(\triangle x\rightarrow0.\)

Обычно производную обозначают как f'(x).

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут. {-\frac12}=\frac1{2\sqrt g}\)

\(g'(x)=3\)

Комбинируем найденные произведения по правилу дифференцирования сложных функций.

Таким образом:

\(y’=\frac1{2\times\sqrt g}\times3=\frac1{2\sqrt{(3x+2)}}\times3=\frac3{2\times\sqrt{(3x+2)}}\)

Ответ: \(y’=\frac3{2\times\sqrt{(3x+2)}}.\)

С помощью упрощенного правила дифференцирования корня

Определение

Производная квадратного корня, под которым стоит переменная или фукнция, будет равна производной подкоренного выражения, поделенной на удвоенный первоначальный квадратный корень

или

\(f'(x)=\frac{u’}{2\times\sqrt u},\) если \(f(x)=\sqrt u\).

Рассмотрим на примере производной функции \(\sqrt{5x+2}.\)

В ней подкоренным выражением будет \((5x+2)\), а его производной — \(5\).

Вспомним определение производной корня. Получим:

\(f(x)=\sqrt{5x+2}\)

\(f'(x)=\frac5{2\times\sqrt{5x+2}}\)

По правилу дифференцирования квадратных корней нужно было делить числитель на удвоенное произведение первоначального корня, что мы и сделали для получения ответа.

Примеры решения задач по теме «Производная корня»

Задача 1

Найти производную функции \(y(x)=2\sqrt x.\)

Решение

\(y'(x)=(2\sqrt{x)}’\)

Применим уже изученные правила. Получим:

\(y'(x)=2\times(\sqrt{x)’}=2\times\frac1{2\times\sqrt x}=\frac1{\sqrt x}\)

Ответ: \(y'(x)=\frac1{\sqrt x}.\)

Задача 2

Найти производную функции \(y(x)=\sqrt{2x}.\)

Решение

\(y'(x)=(\sqrt{2x})’\)

Применим уже изученные правила. Получим:

\(y'(x)=(\sqrt{2x})’=\frac1{2\times\sqrt{2\times x}}\times(2x)’\)

\(y'(x)=\frac1{2\times\sqrt{2\times x}}\times2\times\;(x)’=\frac1{\sqrt{2x}}\times1=\frac1{\sqrt{2x}}\)

Ответ: \(y'(x)=\frac1{\sqrt{2x}}.\)

Задача 3

Попробуем решить производную частного случая \(x\times\sqrt x\).

Найти производную от \(x\times\sqrt x.\)

Решение

Применим уже изученные правила и получим:

 

Мэтуэй | Популярные задачи

92) 9(3x) по отношению к x 92+1
1 Найти производную — d/dx бревно натуральное х
2 Оценить интеграл интеграл натурального логарифма x относительно x
3 Найти производную — d/dx
21 Оценить интеграл интеграл от 0 до 1 кубического корня из 1+7x относительно x
22 Найти производную — d/dx грех(2x)
23 Найти производную — d/dx
41 Оценить интеграл интеграл от cos(2x) относительно x
42 Найти производную — d/dx 1/(корень квадратный из х)
43 Оценка интеграла 9бесконечность
45 Найти производную — d/dx х/2
46 Найти производную — d/dx -cos(x)
47 Найти производную — d/dx грех(3x)
68 Оценить интеграл интеграл от sin(x) по x
69 Найти производную — d/dx угловой синус(х)
70 Оценить предел ограничение, когда x приближается к 0 из (sin(x))/x 92 по отношению к х
85 Найти производную — d/dx лог х
86 Найти производную — d/dx арктан(х)
87 Найти производную — d/dx бревно натуральное 5х92

Мэтуэй | Популярные задачи

92) 9(3x) по отношению к x 92+1
1 Найти производную — d/dx бревно натуральное х
2 Оценить интеграл интеграл натурального логарифма x относительно x
3
21 Оценить интеграл интеграл от 0 до 1 кубического корня из 1+7x относительно x
22 Найти производную — d/dx грех(2x)
23 Найти производную — d/dx
41 Оценить интеграл интеграл от cos(2x) относительно x
42 Найти производную — d/dx 1/(корень квадратный из х)
43 Оценка интеграла 9бесконечность
45 Найти производную — d/dx х/2
46 Найти производную — d/dx -cos(x)
47 Найти производную — d/dx грех(3x)
68 Оценить интеграл интеграл от sin(x) по x
69 Найти производную — d/dx угловой синус(х)
70 Оценить предел ограничение, когда x приближается к 0 из (sin(x))/x 92 по отношению к х
85 Найти производную — d/dx лог х
86 Найти производную — d/dx арктан(х)
87 Найти производную — d/dx бревно натуральное 5х92

Производные экспоненциальной и логарифмической функций

Подход

к

C A L C U L U S

Содержание | Главная

14

Производная от ln x

Производная e с функциональным показателем

г.

Производная от ln u ( x )

Общее силовое правило

В СИСТЕМЕ НАТУРАЛЬНЫХ ЛОГАРИФМОВ в качестве основания используется число, называемое e; это система, которую мы используем во всей теоретической работе. (В следующем уроке мы увидим, что e приблизительно равно 2 . 718.) Система натуральных логарифмов отличается от системы десятичных логарифмов, в основе которой лежит 10 и которая используется в большинстве практических работ.

г.

Мы обозначаем логарифмическую функцию с основанием e как «ln x ».

ln x  =  log e x .

y = ln x   подразумевает  e y = x .

Другими словами, эта логарифмическая функция —

у = пер х

— имеет обратную экспоненциальную функцию,

г.

у = е х .

Вот обратные соотношения:

ln e x = x и e ln x = x .

А логарифм самого основания всегда равен 1:

ln е = 1.

(Тема 20 предварительного исчисления.)

Функция   y = ln x  является непрерывным и определяется для всех положительных значений x . Оно будет подчиняться обычным законам логарифмов:

1 . ln ab  =  ln a  +  ln b .

2 . номер а
б
  =  ln a  −  ln b .

3 . ln a n  =  n ln a .

(Тема 20 предварительного исчисления.)

Как и все правила алгебры, они подчиняются правилу симметрии.
Например,

n ln a  =  ln a n .

Производная от ln x

Теперь применим определение производной, чтобы доказать:

г.

  д  
дх
  л х  =   1
х

В ходе доказательства будет значительно упрощено, если мы определим основание системы натуральных бревен, число, которое мы называем e, как следующий предел:

г.

Предел в доказательстве будет иметь такой же вид.

Позже мы будем называть переменную x , а не v . А на следующем уроке, при замене переменной с на на , следует знакомое определение.

Вот коэффициент разности:

  по 2-му закону;
 =     при умножении на x / x ;
 
 =     в соответствии с 3-м законом.

Теперь мы принимаем предел, поскольку ч приближается к 0.

 = 

Ограничение не распространяется на 1
х
, потому что ч это переменная

   приближается к 0.   1
х
 – постоянный коэффициент.

Теперь мы определим этот предел как основание натуральных логарифмов, число, которое мы будем называть e. (Этот предел указан выше, с v = ; когда 0, 0.)

Следовательно,

 =  
 
   =  
 
   =  

Что мы и хотели доказать.

г.

Чтобы убедиться, что этот предел —

— то есть e существует, поскольку x приближается к 0, вот график

y имеет определенное значение, так как x приближается к 0. И в следующем уроке мы увидим, что это приблизительно 2,718.

Производная от e x

Теперь докажем:

г.

  д  
дх
  е х  =  e x

«Производная от е х по отношению к х

равно е x ».

С г = е x является обратным y = ln x , мы можем получить его производную следующим образом:

  г  =  е х  
 
подразумевает п г  =  ln e x  = x .

Следовательно, взяв производную от обеих сторон относительно x и применив цепное правило к ln y :

   =   1.
 
г’  =  и .
То есть
   =   e x .

e x является собственной производной.

Что это значит? Это подразумевает значение экспоненциального роста. Ибо мы говорим, что количество растет «экспоненциально», когда оно растет в 9 раз.1823 скорость , что пропорционально его размеру. Чем он больше в любой момент времени, тем быстрее он растет в это время. Типичным примером является население. Чем больше будет индивидуумов, тем больше будет рождений и, следовательно, тем больше скорость изменения населения — число рождений в каждом году.

Все экспоненциальные функции имеют вид a x , где a — основание. Следовательно, сказать, что скорость роста пропорциональна его размеру, значит сказать, что производная a x пропорционально a x .

  д  
дх
  а x  =   тыс. лет назад x

, где k — константа пропорциональности. (Урок 39алгебры.) Когда мы вычислим эту производную ниже, мы увидим, что эта константа становится ln a .

  д  
дх
  а x  =  ln a ·   a x .

В системе натуральных логарифмов, в которой e — это основание, у нас есть самая простая возможная константа, а именно 1.

  д  
дх
  е х  =  e x .

Производная от e с функциональным показателем

Когда y = e u ( x ) , то по цепному правилу:

То есть

«Производная от e с функциональным показателем

равно e с показателем степени, умноженным на производную от этого показателя, умноженную на
».

Пример 1.   Вычислить производную e 2 x  + 3 .

   Решение .  

Задача 1.   Вычислить производную e x 2 .

Чтобы увидеть ответ, наведите указатель мыши на цветную область.
Чтобы снова закрыть ответ, нажмите «Обновить» («Reload»).
Сначала решай задачу сам!

e x 2 ·  2 x = 2 x e x 2

Задача 2.   Вычислите производную от следующего.

а) e sin x . e sin x cos x

б) e −x . e x (−1) = −e x

c)   x 2 e x . х 2 e x + 2 x e x

В соответствии с правилом продукта.

  г)      Согласно частному правилу:

Производная от ln u ( x )

Когда y = ln u ( x ), то по цепному правилу:

г.

То есть

Пример 2.   
Пример 3.       д  
дх
  ln sin x  =      1   
sin x
· потому что x  =   cos x
sin x
 = детская кроватка x .

Пример 4. Найдите производную от ln x 2 .

Решение . Мы можем применить законы логарифмов:

  д  
дх
  л x 2  =     д  
дх
2 ln x , 3-й закон,
 
   =   2   д  
дх
л х
 
   =   2
х
.
.
Пример 5.   Найти производную от ln       x     
3 x − 4
.

Решение . По 2-му закону:

  д  
дх
 в       x     
3 x − 4
  =     д  
дх
[ln x — ln (3 x — 4)]
 
    =  
 
    =  
 
    =  

Задача 3.   Дифференцируйте следующее.

  а)   в x 3 .   д  
дх
 ln x 3 =   д  
дх
3 дюйма x   =   3
х
  b)   (ln x ) 3 . 3 (пер. x ) 2 ·   1
х
  =   3(ln x ) 2
     x
  c)   ln (3 x 2 − 4 x ).       1      
3 x 2 − 4 x
·  (6 х — 4)   =   6 x − 4
3 x 2 − 4 x
  d)   ln (3 x − 4) 2 .       1      
(3 x − 4) 2
·  2(3 x − 4) ·  3   =   6(3 x — 4)
(3 x — 4) 2
  =       6    
3 x − 4
  e)   ln cos x .   1   
cos x
(−sin x )   =   sin x
cos x  
  =   −загар x
.
Задача 4.   Вычислить производную от ln  2
х
.
  д  
дх
п 2
х
 =    д  
дх
(ln 2 — ln x ) = 0 — 1
х
  = − 1
х

Задача 5. Производная от log a x .

Согласно правилу перехода с базы e на другую базу a :

г.

Тема 20 предварительного исчисления.

Вычислите предел этой производной

а)  когда x больше 1 и становится больше.

Эта производная приближается к 0, то есть становится меньше.

б)  когда x меньше 1 и становится меньше.

г. Эта производная становится больше.

Общее силовое правило

Теперь мы можем доказать, что производная от f ( x ) = x n , где n — любой рациональный показатель, имеет следующий вид:

  д  
дх
  х п  =   n x n −1

Пусть

  г  =  x n .
  Затем
  п г  =  n ln x  (3-й закон).
 
 Поэтому, взяв производную по x :
 
5
 =  нет
x
  так что
  у’  =  нет
x
·   г
 
     =  нет
x
·   x n
 
      =  n x n −1 .

Именно это мы и хотели доказать.

(Если n равно 0, то x 0 = 1, константа; ее производная равна 0. Если n иррационально, потребуется рациональное приближение.)

Задача 6.   Вычислить производную от 

Производная от a x

Докажем:

  д  
дх
  а x  = первая a ·   a x

«Производная экспоненциальной функции с основанием a

равно натуральному логарифму основания

экспоненциальная функция умножается на

«.

Пусть

г = х .
 
  Тогда при натуральном логарифмировании обеих частей:
 
ln y4 = x ln a . (3-й закон)
 
  Следовательно,
=
 
  Но по правилу цепочки:
 
=
 
  Следовательно,
 
= по и .
 
= по и
 
г’ = ln a ·   y
 
 То есть
= ln a ·   a x .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

© 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

Карта сайта