Чему равна градусная мера угла: Что такое градусная мера угла? Ответ на webmath.ru

Содержание

Градусная мера угла. Определение

Основные понятия

В рамках вопроса измерения углов, в данном разделе рассмотрим несколько понятий, относящихся к начальным геометрическим сведениям:

  • угол;
  • развёрнутый и неразвёрнутый угол;
  • градус, минута и секунда;
  • градусная мера угла;
  • прямой, острый и тупой углы.

Углом называют такую геометрическую фигуру, которая представляет собой точку (вершину) и исходящие из неё два луча (стороны). Угол называют развёрнутым, если оба луча лежат на одной прямой.

Рисунок 1. Угол. Автор24 — интернет-биржа студенческих работ

Благодаря градусной мере угла можно произвести измерение углов. Измерение углов проводится аналогично измерению отрезков. Так же, как и при измерении отрезков, при измерении углов используется специальная единица измерения. Чаще всего это градус.

Определение 1

Градус — это единица измерения. В геометрии он представляет собой угол, с которым сравнивают другие углы. Градус равен $\frac{1}{180}$ от развёрнутого угла.

Теперь можно дать определение градусной мере угла.

Определение 2

Градусная мера угла — это такое положительное число, которое обозначает, сколько раз градус помещается в данном угле.

Готовые работы на аналогичную тему

Для измерения углов используют транспортир.

Рисунок 2. Транспортир. Автор24 — интернет-биржа студенческих работ

Пример записи градусной меры: $\angle ABC = 150^{\circ}$. На рисунке эта запись означает следующее:

Рисунок 3. Градусная мера. Автор24 — интернет-биржа студенческих работ

В устной форме говорят так: «Угол АВС равен 150 градусам».

Некоторые части градуса имеют свои специальные названия. Минутой называют $\frac{1}{60}$ часть градуса, для обозначения используется знак $’$. Секундой называют $\frac{1}{60}$ часть минуты, для обозначения используют $»$. Пример записи угла в 75 градусов, 45 минут и 28 секунд: $75^{\circ}45’28»$.

Равными называют те углы, у которых градусные меры равны. Соответственно, углы можно сравнивать, говоря, что один угол меньше другого или один угол больше другого.

Выше было дано определение развернутому углу. Владея понятием градусной меры, мы можем описать разницу между развернутым и неразвернутым углом. Развернутый угол всегда равен $180^{\circ}$. Неразвернутый угол — это любой угол меньше $180^{\circ}$.

Различают прямой, острый и тупой углы. Прямой угол равен $90^{\circ}$, острый — меньше $90^{\circ}$, тупой — больше $90^{\circ}$ и меньше $180^{\circ}$.

Рисунок 4. Прямой, острый и тупой углы. Автор24 — интернет-биржа студенческих работ

В повседневной жизни есть примеры необходимости и важности умения измерять углы и понимать градусную меру. Измерение углов необходимо в различных исследованиях, в том числе в астрономии при определении положения небесных тел.

Для практики, попробуйте начертить хотя бы три неразвёрнутых угла и один развёрнутый разными способами, измерьте с помощью транспортира углы и запишите эти результаты. Можно задать случайные числа и попрактиковаться в точности черчения углов с помощью транспортира, деления их с помощью биссектрисы (биссектриса — это луч, исходящий из вершины данного угла и делящий угол пополам).

Примеры задач

Пример 1

Задача. Есть рисунок:

Рисунок 5. Задача. Автор24 — интернет-биржа студенческих работ

Лучи $DE$ и $DF$ — биссектрисы соответствующих углов $ADB$ и $BDC$. Требуется найти угол $ADC$, если $\angle EDF = 75^{\circ}$.

Решение. Так как угол $EDF$ содержит по половинке от каждого угла $ADB$ и $BDC$, то можем сделать вывод, что $EDF$ — это ровно половина самого угла $ADC$. Получаем простые вычисления: $\angle ADC=75\cdot 2=150^{\circ}$.

Ответ: $150^{\circ}$.

Приведём ещё один интересный пример.

Пример 2

Задача. Дан рисунок.

Рисунок 6. Задача. Автор24 — интернет-биржа студенческих работ

Угол $ABC$ прямой. Углы $ABE$, $EBD$ и $DBC$ равны. Требуется найти угол, образованный биссектрисами $ABE$ и $DBC$.

Решение. Так как $ABC$ — прямой угол, то, значит, он равен $90^{\circ}$. Угол $\angle EBD=90/3=30^{\circ}$. Так как углы $ABE$, $EBD$ и $DBC$ равны, то любой из них будет равен $30^{\circ}$. Биссектриса любого из этих углов поделит любой из этих углов на два угла, равных $15^{\circ}$. Так как две половины углов $ABE$ и $DBC$ принадлежат искомому углу, то мы можем утверждать, что искомый угол равен $30+15+15=60^{\circ}$.

Ответ. $60^{\circ}$

В данной статье мы раскрыли полностью вопрос о градусной мере угла и как измерять углы.

Что такое градусная мера угла? Свойства углов. Как узнать меру угла

Математика, геометрия – многим эти науки, как, впрочем, и большинство других точных, даются крайне тяжело. Людям трудно разобраться в формулах и странной терминологии. Что скрывается под этим странным понятием?

градусная мера угла

Определение

Для начала, нужно рассмотреть просто меру угла. В этом поможет изображение луча и прямой линии. Сначала нужно провести, например, горизонтальную прямую линию. Затем от её первой точки проводится луч, не параллельный прямой. Таким образом, между прямой и лучом появляется некоторое расстояние, небольшой угол. Мера угла – это размер этого самого поворота луча.

Это понятие обозначает определенное цифровое значение, которое будет больше нуля. Оно выражается в градусах, а также его составных частях, то есть минутах и секундах. То количество градусов, которое поместится в угол между лучом и прямой, и будет градусной мерой.

градусная мера угла

Свойства углов

  • Абсолютно каждый угол будет иметь определённую градусную меру.
  • Если он полностью развернут, то число будет равняться 180 градусам.
  • Для нахождения градусной меры рассматривается сумма всех углов, которые разбил луч.
  • С помощью любого луча можно создать полуплоскость, в которой реально сделать угол. Он будет иметь градусную меру, величина которой будет менее 180, и такой угол может быть лишь один.

Как узнать меру угла?

Как правило, минимальной градусной мерой является 1 градус, который составит 1/180 от развернутого угла. Однако иногда нельзя получить настолько четкую цифру. В этих случаях применяют секунды и минуты.

При их нахождении значение можно перевести в градусы, таким образом получится доля градуса. Иногда применяют дробные числа, вроде 80,7 градуса.

Также важно запомнить ключевые величины. Прямой угол всегда будет равняться 90 градусам. Если мера больше, то он будет считаться тупым, а если меньше, то острым.

градусы угла

Радианная и градусная мера угла

Здесь рассматриваем задачи Proc32 — Proc33 из задачника Абрамяна: описание функций преобразования углов из градусов в радианы и наоборот.

Так что такое радианная мера угла? Рассмотрим некоторую окружность радиуса R с центром в точке О. Поскольку окружность делится на 360 градусов, а длина окружности равна 2πR, то на 1 градус приходится длина дуги равная 2πR/360 = πR/180. Тогда углу α градусов соответствует длина дуги L = πRα/180.

Длина дуги

В этом смысле очень интересна ситуация, когда длина дуги L равна радиусу окружности R. Каков при этом угол дуги? Вспоминая предыдущую формулу для вычисления длины дуги, имеем: πRα/180 = R, откуда πα/180 = 1, а отсюда получаем α = 180/π.

Итак, если длина дуги равна радиусу окружности, то соответствующий угол равен 180/π. Этот угол называется радианом (Rad):

1 Rad = 180/π градуса.

Таким образом,

π радианов = 180°, а 1° = π/180 радиана.

Радианная мера угла – это такая мера угла, при которой за 1 Rad принимается угол дуги, равной радиусу этой дуги. Поскольку 1 радиану соответствует длина дуги равная радиусу, то отсюда следует такой вывод:

Величина радианной меры угла равна отношению длины дуги окружности к радиусу этой окружности.

Например, если длина дуги равна 1.5R, то радианная мера угла этой дуги равна 1.5; если длина дуги равна 0.25R, то радианная мера равна 0.25; для дуги длиной 2πR (вся окружность) радианная мера равна 2π и т.д. Вообще, для дуги длиной L угол в радианах равен L/R, где R – радиус.

Радианная мера угла

Радиан – это очень удобный способ измерения углов, поскольку вместо самих углов мы можем оперировать коэффициентами отношений длин дуг и их радиусов. В высшей математике во всех тригонометрических функциях используется только радианная мера.

Proc32. Описать функцию DegToRad(D) вещественного типа, находящую величину угла в радианах, если дана его величина D в градусах (D — вещественное число, 0 ≤ D < 360). Воспользоваться следующим соотношением: 180° = π радианов. В качестве значения π использовать 3.14. С помощью функции DegToRad перевести из градусов в радианы пять данных углов.

Код Pascal

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
{ Функция возвращает величину угла в радианах,
если дана его величина D в градусах 
(D — вещественное число, 0 ≤ D < 360) }
function DegToRad(D: real): real;
const
  pi = 3.14; { <-- Число "пи" }
begin
  DegToRad := pi * D / 180
end;

  { Основная программа }

const
  n: byte = 5; { <-- количество углов для ввода }

var
  D, R: real; { <-- градусы, радианы }
  i: byte;

begin
  for i := 1 to n do begin
    write('Угол в градусах: ');
    readln(D);
    { Вызываем функцию вычисления угла в радианах: }
    R := DegToRad(D);
    writeln(' угол в радианах: ', R:0:2);
    writeln
  
end
end.

Сравните задачу Proc32 с задачей Begin29.

Proc33. Описать функцию RadToDeg(R) вещественного типа, находящую величину угла в градусах, если дана его величина R в радианах (R — вещественное число, 0 ≤ R < 2·π). Воспользоваться следующим соотношением: 180° = π радианов. В качестве значения π использовать 3.14. С помощью функции RadToDeg перевести из радианов в градусы пять данных углов.

Код Pascal

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
{ Функция возвращает величину угла в градусах, если дана его 
величина R в радианах (R — вещественное число, 0 ≤ R < 2·π) }
function RadToDeg(R: real): real;
const
  pi = 3.14;
begin
  RadToDeg := 180 * R / pi
end;

  { Основная программа }

const
  n: byte = 5; { <-- количество углов для ввода }

var
  R, D: real; { <-- радианы, градусы }
  count: byte;

begin
  for count := 1 to n do begin
    write('Угол в радианах: ');
    readln(R);
    { Вызываем функцию для вычисления угла в градусах: }
    D := RadToDeg(R);
    writeln(' угол в градусах: ', D:0:2);
    writeln
  end
end.

Сравните задачу Proc33 с задачей Begin30.


§12. Виды углов. Измерение углов

ВОПРОСЫ

1. Какой угол называют развернутым?

2. В каких единицах измеряют углы?

Углы измеряются в градусах.

3. Какова градусная мера развернутого угла?

Градусная мера развернутого угла равна 180º.

4. Что означает измерить угол?

Измерить угол — значит подсчитать, сколько единичных углов в нем помещается.

5. Как называется прибор, который используют для измерения углов?

Прибор, который используют для измерения углов, называется транспортир.

6. Расскажите как пользоваться транспортиром.

7. Какие градусные меры имеют равные углы?

Равные углы имеют равные градусные меры.

8. Какой из двух неравных углов считают большим?

Из двух неравных углов большим считается тот, градусная мера которого больше.

9. Каким свойством обладает величина угла?

10. Какой угол называют острым?

Острый угол — угол, градусная мера которого меньше 90º.

11. Какой угол называют прямым?

Прямой угол — угол, градусная мера которого равна 90º.

12. Какой угол называют тупым?

Тупой угол — угол, градусная мера которого больше 90º, но меньше 180º.

13. На какие углы делит развернутый угол его биссектриса?

Биссектриса развернутого угла делит его на два угла, градусная мера каждого из которых равна 90º.

14. В каких случаях говорят, что от данного луча отложен данный угол?



РЕШАЕМ УСТНО

1. Назовите два числа, одно из которых: 1) на 27 больше другого; 3) в 7 раз меньше другого; 2) на 15 меньше другого; 4) в 3 раза больше другого.

2. Часы спешат на 10 мин и сейчас показывают время 10 ч 8 мин. Который час на самом деле?

На самом деле 9 ч 58 мин.

3. Часы отстают на 7 мин и сейчас показывают время 16 ч 55 мин. Который час на самом деле?

На самом деле 17 ч 2 мин.

4. Какие из следующих уравнений не имеют корней:

5. Для озеленения улицы длиной 3 км на одной из ее сторон посадили деревья на расстоянии 20 м друг от друга. Сколько деревьев было посажено? Чему равно расстояние между первым и пятым деревьями?



УПРАЖНЕНИЯ

296. Начертите: 1) острый угол ЕFC; 2) прямой угол ОRT; 3) тупой угол D. 4) развернутый угол КАР.

297. Найдите на рисунке 93 острые, тупые и прямые углы.

298. Какие из данных углов острые, тупые, прямые, развернутые:

299. Найдите, пользуясь транспортиром, градусные меры углов, изображенных на рисунке 94. Определите вид каждого угла.

300. Найдите, пользуясь транспортиром, градусные меры углов, изображенных на рисунке 95. Определите вид каждого угла.

301. Начертите угол, градусная мера которого равна: 1) 380; 2) 1240; 3) 920; 4) 900; 5) 870; 6) 540; 7) 1700; 8) 650. Определите вид каждого угла.



302. Проведите луч. Отложите от этого луча угол, градусная мера которого равна: 1) 400; 2) 1300; 3) 680; 4) 1640. Определите вид каждого из построенных углов.

303. На рисунке 96 СМК = 1320, а угол АМК — развернутый. Вычислите величину угла АМС.

304. На рисунке 97 угол АОК — прямой, РОС = 540, а угол СОК — развернутый. Вычислите величину угла АОР.

305. Какой из углов, изображенных на рисунке 98, наибольший? Наименьший?

306. Начертите угол СDЕ, равный 1520. Лучом DА разделите этот угол на два угла так, чтобы СDА = 980. Вычислите величину угла АDE.

307. Начертите угол АВС, равный 1060. Лучом ВD разделите этот угол на два угла так, чтобы АВD = 340. Вычислите величину угла DВС.

308. Из вершины прямого угла ВОМ (рис. 99) проведены два луча ОА и ОС так, что ВОС = 740, АОМ = 620. Вычислите величину угла АОС.

309. Из вершины развернутого угла АСР (рис. 100) проведены два луча СТ и СF так, что АСF = 1580, ТСР = 1340. Вычислите величину угла ТСF.

310. Верно ли утверждение: 1) угол, который меньше тупого, — острый; 2) угол, который меньше развернутого, — тупой; 3) половина тупого угла — острый угол; 4) сумма градусных мер двух острых углов больше 900; 5) угол, который больше прямого, — тупой.

311. Найдите градусную меру угла между стрелками часов, если они показывают: 1) 3 ч; 2) 6 ч; 3) 4 ч; 4) 11 ч; 5) 7 ч.

312. Луч ВК является биссектрисой угла СВD, АВК = 1460 (рис. 101, ). Вычислите градусную меру угла СВD.

313. Луч ОА является биссектрисой угла СОМ, СОМ = 540 (рис. 101, б). Вычислите градусную меру угла ВОА.

314. Проведите три прямые, пересекающиеся в одной точке. Запишите все развернутые углы, образовавшиеся при этом.

315. Проведите шесть прямых, пересекающихся в одной точке. Верно ли, что среди образовавшихся при этом углов есть угол, градусная мера которого меньше 310?



УПРАЖНЕНИЯ ДЛЯ ПОВТОРЕНИЯ

316. Заполните цепочку вычислений:

317. Верно ли неравенство (а + 253)7(9 864 — а) : 4 при а= 124?

318. В четыре стакана помещается столько же молока, сколько и в банку. В стакан и банку помещается 1 кг 200 г молока. Сколько граммов молока помещается в стакан?

319. Длина границы России с Китаем, Монголией и Казахстаном составляет 15 293 км. Найдите длину границы России с каждым из этих государств, если длина границы с Китаем и Монголией равна 7 694 км, а с Китаем и Казахстаном — 11 808 км.



ЗАДАЧА ОТ МУДРОЙ СОВЫ

320. Улитка за день поднимается вверх по столбу на 3 м, а за ночь съезжает по нему на 2 м вниз. На какой день она доберется до вершины столба, высота которого равна 20 м?

Градусы как единица измерения угла

Градусы как единица измерения угла — Math Open Reference Определение: мера угол. Один градус — это одна 360-я часть полного круга.

Попробуй это Отрегулируйте угол ниже, перетащив оранжевый на R. Обратите внимание на количество градусов для любого конкретного угла.

Измерение угла

В геометрии угол. измеряется в градусах, где полный круг равен 360 градусам.Небольшой угол может составлять около 30 градусов. Обычно, когда требуется более точная мера, мы просто добавляем десятичные знаки к градусам. Например 45,12 °

Маленький кружок после числа означает «градусы». Таким образом, это будет произноситься как «сорок пять целых одна две десятых градуса».

градуса — минуты — секунды

При измерении широты и долготы каждый градус делится на минуты и секунды. Степень делится на 60 минут. Для более точных измерений минута снова делится на 60 секунд, Однако эта последняя мера настолько мала, что используется только там, где углы образуемый на экстремальных расстояниях, таких как астрономические измерения и измерения широты и долготы.

Эти минуты и секунды (как ни странно) не имеют ничего общего со временем. Они просто все меньшие и меньшие части градуса.

См. Также Градусы — Минуты — Калькулятор секунд. для калькулятора, который может складывать и вычитать углы в этой форме.

Блок письменный Объявлено
Градусов С маленьким кружком после номера.
Пример 61 °
«61 градус»
Минут С небольшим тире после номера.
Пример 34 ° 21 ‘
«34 градуса, 21 минута»
Секунды С двумя маленькими черточками.
Пример 32 ° 34 ’44’
«32 градуса, 34 минуты, 44 секунды»
Когда используются только минуты и секунды, мы обычно говорим «угловые минуты» и «угловые секунды», чтобы избежать путаницы с единицами времени.

В каком направлении измерять?

На рисунке выше отрегулируйте точку R так, чтобы линия пересекала точку с отметкой 315 °.Начиная с Q и идя против часовой стрелки, мы видим, что размер равен 315 °. Но если бы мы пошли по часовой стрелке от Q, это было бы 45 ° (360-315). Что правильно?

Они оба, но по соглашению предполагается меньший. Поэтому в этих условиях угол в центре составляет 45 °. Большая мера (315 °) называется угол рефлекса RPQ.

Углы, которые вы должны знать

Используйте рисунок выше, чтобы узнать, как выглядят различные угловые меры, измеренные в градусах.В общем, вы должны уметь чтобы визуально оценить любой угол с точностью до 15 °, и вы должны уметь распознавать общие углы (показанные красным) на глаз и сами рисовать их.

Прочие меры

  • Радианы

    Угол может быть измерен в радианах, где полный круг равен 2 пи радиана (около 6,28). Это широко используется в тригонометрии.
  • Грады

    В некоторых маркшейдерских работах используется град. В круге 400 градусов, поэтому прямой угол равен 100 градусам.Вы редко увидите этот агрегат. Думайте об оценках как о «метрических градусах».
  • Морские углы

    Судовые навигаторы используют углы, которые измеряются несколько иначе, с помощью системы, разработанной сотни лет назад для Nautical Alamanac — книги навигационных таблиц. Каждый градус, как обычно, делится на 60 минут, но секунд нет. Вместо этого минуты выражаются в десятичном формате. Например, 23 ° 34,62 ‘читается как «23 градуса 34,62 минуты. См. Также «Калькулятор морского угла».

Что попробовать

  1. На рисунке выше нажмите «Скрыть детали».
  2. Отрегулируйте положение точки R
  3. Оценить угол RPQ
  4. Нажмите «Показать подробности», чтобы узнать, насколько близко вы
  5. Повтор.

Вы должны быть особенно в состоянии оценить углы, близкие к красным на рисунке выше, так как они часто встречаются в геометрии.

Другие ракурсы

Общие

Угловые типы

Угловые отношения

(C) Открытый справочник по математике, 2011 г.
Все права защищены.

,

градусов (углы)

Мы можем измерять углы в градусах.

За один полный оборот (один полный круг вокруг).

(Углы также можно измерять в радианах)

(Примечание: «Градусы» также могут означать температуру, но здесь мы говорим об углах)

Символ градуса: °

Мы используем маленький кружок ° после числа для обозначения градусов.

Например, 90 ° означает 90 градусов

Одна степень


Вот насколько велик 1 градус

Полный круг

Полный круг равен 360 °

Половина круга равна 180 °
(называется прямым углом)

Четверть круга равна 90 °
(называется прямым углом)

Почему 360 градусов? Вероятно, потому что в старых календарях (например, в персидском календаре) использовалось 360 дней в году — когда они наблюдали за звездами, они видели, как они вращаются вокруг Полярной звезды на один градус в день.

Также 360 можно разделить точно на 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120 и 180, что значительно упрощает базовую геометрию.

Градусы измерения

Мы часто измеряем градусы с помощью транспортира:


Обычный транспортир измеряет от 0 ° до 180 °

Существуют также транспортиры полного круга.

Но они не так часто используются, потому что они немного большие и не делают ничего особенного.

,

Измерение углов

Измерение углов
Понятие угла
Понятие угла — одно из самых важных понятий в геометрии. Понятия равенства, суммы и разности углов важны и используются во всей геометрии, но предмет тригонометрии основан на измерении углов.

Есть две обычно используемые единицы измерения углов.Более знакомая единица измерения — это градусы. Круг делится на 360 равных градусов, так что прямой угол равен 90 °. В настоящее время мы будем рассматривать только углы между 0 ° и 360 °, но позже, в разделе о тригонометрических функциях, мы будем рассматривать углы больше 360 ° и отрицательные углы.

Градусы можно разделить на минуты и секунды, но это деление не так универсально, как раньше. Каждый градус делится на 60 равных частей, называемых минут. Итак, семь с половиной градусов можно назвать 7 градусами и 30 минутами, записанными как 7 ° 30 ‘. Каждая минута далее делится на 60 равных частей, называемых секунды, и, например, 2 градуса 5 минут 30 секунд записывается как 2 ° 5 ’30 «. Деление градусов на минуты и угловые секунды аналогично делению на часы в минуты и секунды.

Части градуса теперь обычно называются десятичными. Например, семь с половиной градусов теперь обычно пишут 7.5 & ​​град.

Когда один угол рисуется на плоскости xy для анализа, мы нарисуем его в стандартной позиции с вершиной в начале координат (0,0), одна сторона угла вдоль x — ось, а другая сторона — выше оси x .

Радианы

Другое распространенное измерение углов — радианы. Для этого измерения рассмотрим единичный круг (круг радиуса 1), центр которого является вершиной рассматриваемого угла.Затем угол отсекает дугу окружности, и длина этой дуги является мерой угла в радианах. Легко переходить между градусами и радианами. Окружность всего круга равна 2 π , отсюда следует, что 360 ° равняется 2 π радиан. Следовательно,

1 ° равен π /180 радиан

и

1 радиан равен 180/ π градусов

Большинство калькуляторов можно настроить на использование углов, измеряемых в градусах или радианах.Убедитесь, что вы знаете, в каком режиме работает ваш калькулятор.

Краткая записка по истории радианов
Хотя слово «радиан» было придумано Томасом Мьюиром и / или Джеймсом Томпсоном около 1870 года, математики долгое время измеряли углы таким способом. Например, Леонард Эйлер (1707–1783) в своей книге Elements of Algebra явно сказал, что углы следует измерять по длине дуги, отрезанной в единичной окружности.Это было необходимо, чтобы дать его знаменитую формулу, включающую комплексные числа, которая связывает функции знака и косинуса с экспоненциальной функцией. e = cos θ + i sin θ

где θ — это то, что позже было названо измерением угла в радианах. К сожалению, объяснение этой формулы выходит далеко за рамки этих заметок. Но для получения дополнительной информации о комплексных числах см. Мой Краткий курс комплексных чисел.

Радианы и длина дуги
Альтернативное определение радианов иногда дается как отношение. Вместо того, чтобы брать единичную окружность с центром в вершине угла θ , возьмите любую окружность с центром в вершине угла. Тогда радианная мера угла — это отношение длины вытянутой дуги к радиусу r окружности. Например, если длина дуги равна 3, а радиус окружности равен 2, тогда мера в радианах равна 1.5.

Причина, по которой это определение работает, заключается в том, что длина вытянутой дуги пропорциональна радиусу круга. В частности, определение в терминах отношения дает то же число, что и приведенное выше с использованием единичного круга. Однако это альтернативное определение более полезно, так как вы можете использовать его, чтобы связать длину дуг с углами. Длина дуги равна радиусу r, в умноженному на угол θ , где угол измеряется в радианах.

Например, дуга θ = 0,3 радиана в окружности радиуса r = 4 имеет длину 0,3 умноженную на 4, то есть 1,2.

Радианы и площадь сектора
Сектор круга — это часть окружности, ограниченная двумя радиусами и дугой окружности, соединяющей их концы. Площадь этого сектора легко вычислить по радиусу r окружности и углу θ между радиусами, если он измеряется в радианах.Так как площадь всего круга составляет πr 2 , а сектор относится ко всей окружности, так как угол θ равен 2 π , поэтому
Общие углы
Ниже приведена таблица общих углов для измерения в градусах и радианах. Обратите внимание, что измерение в радианах дано в единицах π . Его, конечно, можно было бы дать десятичной дроби, но радианы часто появляются с коэффициентом π . ,
Уголок градусов Радианы
90 ° π /2
60 ° π /3
45 ° π /4
30 ° π /6
Упражнения
Эдвин С.Кроули написал книгу « Тысяча упражнений в плоской и сферической тригонометрии», Университет Пенсильвании, Филадельфия, 1914. Задачи этого короткого курса взяты из этого текста (но не все 1000 из них!). Он дал свои задачи с точностью до пять знаков точности, поэтому студентам пришлось потрудиться, чтобы решить их, и они использовали таблицы логарифмов, чтобы помочь в умножении и делении. Студенты должны были уметь использовать таблицу синус-косинусов, таблицу касательных, таблицу логарифмов, таблицу log-sin-cos и таблицу log-tan.Теперь мы можем пользоваться калькуляторами! Это означает, что вы можете сосредоточиться на концепциях, а не на утомительных вычислениях.

Кроули не использовал десятичную систему счисления для дробей градуса, а использовал минуты и секунды.

Каждый комплекс упражнений включает в себя, во-первых, формулировку упражнений, во-вторых, некоторые подсказки для решения упражнений, а в-третьих, ответы на упражнения.

1. Выразите следующие углы в радианах.
(а). 12 градусов, 28 минут, то есть 12 ° 28 ‘.
(б). 36 ° 12 ‘.

2. Сократите следующие числа радианов до градусов, минут и секунд.
(а). 0,47623.
(б). 0,25412.

3. Учитывая угол a и радиус r, , чтобы найти длину проходящей дуги.
(а). a = 0 ° 17 ’48 дюймов, r = 6,2935.
(б). a = 121 ° 6 ’18 дюймов, r = 0,2163.

4. Учитывая длину дуги l и радиус r, , чтобы найти угол, прилегающий к центру.
(а). л = 0,16296, л = 12,587.
(б). л = 1,3672, л = 1,2978.

5. Зная длину дуги l и угол a , который она проходит в центре, найти радиус.
(а). a = 0 ° 44 ’30 дюймов, l = 0,032592.
(б). a = 60 ° 21 ‘6 дюймов, l = 0,4572.

6. Найдите длину с точностью до дюйма дуги окружности 11 градусов 48,3 минуты, если радиус составляет 3200 футов.

7. Кривая железной дороги образует дугу окружности 9 градусов 36,7 минут, радиус до центральной линии пути составляет 2100 футов. Если калибр 5 футов, найдите разницу в длине двух рельсов с точностью до полудюйма.

9. На сколько можно изменить широту, идя на север на одну милю, если предположить, что Земля представляет собой сферу радиусом 3956 миль?

10. Вычислите длину в футах одной угловой минуты на большом круге Земли. Какова длина дуги в секунду?

14. На окружности радиусом 5,782 метра длина дуги составляет 1,742 метра. Какой угол он образует в центре?

23. Воздушный шар, известный как 50 футов в диаметре, сужается к глазу под углом 8 1/2 минут.Как далеко это?

Подсказки

1. Чтобы преобразовать градусы в радианы, сначала преобразуйте количество градусов, минут и секунд в десятичную форму. Разделите количество минут на 60 и прибавьте к количеству градусов. Так, например, 12 ° 28 ‘равно 12 + 28/60, что равно 12,467 °. Затем умножьте на π и разделите на 180, чтобы получить угол в радианах.

2. И наоборот, чтобы преобразовать радианы в градусы, разделите на π и умножьте на 180.Итак, 0,47623, разделенное на π и умноженное на 180, дает 27,286 °. Вы можете преобразовать доли градуса в минуты и секунды следующим образом. Умножьте дробь на 60, чтобы получить количество минут. Здесь 0,286, умноженное на 60, равно 17,16, поэтому угол можно записать как 27 ° 17,16 ‘. Затем возьмите любую оставшуюся долю минуты и снова умножьте на 60, чтобы получить количество секунд. Здесь 0,16 умножить на 60 равно примерно 10, поэтому угол также можно записать как 27 ° 17 ’10 «.

3. Чтобы найти длину дуги, сначала преобразуйте угол в радианы. Для 3 (a) 0 ° 17’48 «равно 0,0051778 радиана. Затем умножьте его на радиус, чтобы найти длину дуги.

4. Чтобы найти угол, разделите его на радиус. Это дает вам угол в радианах. Их можно преобразовать в градусы, чтобы получить ответы Кроули.

5. Как упоминалось выше, радиан умноженный на радиус = длина дуги, поэтому, используя буквы для этой задачи, ar = l, , но a необходимо сначала преобразовать из градусного измерения в радиан. ,Итак, чтобы найти радиус r, сначала преобразует угол a в радианы, а затем разделит его на длину l дуги.

6. Длина дуги равна радиусу, умноженному на угол в радианах.

7. Помогает нарисовать фигуру. Радиус внешнего рельса равен 2102,5, а радиус внутреннего рельса — 2097,5.

9. У вас есть круг радиусом 3956 миль и дуга этого круга длиной 1 милю.Какой угол в градусах? (Средний радиус Земли был известен довольно точно в 1914 году. Посмотрим, сможете ли вы узнать, каким, по мнению Эратосфена, был радиус Земли, еще в III веке до н. Э.)

10. Угловая минута равна 1/60 градуса. Преобразовать в радианы. Радиус — 3956. Какова длина дуги?

14. Поскольку длина дуги равна радиусу, умноженному на угол в радианах, отсюда следует, что угол в радианах равен длине дуги, деленной на радиус.Радианы легко преобразовать в градусы.

23. Представьте, что диаметр воздушного шара является частью дуги окружности с вами в центре. (Это не совсем часть дуги, но довольно близко.) Длина дуги составляет 50 футов. Вы знаете угол, так каков радиус этого круга?

Ответы
1. (а). 0,2176. (Б). 0,6318.

2. (а). 27 ° 17 ’10 «. (B). 14,56 ° = 14 ° 33,6′ = 14 ° 33’36».

3. (а). 0,03259 (б). 2,1137 умножить на 0,2163 равно 0,4572.

4. (а). 0,16296 / 12,587 = 0,012947 радиан = 0 ° 44 ’30 дюймов.
(б). 1,3672 / 1,2978 = 1,0535 радиан = 60,360 ° = 60 ° 21,6′ = 60 ° 21′ 35″ .

5. (а). л / год = 0,032592 / 0,01294 = 2,518.
(б). л / год = 0,4572 / 1,0533 = 0,4340.

6. ra = (3200 ‘) (0.20604) = 659,31 ‘= 659’ 4 дюйма.

7. Угол a = 0,16776 радиана. Разница в длине составляет 2102,5 a — 1997,5 a , что составляет 5 a. Таким образом, ответ составляет 0,84 фута, что с точностью до дюйма составляет 10 дюймов.

9. Угол = 1/3956 = 0,0002528 радиан = 0,01448 ° = 0,8690 ‘= 52,14 дюйма.

10. Одна минута = 0,0002909 радиан. 1.15075 миль = 6076 футов.Поэтому одна секунда будет соответствовать 101,3 фута.

14. a = л / об = 1,742 / 5,782 = 0,3013 радиан = 17,26 ° = 17 ° 16 ‘.

23. Угол a равен 8,5 ‘, что составляет 0,00247 радиана. Таким образом, радиус равен r = л / год = 50 / 0,00247 = 20222 ‘= 3,83 мили, почти четыре мили.

Насчет цифр точности.
Кроули старается давать свои ответы примерно с той же точностью, что и данные в вопросах.Это важно, особенно теперь, когда у нас есть калькуляторы. Например, в задаче 1 точка отсчета равна 12 ° 28 ‘, что соответствует примерно четырем знакам точности, поэтому ответ 0,2176 также должен быть дан только с точностью до четырех знаков. (Обратите внимание, что начальные нули не учитываются при вычислении цифр точности.) Ответ 0,21758438 предполагает восемь цифр точности, и это может ввести в заблуждение, поскольку данная информация не была такой точной.

Другой пример см. В задаче 3 (a). Данные 0 ° 17’48 «и 6.2935 с точностью до 4 и 5 знаков соответственно. Следовательно, ответ должен быть дан только с точностью до 4 цифр, поскольку ответ не может быть более точным, чем наименее точные данные. Таким образом, ответ, который может дать калькулятор, а именно 0,032586547, следует округлить до четырех цифр (не включая ведущие нули) до 0,03259.

Хотя окончательные ответы должны быть выражены с соответствующим количеством цифр точности, вы все равно должны сохранять все цифры для промежуточных вычислений.

,

Измерение и изготовление углов — манекены

  1. Образование
  2. Математика
  3. Геометрия
  4. Измерение и изготовление углов

Марк Райан

На карте вы прослеживаете свой маршрут и попадаете на развилку дорог. Две расходящиеся дороги расходятся от общей точки и образуют угол . . Точка, в которой дороги расходятся, — это вершина . Угол разделяет область вокруг него, известную в геометрии как плоскость , на две области.Точки внутри угла лежат во внутренней области угла, а точки вне угла лежат во внешней области угла.

Как только вы познакомитесь с типами углов и научитесь измерять и создавать свои собственные, вы приобретете ценные навыки геометрии, которые помогут вам решать даже самые сложные геометрические головоломки.

Для выполнения обеих задач вы используете транспортир, очень полезный инструмент (см. Рисунок 1).

Рисунок 1: Удобный транспортир.

Выбирая транспортир, постарайтесь найти из прозрачного пластика. Определить величину угла проще, потому что вы можете увидеть линию угла через транспортир.

Породы уголков

Существует несколько различных пород или типов уголков. Вы можете определить, какой у вас угол, по его мерке. Чаще всего угол измеряется в градусах . Вот краткое введение в четыре типа углов:

  • Угол прямой. С этим углом вы никогда не ошибетесь. Прямой угол — один из самых легко узнаваемых. Он имеет форму буквы L и образует квадратный угол (см. Рисунок 2). Он имеет размер 90 градусов.

Рисунок 2: Прямой угол.

  • Прямой угол. Знаете что? На самом деле это прямая линия. Большинство людей даже не думают об этом как об угле, но это так. Прямой угол состоит из противоположных лучей или отрезков прямой, имеющих общую конечную точку (см. Рисунок 3).Этот угол составляет 180 градусов.
    Прямой и прямой углы довольно легко обнаружить, просто взглянув на них, но никогда не делайте поспешных выводов о величине угла. Лучше быть осторожным. Если информация не указана на странице, ничего не предполагайте. Мера.

Рисунок 3: Прямой угол.

  • Острый угол. Это очаровательный угол .
    Вообще-то, это всего лишь щепотка. Это любой угол, который составляет больше 0 градусов, но меньше 90 градусов.Острый угол находится где-то между несуществующим и прямым углом (см. Рисунок 4).

Рисунок 4: Острые углы — 45 ° (Рисунок a), 60 ° (Рисунок b) и 30 ° (Рисунок c).

  • Тупой угол. Этот тип не так интересен, как острый угол. Его величина находится где-то между прямым и прямым углом (см. Рисунок 5). Это холм, на который нужно взобраться, гора, на которую нужно взобраться. Его размер больше 90 градусов, но меньше 180 градусов.

Рисунок 5: Тупые углы — 95 ° (Рисунок a), 125 ° (Рисунок b) и 175 ° (Рисунок c).

Измерение

Углы чаще всего измеряются в градусах, но для тех из вас, кто является приверженцем точности, можно использовать даже меньшие единицы измерения: минуты и секунды. Эти минуты и секунды похожи на те, что на часах: минута больше секунды. Представьте себе степень как час, и вы поняли: одна степень равна 60 минутам.Одна минута равна 60 секундам.

Прежде чем измерять угол, определите его и оцените, к какому типу он относится. Это прямой угол? Прямой угол? Острый или тупой? После того, как вы его оцените, измерьте угол. Выполните следующие действия:

1. Поместите выемку или центральную точку транспортира в точку, где встречаются стороны угла (вершина).

2. Поместите транспортир так, чтобы одна из линий угла, который вы хотите измерить, была равна нулю (фактически 0 °).

В использовании нулевой линии нет необходимости, потому что вы можете измерить угол, получив разницу в градусах одной линии с другой. Однако легче измерить угол, когда одна его сторона находится на нулевой линии. Наличие одной линии на нулевой линии позволяет вам считывать измерения непосредственно с транспортира без дополнительных математических расчетов. (Но если вы готовы принять вызов, выбейте себя из строя.)

3. Считайте число на транспортире в том месте, где вторая сторона угла пересекает транспортир.

Еще совет:

  • Убедитесь, что ваша мера близка к вашей оценке. Это покажет вам, правильно ли вы выбрали масштаб. Если вы ожидали измерения острого угла, но получили очень тупую меру, вам нужно переосмыслить шкалу, которую вы использовали. Попробуйте другой.
  • Если стороны вашего угла не достигают масштаба транспортира, вытяните их так, чтобы они достигли масштаба. Это повысит точность вашего измерения.
  • Помните, что величина угла всегда является положительным числом.

Итак, что делать, если ваш угол не совсем соответствует масштабу транспортира? Взгляните на рисунок 6 для примера. Угол на этом рисунке имеет размер более 180 °. Что теперь? Извините, но в этом случае вам придется потратить немного больше энергии. Да, вам нужно заняться математикой. Эти углы известны как углы отражения, и их размер превышает 180 °.

Рис. 6: Углы отражения не помещаются на шкале транспортира, поэтому вам нужно выполнить некоторые вычисления, чтобы их измерить.

Проведите линию так, чтобы получилась прямая линия (см. Расширенные точки на рисунке 6). Эта часть угла составляет 180 °, потому что это прямой угол. Теперь измерьте угол, образованный только что созданной выносной линией, и второй стороной исходного угла, который вы хотите измерить. (Если вы запутались, просто посмотрите на рисунок 6.) После того, как вы измерили второй угол, прибавьте это число к 180. Результатом будет общее количество градусов угла. На рисунке 6 180 ° + 45 ° = 225 °.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *