Формула производных функций: Формулы производных функции

Содержание

формулы, значение, как писать функции

Производная функции – одно из фундаментальных понятий в математике, без понимания которого становится невозможным решение большинства математических и физических задач. Что же это такое?

Производная функции — краткое описание, суть

Если совсем просто, то:

Производная – это скорость изменения функции в данной точке.

Выражаясь математическим языком, это предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю. Формула:

 

Она понимается в двух смыслах: геометрическом и физическом.

Геометрический смысл: производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.

 

Физический смысл: производная пути по времени равна скорости прямолинейного движения. Таким образом, значение скорости в определённый момент времени t0 определяется по формуле:

 

Вычисление производной называется дифференцированием. Обратный процесс – интегрированием.

Основные правила нахождения производных

Дифференцирование строится на следующих правилах.

Правило №1: производная от произведения числа на функцию равна

(c * f (x))’ = c * f’ (x),

где с – любое число.

Правило №2: производная от суммы функций равна

(f (x) + g (x))’ = f ‘ (x) + g’ (x).

Правило №3: производная от разности функций равна

(f (x) – g (x))’ = f ‘ (x) – g’ (x).

Правило №4: производная от произведения двух функций равна

(f (x) g (x))’ = f ‘ (x) g (x) + f (x) g’ (x).

Правило №5: производная от дроби равна

 

Существует и так называемая сложная функция (композиция функции) вида f (g(x)). В данном случае f (x) считается внешней функцией, g (x) – внутренней.

Правило дифференцирования сложной функции

Производная сложной функции вычисляется по формуле:

[ f (g (x))]’ = f ‘ (g (x)) g’ (x).

Пример нахождения

Задача: продифференцировать (x+2)¹⁰. Обозначим её как u=x+2.

Решение: так как (x¹⁰)’=10x⁹,

то ((x+2) ¹⁰)’=(u¹⁰)’=10u⁹⋅u’=10(x+2) ⁹⋅1=10(x+2) ⁹.

Ответ: 10(x+2) ⁹.

Логарифмическая производная

Логарифмическая производная — это производная от натурального логарифма функции.

Вычисляется по формуле:

 

Часто применяется для упрощения дифференцирования некоторых функций.

Пример поиска производной

Пусть y = y(x).

Для удобства прологарифмируем данную функцию:

ln y = ln y(x).

Теперь вычислим производную по правилу дифференцирования сложной функции:

 

Из этого следует, что

 

Тогда ответ:

 

Производная обратной функции

Теорема: для дифференцируемой функции с производной, не равной нулю, производная обратной функции равная обратной величине производной данной функции.

Общая формула:

 
Формулы и пример решения

Производные обратных тригонометрических функций:

 

Задача: продифференцировать y=x²-7lnx.

Решение: находим по формуле

 

отсюда

 

Производная функции, заданной параметрически

Пусть функция задана параметрическим уравнением:

 

Тогда производная равна:

 
Формулировка, решение примеров

Задача: продифференцировать функцию.

 

Решение: (при записи производной всегда необходимо писать t в нижнем индексе)

 

Подставляем в формулу:

 

Ответ:

 

В ответе составляется система, в которой кроме полученной производной необходимо писать х = t – 4.

Производная неявной функции

Если функция у = у(х) задана уравнением F (x; y(x)) = 0 то говорят, что она задана неявно.

Теоретическое обоснование

Для нахождения производной неявной функции нужно:

  1. Продифференцировать обе части уравнения по независимой переменной х предполагая, что у – это дифференцируемая по х функция.
  2. Решить полученное уравнение относительно производной у’ (х).
Решение в примерах

Задача: решить функцию , заданную неявно:

 

Решение:

1) перенесём 3у -1 в левую часть и дифференцируем обе части равенства

 

Получим

 

Считая, что у – это функция от х, находим производную как от сложной функции:

 

Тогда

 

Для заданной функции имеем:

 

2) Решаем полученное уравнение относительно у’:

 

Ответ:

 

Полная таблица производных

Приводим табличную форму, которая существенно облегчает вычисления:

 

Формул из этого списка достаточно для дифференцирования любой элементарной функции.

Решение элементарных производных, примеры

Задача№1: найти производную функции

 

Решение: данная функция является сложной, поэтому

 

Ответ:

 

Задача №2: найти производную функции 

 

Решение:

 

Ответ:

 

Изучение производных и интегралов занимает большое количество времени. ФениксХэлп может помочь вам в решении контрольных и самостоятельных работ по этой теме и многим другим.

Формулы производных функции — онлайн справочник для студентов

Рассмотрим функцию

\(\ y=f(x) \) , которая определена и непрерывна на некотором интервале \(\ (a ; b) \) , произвольной точке \(\ x_{0} \in(a ; b) \) и соответствующем значении функции в этой точке \(\ f\left(x_{0}\right) \) . Задайте аргумент функции приращению \(\ \Delta x \) в точке \(\ \boldsymbol{x}_{0} \) . В результате получаем значение \(\ \Delta x+x_{0} \) и соответствующее значение функции \(\ f\left(\Delta x+x_{0}\right) \) .

{2}} \)

Физика

166

Реклама и PR

31

Педагогика

80

Психология

72

Социология

7

Астрономия

9

Биология

30

Культурология

86

Экология

8

Право и юриспруденция

36

Политология

13

Экономика

49

Финансы

9

История

16

Философия

8

Информатика

20

Право

35

Информационные технологии

6

Экономическая теория

7

Менеджент

719

Математика

338

Химия

20

Микро- и макроэкономика

1

Медицина

5

Государственное и муниципальное управление

2

География

542

Информационная безопасность

2

Аудит

11

Безопасность жизнедеятельности

3

Архитектура и строительство

1

Банковское дело

1

Рынок ценных бумаг

6

Менеджмент организации

2

Маркетинг

238

Кредит

3

Инвестиции

2

Журналистика

1

Конфликтология

15

Этика

9

Формулы дифференцирования Формулы интеграла Формула Тейлора для разложения функции Формула Ньютона-Лейбница Формулы интегрирования функций

Узнать цену работы

Узнай цену

своей работы

Имя

Выбрать тип работыЧасть дипломаДипломнаяКурсоваяКонтрольнаяРешение задачРефератНаучно — исследовательскаяОтчет по практикеОтветы на билетыТест/экзамен onlineМонографияЭссеДокладКомпьютерный набор текстаКомпьютерный чертежРецензияПереводРепетиторБизнес-планКонспектыПроверка качестваЭкзамен на сайтеАспирантский рефератМагистерскаяНаучная статьяНаучный трудТехническая редакция текстаЧертеж от рукиДиаграммы, таблицыПрезентация к защитеТезисный планРечь к дипломуДоработка заказа клиентаОтзыв на дипломПубликация в ВАКПубликация в ScopusДиплом MBAПовышение оригинальностиКопирайтингДругое

Принимаю  Политику  конфиденциальности

Подпишись на рассылку, чтобы не пропустить информацию об акциях

2.

4 Производная функция

Мы видели, как создать или вывести новую функцию $f'(x)$ из функция $f(x)$, резюмированная в абзаце, содержащем уравнение 2.1.1. Теперь, когда у нас есть концепция пределов, мы можем сделать это более точным.

Определение 2.4.1 Производная функции $f$, обозначаемой $f’$, есть $$f'(x)=\lim_{\Delta x\to 0} {f(x+\Delta x)-f(x)\over \Delta x}.$$ $\квадрат$

Мы знаем, что $f’$ несет важную информацию об исходном функция $f$. В одном примере мы видели, что $f'(x)$ говорит нам, насколько крутой график $f(x)$ есть; в другом мы видели, что $f'(x)$ сообщает нам скорость объекта, если $f(x)$ сообщает нам положение объекта в время $х$. Как мы уже говорили ранее, эта же математическая идея полезна всякий раз, когда $f(x)$ представляет некоторую изменяющуюся величину, и мы хотим знать что-то о том, как оно меняется, или, грубо говоря, о «скорости», с которой оно изменения. Большинство функций, встречающихся на практике, строятся из небольшой набор «примитивных» функций несколькими простыми способами, для например, добавляя или перемножая функции вместе, чтобы получить новые, более сложные функции. Чтобы эффективно использовать информацию, предоставленную $f'(x)$ нам нужно уметь вычислять его для множества таких функции. 92} — 24\над\Дельта х}. $$ Знаменатель здесь измеряет расстояние в направлении $x$, иногда называемый «бегом», а числитель измеряет расстояние в направление $y$, иногда называемое «подъем» и «подъем над run» — это наклон линии. Напомним, что иногда такой числитель сокращенно $\Delta y$, заменив краткость более подробным выражение. Таким образом, в общем случае производная определяется выражением $$ y’=\lim_{\Delta x\to0} {\Delta y\over \Delta x}. $$ Чтобы напомнить форму предела, мы иногда говорим вместо этого, что $$ {dy\over dx}=\lim_{\Delta x\to0} {\Delta y\over \Delta x}. $$ Другими словами, $dy/dx$ — это другое обозначение производной, и это напоминает нам, что это связано с фактическим уклоном между двумя точки. Это обозначение называется 92)$. $\квадрат$

Пример 2.4.3 Найдите производную $y=f(x)=1/x$.

Расчет: $$ \выравнивание{ y’ = \lim_{\Delta x\to0}{\Delta y\over\Delta x}&= \lim_{\Delta x\to0}{{1\over x+\Delta x} — {1\over x}\over \Delta х}\кр &=\lim_{\Delta x\to0}{{x\over x(x+\Delta x)} — {x+\Delta x\over x(x+\Delta x)}\over \Delta x}\cr &=\lim_{\Delta x\to0}{{x-(x+\Delta x)\over x(x+\Delta x)}\over \Delta x}\cr &=\lim_{\Delta x\to0} {x-x-\Delta x\over x(x+\Delta x)\Delta x}\cr &=\lim_{\Delta x\to0} {-\Delta x\over x(x+\Delta x)\Delta x}\cr &=\lim_{\Delta x\to0} {-1\over x(x+\Delta x)}={-1\over x^2}\cr } $$

$\квадрат$

Примечание. Если вы знаете некоторые «производные формулы» из более ранний курс, на данный момент вы должны делать вид, что вы делаете не знать их. В примерах, подобных приведенным выше и приведенным ниже упражнениям, от вас требуется знать, как найти производную формулу, исходя из основных принципов. Позже мы разработаем некоторые формулы, чтобы нам не всегда нужно было делать такие вычисления, но нам по-прежнему нужно знать, как делать более сложные вычисления.

Иногда встречается точка в области определения функции $y=f(x)$, где нет производной , потому что нет касательной. Чтобы чтобы понятие касательной в точке имело смысл, кривая должна быть «гладкой» в этой точке. Это означает, что если вы представляете себе частицу движущейся с некоторой постоянной скоростью вдоль кривой, то частица не испытать резкое изменение направления. Есть два типа ситуации, о которых вы должны знать — углы и выступы — где есть внезапная смена направления и, следовательно, отсутствие производной.

Пример 2.4.4 Обсудите производную функции абсолютного значения $y=f(x)=|x|$.

Если $x$ положительна, то это функция $y=x$, производная которой равна константа 1. (Напомним, что когда $y=f(x)=mx+b$, производная есть наклон $m$.) Если $x$ отрицательно, то мы имеем дело с функцией $y=-x$, производная которой есть константа $-1$. Если $x=0$, то функция имеет угол, т. е. касательной нет. Касательная линия должны указывать в направлении кривой, но есть 93$. (отвечать)

Пример 2.4.6 Показан график функции $f(x)$. Нарисуйте график $f'(x)$ оценивая производную в ряде точек интервала: оценивайте производную через равные промежутки времени с одного конца интервале от другого, а также в «особых» точках, например, когда производная равна нулю. Убедитесь, что вы указали все места, где производной не существует.

Пример 2.4.7 Показан график функции $f(x)$. Нарисуйте график $f'(x)$ оценивая производную в ряде точек интервала: оценивайте производную через равные промежутки времени с одного конца интервале от другого, а также в «особых» точках, например, когда производная равна нулю. Убедитесь, что вы указали все места, где производной не существует. 92+ax-3$ имеет горизонтальную касательную в точке $x=4$. (отвечать)

Производная формула — Что такое Производная формула? Примеры

Производная помогает нам узнать изменение отношения между двумя переменными. Рассмотрим независимую переменную «х» и зависимую переменную «у». Изменение значения зависимой переменной по отношению к изменению значения выражения независимой переменной можно найти с помощью формулы производной. Математически формула производной полезна для определения наклона линии, наклона кривой и определения изменения одного измерения по отношению к другому измерению. В этом разделе мы узнаем больше о формуле производной и решим несколько примеров. 9{n — 1}\)

Правила формулы производных

Существуют некоторые основные формулы производных, т.е. набор формул производных, которые используются на разных уровнях и аспектах. На изображении ниже есть правила.

Вывод формулы производной

Пусть f(x) — функция, область определения которой содержит открытый интервал относительно некоторой точки \(x_0\). Тогда функция f(x) называется дифференцируемой в точке \((x)_{0}\), а производная f(x) в точке \((x)_{0}\) представляется по формуле как:

f'(x)= lim Δx→0 Δy/Δx

⇒ f'(x)= lim Δx→0 [f(\((x)_{0}\)+Δx)− f(\((x)_{0}\))]/∆x

Производная функции y = f(x) может быть обозначена как f′(x) или y′(x).

Кроме того, нотация Лейбница популярна для записи производной функции y = f(x) в виде df(x)/dx, т.е. dy/dx

Список формул производных

Ниже перечислены еще несколько важных используемых формул производных в различных областях математики, таких как исчисление, тригонометрия и т. д. Для дифференцирования тригонометрических функций используются различные формулы производных, перечисленные здесь. Все производные формулы выводятся из дифференцирования первого начала.

Производные формулы элементарных функций

  • \(\dfrac{d}{dx}\).x n = n. х н-1
  • \(\dfrac{d}{dx}.k\) = 0, где k — константа
  • \(\dfrac{d}{dx}\).e x = e x
  • \(\dfrac{d}{dx}\).a x = a x . log\(_e\) .a , где a > 0, a ≠ 1
  • \(\dfrac{d}{dx}\).logx = 1/x, x > 0
  • \(\dfrac{d}{dx}\). лог\(_а\) е = 1/х лог\(_а\) е
  • \(\dfrac{d}{dx}\).√x =1/(2 √x)

Формулы производных тригонометрических функций

  • \(\dfrac{d}{dx}\).sin x= cos x
  • \(\dfrac{d}{dx}\).cosx= -sin x
  • \(\dfrac{d}{dx}\).tan x = sec 2 x , x ≠ (2n+1) π/2 , n ∈ I
  • \(\dfrac{d}{dx}\). cot x = — cosec 2 x, x ≠ nπ, n ∈ I
  • \(\dfrac{d}{dx}\). sec x = sec x tan x, x ≠ (2n+1) π/2 , n ∈ I
  • \(\dfrac{d}{dx}\).cosec x = — cosec x cot x, x ≠ nπ, n ∈ I

Производные формулы гиперболических функций

    • \(\dfrac{d}{dx}\).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *