Формула убывающей геометрической прогрессии: Найдите сумму бесконечно- убывающей геометрической прогрессии 9;-3;1

Элементарная математика

  

Сканави М.И. Элементарная математика. 2-е изд., перераб. и доп., М.: 1974г. — 592с.

Книга представляет собой повторительный курс элементарной математики и рассчитана на тех, кто хочет пополнить, укрепить и систематизировать свои знания. Как и в первом издании, содержание ориентировано на программы вступительных экзаменов в технические вузы и, в особенности, на программы подготовительных отделений при высших учебных заведениях, для учащихся которых, как мы надеемся, книга окажется полезной.

(Книга включает в себя Ч1 — Арифметика, алгебра и элементарные функции и Ч2 — Геометрия. Каждый раздел включает в себя теоретическую часть и большое количество задач с решениями.)



Оглавление

ВВЕДЕНИЕ
Часть первая.
АРИФМЕТИКА, АЛГЕБРА И ЭЛЕМЕНТАРНЫЕ ФУНКЦИИ
Глава I. ДЕЙСТВИТЕЛЬНЫЕ И КОМПЛЕКСНЫЕ ЧИСЛА
2. Простые и составные числа. Признаки делимости.
3. Наибольший общий делитель и наименьшее общее кратное.
4. Целые числа. Рациональные числа.
5. Десятичные дроби. Представление рациональных чисел десятичными дробями.
6. Иррациональные числа. Действительные числа.
7. Действия с приближенными числами.
8. Числовая ось. Координаты точки на плоскости.
§ 2. Степени и корни
9. Степени с натуральными показателями.
10. Степени с целыми показателями.
11. Корни.
12. Степени с рациональными показателями. Степени с действительными показателями.
13. Алгоритм извлечения квадратного корня.
§ 3. Комплексные числа
14. Основные понятия и определения.
15. Рациональные действия с комплексными числами.
16. Геометрическое изображение комплексных чисел. Тригонометрическая форма комплексного числа.
17. Действия с комплексными числами, заданными в тригонометрической форме.
Формула Муавра.
18. Извлечение корня из комплексного числа.
Глава II. ТОЖДЕСТВЕННЫЕ ПРЕОБРАЗОВАНИЯ
19. Алгебраические выражения. Одночлены и многочлены.
20. Формулы сокращенного умножения.
21. Бином Ньютона.
22. Разложение многочлена на множители.
23. Дробные алгебраические выражения.
§ 2. Иррациональные алгебраические выражения
24. Радикалы из алгебраических выражений.
25. Освобождение от иррациональности в знаменателе дроби.
Глава III. ЛОГАРИФМЫ
26. Определение и свойства логарифмов.
27. Логарифмы по различным основаниям. Модуль перехода.
§ 2. Десятичные логарифмы
28. Характеристика и мантисса десятичного логарифма.
29. Применение десятичных логарифмов к вычислениям.
Глава IV. ФУНКЦИИ И ГРАФИКИ
30. Величина. Числовые множества.
31. Определение функции.
32. График функции. Способы задания функций.
33. Элементарное исследование поведения функции.
34. Сложная функция.
35. Обратная функция.
36. n.
41. Обратная пропорциональная зависимость. Степенная функция с рациональным показателем степени.
42. Показательная функция.
43. Логарифмическая функция.
§ 3. Преобразование графиков
44. Параллельный сдвиг графика.
45. График квадратного трех члена.
46. График дробно-линейной функции.
47. Преобразование симметрии. Сжатие и растяжение графика.
48. Построение графиков функций.
49. Сложение графиков.
§ 4. Некоторые сведения о рациональных функциях
50. Целые и дробные рациональные функции. Деление многочленов.
51. Схема Горнера. Теорема Безу.
52. Нули многочлена. Разложение многочлена на множители.
Глава V. УРАВНЕНИЯ
53. Уравнение. Корни уравнения.
54. Равносильные уравнения.
55. Системы уравнений.
56. Графическое решение уравнений.
§. 2. Алгебраические уравнения с одной неизвестной
57. Число и кратность корней.
58. Уравнения первой степени (линейные уравнения).
59. Уравнения второй степени (квадратные уравнения).
60. Формулы Виета. Разложение квадратного трехчлена на множители.
61. Исследование квадратного уравнения.
62. Уравнения высших степеней. Целые корни.
63. Двучленные уравнения.
64. Уравнения, сводящиеся к квадратным.
65. Возвратные уравнения.
§ 3. Системы алгебраических уравнений
66. Линейные системы.
67. Определители второго порядка. Исследование линейных систем двух уравнений с двумя неизвестными.
68. Системы, состоящие из уравнения второй степени и линейного уравнения.
69. Примеры систем двух уравнений второй степени. Системы уравнений высших степеней.
§ 4. Иррациональные, показательные и логарифмические уравнения
70. Иррациональные уравнения.
71. Показательные уравнения.
72. Логарифмические уравнения.
73. Разные уравнения. Системы уравнений.
Глава VI. НЕРАВЕНСТВА
74. Свойства неравенств. Действия над неравенствами.
75. Алгебраические неравенства.
§ 2. Решение неравенств
76. Множество решений неравенства. Равносильные неравенства.
77. Графическое решение неравенств.
79. Квадратные неравенства.
80. Неравенства высших степеней. Неравенства, содержащие дробные рациональные функции от х.
81. Иррациональные, показательные и логарифмические неравенства.
82. Неравенства с двумя неизвестными.
Глава VII. ПОСЛЕДОВАТЕЛЬНОСТИ
83. Числовая последовательность.
84. Предел числовой последовательности.
85. Бесконечно малые. Правила предельного перехода.
§ 2. Арифметическая прогрессия
86. Арифметическая прогрессия. Формула общего члена.
87. Свойства арифметической прогрессии.
88. Формула для суммы n членов арифметической прогрессии.
§ 3. Геометрическая прогрессия
89. Геометрическая прогрессия. Формула общего члена.
90. Свойства геометрической прогрессии.
91. Формулы для суммы n членов геометрической прогрессии.
92. Бесконечно убывающая геометрическая прогрессия.
Глава VIII. ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ УГЛА (ДУГИ)
93. Вектор, проекция вектора.
94. Положительные углы и дуги, меньшие 360°.
95. Углы и дуги, большие 360°.
96. Отрицательные углы. Сложение и вычитание углов.
§ 2. Тригонометрические функции произвольного угла
97. Определение основных тригонометрических функций.
98. Изменение основных тригонометрических функций при изменении угла от 0 до 2pi.
§ 3. Соотношения между тригонометрическими функциями одного и того же угла
99. Основные тригонометрические тождества.
100. Вычисление значений тригонометрических функций по значению одной из них.
101. Значения тригонометрических функций некоторых углов.
§ 4. Четность, нечетность и периодичность тригонометрических функций
102. Четность и нечетность.
103. Понятие периодической функции.
104. Периодичность тригонометрических функций.
§ 5. Формулы приведения
105. Зависимость между тригонометрическими функциями дополнительных углов.
106. Формулы приведения.
Глава IX. ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ ЧИСЛОВОГО АРГУМЕНТА И ИХ ГРАФИКИ
§ 1. Тригонометрические функции числового аргумента
108. Области определения и области изменения значений тригонометрических функций.
109. Некоторые неравенства и их следствия.
§ 2. Графики тригонометрических функций
110. Первоначальные сведения о таблицах тригонометрических функций.
111. Основные графики.
112. Примеры построения графиков некоторых других тригонометрических функций.
113. Дальнейшие примеры построения графиков функций.
Глава X. ПРЕОБРАЗОВАНИЕ ТРИГОНОМЕТРИЧЕСКИХ ВЫРАЖЕНИЙ
114. Расстояние между двумя точками на плоскости.
115. Косинус суммы и разности двух аргументов.
116. Синус суммы и разности двух аргументов.
117. Тангенс суммы и разности двух аргументов.
118. О формулах сложения для нескольких аргументов.
§ 2. Формулы для двойного и половинного аргумента. Выражение sin na и cos na через степени sin a и cos a
119. Тригонометрические функции двойного аргумента.
120. Выражение sin na и cos na через степени sin a и cos a при натуральном числе n.
121. Тригонометрические функции половинного аргумента.
122. Выражение основных тригонометрических функций аргумента а через tg(a/2).
§ 3. Преобразование в сумму выражений вида sina•cosb, cosa•cosb и sinа•sinb
§ 4. Преобразование в произведение сумм вида
§ 5. Преобразование некоторых выражений в произведения с помощью введения вспомогательного аргумента
127. Преобразование в произведение выражения a•sina + b•cosa.
128. Преобразование в произведение выражений a•sina+b и a•cosa+b
129. Преобразование в произведение выражения a•tga+b.
Глава XI. ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ И ИХ ГРАФИКИ
130. Функция у = arcsin x (арксинус).
131. Функция y = arccos x (арккосинус).
132. Функция y = arctg x (арктангенс).
133. Функция y = arcctg x (арккотангенс).
134. Пример.
§ 2. Операции над обратными тригонометрическими функциями
135. Тригонометрические операции.
136. Операции сложения (вычитания).
§ 3. Обратные тригонометрические операции над тригонометрическими функциями
137.
Функция у = arcsin (sin x).
138. Функция y = arctg (tg x).
Глава XII. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА
139. Уравнение sin х = а.
140. Уравнение cos х = a.
141. Уравнение tg x = a.
142. Уравнение ctg x = a.
143. Некоторые дополнения.
§ 2. Способ приведения к одной функции одного и того же аргумента
145. Некоторые типы уравнений, приводящихся к уравнениям относительно функции одного аргумента.
146. Способ разложения на множители.
147. Решение рациональных тригонометрических уравнений с помощью универсальной тригонометрической подстановки tg(x/2) = t.
§ 3. Некоторые частные приемы решения тригонометрических уравнений и систем
148. Введение вспомогательного аргумента.
149. Преобразование произведения в сумму или разность.
150. Переход к функциям удвоенного аргумента.
151. Решение уравнения типа…
152. Применение подстановок sinx ± соsx = y.
§ 4. Решение тригонометрических неравенств
154. Простейшие тригонометрические неравенства.
155. Примеры тригонометрических неравенств, сводящихся к простейшим.
Часть вторая. ГЕОМЕТРИЯ
156. Точка. Прямая. Луч. Отрезок.
157. Плоскость. Фигуры и тела.
160. Равенство фигур. Движение.
161. Равенство тел.
§ 2. Измерение геометрических величин
162. Сложение отрезков. Длина отрезка.
163. Общая мера двух отрезков.
164. Сравнительная длина отрезков и ломаных.
165. Измерение углов.
166. Радианная мера угла.
167. Измерение площадей.
168. Площадь прямоугольника. Объем прямоугольного параллелепипеда.
Глава XIV. ПЕРПЕНДИКУЛЯРНЫЕ И ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ. ЗАДАЧИ НА ПОСТРОЕНИЕ
169. Перпендикуляр и наклонные.
170. Свойство перпендикуляра, проведенного к отрезку в его середине.
171. Параллельные прямые.
172. Углы, образованные двумя параллельными прямыми и секущей.
173. Углы с параллельными или перпендикулярными сторонами.
§ 2. Геометрические места точек. Окружность
174. Геометрическое место точек.
175. Свойство биссектрисы угла.
176. Окружность.
177. Взаимное расположение прямой и окружности. Касательная и секущая.
178. Хорда и диаметр. Сектор и сегмент.
179. Взаимное расположение двух окружностей.
§ 3. Основные задачи на построение
181. Деление отрезка пополам. Построение перпендикуляров.
182. Построение углов.
183. Другие задачи на построение.
Глава XV. ТРЕУГОЛЬНИКИ, ЧЕТЫРЕХУГОЛЬНИКИ
184. Стороны и углы треугольника.
185. Биссектрисы треугольника. Вписанная окружность.
186. Оси симметрии сторон треугольника. Описанная окружность.
187. Медианы и выcоты треугольника.
188. Равенство треугольников.
189. Построение треугольников.
190. Равнобедренные треугольники.
191. Прямоугольные треугольники.
§ 2. Параллелограммы
192. Четырехугольники.
193. Параллелограмм и его свойства.
194. Прямоугольник.
§ 3. Трапеция
196. Трапеция.
197. Средняя линия треугольника.
198. Средняя линия трапеции.
199. Деление отрезка на равные части.
§ 4. Площади треугольников и четырехугольников
200. Площадь параллелограмма.
201. Площадь треугольника.
202. Площадь трапеции.
Глава XVI. ПОДОБИЕ ГЕОМЕТРИЧЕСКИХ ФИГУР
203. Пропорциональные отрезки.
204. Свойства биссектрис внутреннего и внешнего углов треугольника.
§ 2. Подобное преобразование фигур (гомотетия)
205. Определение гомотетичных фигур.
206. Свойства преобразования подобия.
§ 3. Общее подобное соответствие фигур
207. Подобные фигуры.
208. Периметры и площади подобных треугольников.
209. Применение подобия к решению задач на построение.
Глава XVII. МЕТРИЧЕСКИЕ СООТНОШЕНИЯ В ТРЕУГОЛЬНИКЕ И КРУГЕ
210. Углы с вершиной на окружности.
211. Углы с вершиной внутри и вне круга.
212. Угол, под которым виден данный отрезок.
213. Четырехугольники, вписанные в окружность.
214. Пропорциональные отрезки в круге.
215. Задачи на построение.
§ 2. Метрические соотношения в треугольнике
216. Пропорциональные отрезки в прямоугольном треугольнике. Теорема Пифагора.
218. Теорема синусов. Формула Герона.
217. Квадрат стороны, лежащей против острого или тупого утла и треугольнике. Теорема косинусов.
218. Теорема синусов. Формула Герона.
219. Радиусы вписанной и описанной окружностей.
§ 3. Решение треугольников
220. Таблицы функций.
221. Решение треугольников. Сводка основных формул.
222. Решение прямоугольных треугольников.
223. Решение косоугольных треугольников.
Глава XVIII. ПРАВИЛЬНЫЕ МНОГОУГОЛЬНИКИ. ДЛИНА окружности И ПЛОЩАДЬ КРУГА
224. Выпуклые многоугольники.
225. Правильные многоугольники.
226. Соотношения между стороной, радиусом и апофемой.
227. Периметр и площадь правильного n-угольника.
228. Удвоение числа сторон правильного многоугольника.
§ 2. Длина окружности. Площадь круга и его частей
229. Длина окружности.
230. Площадь круга и его частей.
Глава XIX. ПРЯМЫЕ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ
231. Взаимное расположение двух прямых в пространстве.
232. Взаимное расположение прямой линии и плоскости.
233. Взаимное расположение двух плоскостей.
234. Свойства параллельных прямых и плоскостей.
235. Построения в стереометрии.
§ 2. Перпендикулярность прямых и плоскостей
236. Перпендикуляр к плоскости.
237. Перпендикуляр и наклонные.
238. Угол между прямой и плоскостью.
239. Связь между перпендикулярностью и параллельностью прямых и плоскостей.
240. Общий перпендикуляр двух скрещивающихся прямых.
§ 3. Двугранные и многогранные углы
241. Двугранный угол.
242. Взаимно перпендикулярные плоскости.
243. Трехгранные углы.
244. Многогранные углы.
§ 4. Многогранники
245. Многогранники.
246. Правильные многогранники.
Глава XX. МНОГОГРАННИКИ И КРУГЛЫЕ ТЕЛА
247. Цилиндры и призмы.
248. Параллелепипеды.
249. Объемы призм и цилиндров.
250. Площадь боковой поверхности призмы.
251. Площадь поверхности цилиндра.
§ 2. Пирамида. Конус
252. Свойства пирамиды и конуса.
253. Объем пирамиды и конуса.
254. Площадь боковой поверхности правильной пирамиды и конуса.
255. Усеченный конус и усеченная пирамида.
§ 3. Шаровая поверхность. Шар
256. Шар и шаровая поверхность.
257. Объем шара и его частей.
258. Площадь поверхности шара и ее частей.
259. Понятие телесного угла.
Ответы к упражнениям
Приложения

Урок математики в 9-м классе по теме «Бесконечно убывающая геометрическая прогрессия»

Цели урока:

  1. ознакомление учащихся с новым видом последовательности – бесконечно убывающей геометрической прогрессией;
  2. формулирование начального представления о пределе числовой последовательности;
  3. знакомство с ещё одним способом обращения бесконечных периодических дробей в обыкновенные с помощью формулы суммы бесконечно убывающей геометрической прогрессии.

Ход урока

1. Проверка домашнего задания.

1) Проверка основных формул, связанных с арифметической и геометрической прогрессиями. Два ученика готовят записи формул у доски.

2) Остальные учащиеся выполняют математический диктант по теме «Формулы суммы».

Задания:

№1. Найдите сумму первых пяти членов арифметической прогрессии, если её первый член равен 6 (1-й вариант), -20 (2-й вариант), а пятый член -6 (1-й вариант), 20 (2-й вариант).

№2. Найдите сумму первых пяти членов арифметической прогрессии, если её первый член равен -20(1-й вариант), 6 (2-й вариант), а разность равна 10(1-й вариант), -3(2-й вариант).

№3. Найдите сумму первых пяти членов геометрической прогрессии, если её первый член равен 1(1-й вариант), -1 (2-й вариант), а знаменатель равен -2(1-й вариант), 2(2-й вариант).

По окончании диктанта, выборочно, у двоих учеников работы проверяются на оценку, остальные выполняют самопроверку по готовым решениям, записанным на отворотах доски.

Решения:

   

2. Изучение новой темы. (демонстрация презентации. Приложение 1)

1) Слайд №2.

Рассмотрим квадрат со стороной, равной 1. Нарисуем ещё один квадрат, сторона которого равна половине первого квадрата, затем ещё один, сторона которого – половина второго, потом следующий и т.д. Каждый раз сторона нового квадрата равна половине предыдущего.

В результате, мы получили последовательность сторон квадратов образующих геометрическую прогрессию со знаменателем .

И, что очень важно, чем больше мы будем строить таких квадратов, тем меньше будет сторона квадрата. Например,

Т.е. с возрастанием номера n члены прогрессии приближаются к нулю.

С помощью этого рисунка можно рассмотреть и ещё одну последовательность. Например, последовательность площадей квадратов:

. И, опять, если n неограниченно возрастает, то площадь, как угодно близко приближается к нулю.

2) Слайд №3.

Рассмотрим ещё один пример. Равносторонний треугольник со стороной равной 1см. Построим следующий треугольник с вершинами в серединах сторон 1-го треугольника, по теореме о средней линии треугольника – сторона 2-го равна половине стороны первого, сторона 3-го – половине стороны 2-го и т.д. Опять получаем последовательность длин сторон треугольников.

Если рассмотреть геометрическую прогрессию с отрицательным знаменателем.

То, опять, с возрастанием номера n члены прогрессии приближаются к нулю.

Обратим внимание на знаменатели этих последовательностей. Везде знаменатели были меньше 1 по модулю.

Можно сделать вывод: геометрическая прогрессия будет бесконечно убывающей, если модуль её знаменателя меньше 1.

Фронтальная работа.

Записать определение: геометрическая прогрессия называется бесконечно убывающей, если модуль её знаменателя меньше единицы.

С помощью определения можно решить вопрос о том, является ли геометрическая прогрессия бесконечно убывающей или нет.

Задача №1.

Является ли последовательность бесконечно убывающей геометрической прогрессией, если она заданна формулой:

а)

Решение:

а) (фронтальная работа, запись на доске)

данная геометрическая прогрессия является бесконечно убывающей.

б) (самостоятельно)

данная последовательность не является бесконечно убывающей геометрической прогрессией.

Продолжить работу с презентацией.

3) Слайд №4.

Рассмотрим квадрат со стороной, равной 1. Разделим его пополам, одну из половинок ещё пополам и т.д. площади всех полученных прямоугольников при этом образуют бесконечно убывающую геометрическую прогрессию:

Сумма площадей всех полученных таким образом прямоугольников будет равна площади 1-го квадрата и равна 1.

 

Но в левой части этого равенства – сумма бесконечного числа слагаемых.

Рассмотрим сумму n первых слагаемых.

По формуле суммы n первых членов геометрической прогрессии, она равна .

Если n неограниченно возрастает, то

4) Слайд №5.

Записать определение. Суммой бесконечно убывающей геометрической прогрессии называют число, к которому стремится сумма её первых n членов при n →. Теперь получим формулу, с помощью которой будем вычислять сумму бесконечно убывающей геометрической прогрессии.

Рассмотрим формулу n первых членов геометрической прогрессии.

Тренировочные упражнения.

Задача №2. Найти сумму бесконечно убывающей геометрической прогрессии с первым членом 3,вторым 0,3.

Решение:

Задача №3. учебник [1], стр. 160, №433(1)

Найти сумму бесконечно убывающей геометрической прогрессии:

Решение:

Задача №4. учебник [1], стр. 160, №434(1)

Найти сумму бесконечно убывающей геометрической прогрессии, если

Решение:

Пользуясь формулой суммы бесконечно убывающей геометрической прогрессии, можно записывать бесконечную периодическую десятичную дробь в виде обыкновенной дроби.

Задача №4. Записать бесконечную периодическую десятичную дробь 0,(5) в виде обыкновенной дроби.

1-й способ. Пусть х=0,(5)= 0,555… /•10         2-й способ. 0,(5)=0,555…=

Задача №5. учебник [1], стр. 162, №445(3) (самостоятельное решение)

Записать бесконечную периодическую десятичную дробь 0,(12) в виде обыкновенной дроби.

Ответ: 0,(12)= 4/33.

5) Слайд №6.

Подведение итогов.

  1. С какой последовательностью сегодня познакомились?
  2. Дайте определение бесконечно убывающей геометрической прогрессии.
  3. Как доказать, что геометрическая прогрессия является бесконечно убывающей?
  4. Назовите формулу суммы бесконечно убывающей геометрической прогрессии.

Самостоятельная работа. (выполняется в рабочих тетрадях с использованием копирок и чистых листов бумаги, по окончании работы, откопированные записи решений сдаются на проверку, а по записям в тетрадях учащиеся выполняют самопроверку по готовым решениям).

Задания (слайд №6):

  1. Является ли геометрическая прогрессия бесконечно убывающей, если: b7= -30; b6= 15?
  2. Найдите сумму бесконечно убывающей геометрической прогрессии: -25; -5; -1;…
  3. Записать бесконечную десятичную периодическую дробь 0,(9) в виде обыкновенной дроби.

Самопроверка (слайд №7).

Домашнее задание.

№435(1;3), 445(4), 436. [1]

Литература:

  1. Алимов Ш.А., Колягин Ю.М., Сидоров и др.- 8-е изд.-М.: Просвещение, 2002.

Знакомства с древними вещами — магия математики! | Мухаммад Усман

Вы когда-нибудь задумывались, как археологи датируют древние материалы и артефакты? Как производится аппроксимация, связанная с возрастом объектов? И как мы точно знаем, когда все это существовало в прошлом? Ну, это действительно то, что вас удивит.

Календарь Древнего Египта — основан на наблюдениях за Солнцем

С тех пор, как мы пошли в школу, мы изучали новые факты, принципы и законы. Выглядевшая скучной школьная математика уже не в той системе восприятия, которая была у нас в то время. Давайте вспомним небольшой кусочек этого воспоминания, Помните Геометрическая последовательность ? Или чаще называется « Геометрическая прогрессия ». Да, тот, у которого такое же обыкновенное отношение между его членами.

3, 15, 75, 375, 1875, …….

Это единственный бесконечный ряд с конечной суммой. Здесь общее соотношение составляет 5.

, т. Е.

15/3 = 5

75/15 = 5

375/75 = 5

SO, общая формула может быть выражена. как,

Где r представляет обыкновенное отношение.

Цель, причина его существования и даже то, почему нам пришлось выучить много таких алгебраических и логических уравнений (О! Вы должны думать как школьник).

Египет — древняя страна тайн

Вернемся к тому, о чем мы спрашивали, как узнать возраст древних артефактов? «Великие пирамиды Гизы» ок. 4500 лет. И здесь « Геометрическая последовательность » играет важную роль.

Количество радиоактивного изотопа углерода (углерод-14), присутствующего в артефакте, помогает определить его возраст. У углерода-14 период полураспада составляет 5730 лет, то есть каждые 5730 лет он сокращается до половины своего содержания. Это последовательно уменьшающееся количество углерода-14 создает уменьшающуюся геометрическую прогрессию с общим отношением ½.

Великие пирамиды Гизы

Давайте углубимся в приведенное выше утверждение. Углерод-14 постоянно образуется в нашей атмосфере в результате взаимодействия космических лучей и атмосферного азота. Образовавшийся С-14 соединяется с атмосферным кислородом, образуя радиоактивный углекислый газ, который поглощается растениями посредством фотосинтеза. Животные получают этот углерод-14, поедая растения. Итак, когда умирает животное или растение, прекращается обмен углеродом с атмосферой. Содержание углерода-14 начинает уменьшаться и уменьшается наполовину каждые 5730 лет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *