График sin y: Свойства функции y = sinx и её график — урок. Алгебра, 10 класс.

Построить график функции y = sin(x + π/4) и найти значение аргумента,… — Учеба и наука

Лучший ответ по мнению автора

16. 10.21
Лучший ответ по мнению автора

Михаил Александров

Читать ответы

Андрей Андреевич

Читать ответы

Eleonora Gabrielyan

Читать ответы

Посмотреть всех экспертов из раздела Учеба и наука > Математика

Похожие вопросы

Решено

Из двух диаметрально противоположных точек кругового велотрека одновременно стартуют два велосипедиста. Они едут в одном направлении с постоянными…

На доске выписаны в порядке возрастания все пятизначные числа, в записи которых используются пять последовательных цифр. Какое число идет после 69875?

1. Найдите координаты точки пересечения диагоналей четырехугольника ABCD, A(-3;2;-4), B(-1;6;6), C(6;7;8), D(4;3;-2)

На доске выписаны в порядке возрастания все пятизначные числа, в записи которых используются пять последовательных цифр. Какое число идет после 69875?

Решено

В ряд выстроились 300 человек, любой из которых, либо рыцарь, всегда говорящий правду, либо лжец, всегда лгущий. Каждый сделал заявление:…

Пользуйтесь нашим приложением

Построение графиков онлайн. Построить график функции у=sin2x и у=sin График функции sin 2x

Как построить график функции y=sin x? Для начала рассмотрим график синуса на промежутке .

Единичный отрезок берём длиной 2 клеточки тетради. На оси Oy отмечаем единицу.

Для удобства число π/2 округляем до 1,5 (а не до 1,6, как требуется по правилам округления). В этом случае отрезку длиной π/2 соответствуют 3 клеточки.

На оси Ox отмечаем не единичные отрезки, а отрезки длиной π/2 (через каждые 3 клеточки). Соответственно, отрезку длиной π соответствует 6 клеточек, отрезку длиной π/6 — 1 клеточка.

При таком выборе единичного отрезка график, изображённый на листе тетради в клеточку, максимально соответствует графику функции y=sin x.

Составим таблицу значений синуса на промежутке :

Полученные точки отметим на координатной плоскости:

Так как y=sin x — нечётная функция, график синуса симметричен относительно начала отсчёта — точки O(0;0). С учётом этого факта продолжим построение графика влево, то точки -π:

Функция y=sin x — периодическая с периодом T=2π. Поэтому график функции, взятый на на промежутке [-π;π], повторяется бесконечное число раз вправо и влево.

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине «Интеграл» для 10 класса от 1С
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов
Программная среда «1С: Математический конструктор 6.1»

Что будем изучать:

  • Свойства функции Y=sin(X).
  • График функции.
  • Как строить график и его масштаб.
  • Примеры.

Свойства синуса. Y=sin(X)

Ребята, мы уже познакомились с тригонометрическими функциями числового аргумента. Вы помните их?

Давайте познакомимся поближе с функцией Y=sin(X)

Запишем некоторые свойства этой функции:
1) Область определения – множество действительных чисел.
2) Функция нечетная. Давайте вспомним определение нечетной функции. Функция называется нечетной если выполняется равенство: y(-x)=-y(x). Как мы помним из формул привидения: sin(-x)=-sin(x). Определение выполнилось, значит Y=sin(X) – нечетная функция.
3) Функция Y=sin(X) возрастает на отрезке и убывает на отрезке [π/2; π]. Когда мы движемся по первой четверти (против часовой стрелки), ордината увеличивается, а при движении по второй четверти она уменьшается.

4) Функция Y=sin(X) ограничена снизу и сверху. Данное свойство следует из того, что

-1 ≤ sin(X) ≤ 1
5) Наименьшее значение функции равно -1 (при х = — π/2+ πk). Наибольшее значение функции равно 1 (при х = π/2+ πk).

Давайте, воспользовавшись свойствами 1-5, построим график функции Y=sin(X). Будем строить наш график последовательно, применяя наши свойства. Начнем строить график на отрезке .

Особое внимание стоит обратить на масштаб. На оси ординат удобнее принять единичный отрезок равный 2 клеточкам, а на оси абсцисс — единичный отрезок (две клеточки) принять равным π/3 (смотрите рисунок).


Построение графика функции синус х, y=sin(x)

Посчитаем значения функции на нашем отрезке:


Построим график по нашим точкам, с учетом третьего свойства.

Таблица преобразований для формул привидения

Воспользуемся вторым свойством, которое говорит, что наша функция нечетная, а это значит, что ее можно отразить симметрично относительно начало координат:


Мы знаем, что sin(x+ 2π) = sin(x). Это значит, что на отрезке [- π; π] график выглядит так же, как на отрезке [π; 3π] или или [-3π; — π] и так далее. Нам остается аккуратно перерисовать график на предыдущем рисунке на всю ось абсцисс.

График функции Y=sin(X) называют — синусоидой.

Напишем еще несколько свойств согласно построенному графику:
6) Функция Y=sin(X) возрастает на любом отрезке вида: [- π/2+ 2πk; π/2+ 2πk], k – целое число и убывает на любом отрезке вида: [π/2+ 2πk; 3π/2+ 2πk], k – целое число.
7) Функция Y=sin(X) – непрерывная функция. Посмотрим на график функции и убедимся что у нашей функции нет разрывов, это и означает непрерывность.
8) Область значений: отрезок [- 1; 1]. Это также хорошо видно из графика функции.
9) Функция Y=sin(X) — периодическая функция. Посмотрим опять на график и увидим, что функция принимает одни и те же значения, через некоторые промежутки.

Примеры задач с синусом

1. Решить уравнение sin(x)= x-π

Решение: Построим 2 графика функции: y=sin(x) и y=x-π (см. рисунок).
Наши графики пересекаются в одной точке А(π;0), это и есть ответ: x = π


2. Построить график функции y=sin(π/6+x)-1

Решение: Искомый график получится путем переноса графика функции y=sin(x) на π/6 единиц влево и 1 единицу вниз.


Решение: Построим график функции и рассмотрим наш отрезок [π/2; 5π/4].
На графике функции видно, что наибольшие и наименьшие значения достигаются на концах отрезка, в точках π/2 и 5π/4 соответственно.
Ответ: sin(π/2) = 1 – наибольшее значение, sin(5π/4) = наименьшее значение.

Задачи на синус для самостоятельного решения


  • Решите уравнение: sin(x)= x+3π, sin(x)= x-5π
  • Построить график функции y=sin(π/3+x)-2
  • Построить график функции y=sin(-2π/3+x)+1
  • Найти наибольшее и наименьшее значение функции y=sin(x) на отрезке
  • Найти наибольшее и наименьшее значение функции y=sin(x) на отрезке [- π/3; 5π/6]

«Построение графика функции с модулем» — Y = lnx. Закрепили знания на ранее изученных функциях. Построение графиков функций. Вопрос классу. Y = x2 – 2x – 3. Проектная деятельность. Урок обобщения и систематизации знаний. График функции. Актуализация знаний о графиках функций. Обобщение. Попробуйте самостоятельно построить графики. Y = f(x).

««Графики функций» 9 класс» — Цели урока. Большему значению аргумента соответствует большее значение функции. Нули функции. Определение. Заполните пропуски. Установите соответствие между функцией и вершиной. Тренажер. Выберите уравнение, с помощью которого задана линейная функция. Установите соответствие. Выберите уравнение. Обратная пропорциональность.

«Графики функций с модулями» — Найдём вершину функции. Кубическая функция. Отрицательная сторона. Графики функций. Квадратичная функция. Сложная функция. Функция с модулем. Графики функций надо обязательно уметь строить. Подготовка к ЕГЭ. Графики функций с модулями. Парабола. График функции.

«Уравнение касательной к графику функции» — Производная в точке. Правила дифференцирования. График функции. Алгоритм нахождения уравнения. Ответьте на вопросы. Геометрический смысл производной. Номера из учебника. Уравнение касательной к графику функции. Определение. Касательная к графику функции. Основные формулы дифференцирования. Провести касательную.

«Построение графиков функций» — Построение графика функции y = sinx. Линия тангенсов. Алгебра. Тема: Построение графиков функций. График функции y = sinx. Выполнила: Филиппова Наталья Васильевна учитель математики Белоярская средняя общеобразовательная школа №1. Построить график функции y=sin(x) +cos(x).

«График обратной пропорциональности» — Применение гиперболы. Гипербола. Монотонность функции. Чётность, нечётность. Функция «Обратная пропорциональность». График. Построение графика обратной пропорциональности. Гипербола и космические спутники. Однополостной гиперболоид. Асимптота. Применение гиперболоидов. Определение обратной пропорциональности.

Всего в теме 25 презентаций

Построить функцию

Мы предлагаем вашему вниманию сервис по потроению графиков функций онлайн, все права на который принадлежат компании Desmos . 2/16=1)

  • Возможность сохранять графики и получать на них ссылку, которая становится доступной для всех в интернете
  • Управление масштабом, цветом линий
  • Возможность построения графиков по точкам, использование констант
  • Построение одновременно нескольких графиков функций
  • Построение графиков в полярной системе координат (используйте r и θ(\theta))
  • С нами легко в режиме онлайн строить графики различной сложности. Построение производится мгновенно. Сервис востребован для нахождения точек пересечения функций, для изображения графиков для дальнейшего их перемещения в Word документ в качестве иллюстраций при решении задач, для анализа поведенческих особенностей графиков функций. Оптимальным браузером для работы с графиками на данной странице сайта является Google Chrome. При использовании других браузеров корректность работы не гарантируется.

    Мэтуэй | Популярные задачи

    92
    1 Найти точное значение грех(30)
    2 Найти точное значение грех(45)
    3 Найти точное значение грех(30 градусов)
    4 Найти точное значение грех(60 градусов)
    5 Найти точное значение загар (30 градусов)
    6 Найти точное значение угловой синус(-1)
    7 Найти точное значение грех(пи/6)
    8 Найти точное значение cos(pi/4)
    9 Найти точное значение грех(45 градусов)
    10 Найти точное значение грех(пи/3)
    11 Найти точное значение арктан(-1)
    12 Найти точное значение cos(45 градусов)
    13 Найти точное значение cos(30 градусов)
    14 Найти точное значение желтовато-коричневый(60)
    15 Найти точное значение csc(45 градусов)
    16 Найти точное значение загар (60 градусов)
    17 Найти точное значение сек(30 градусов)
    18 Найти точное значение cos(60 градусов)
    19 Найти точное значение cos(150)
    20 Найти точное значение грех(60)
    21 Найти точное значение cos(pi/2)
    22 Найти точное значение загар (45 градусов)
    23 Найти точное значение arctan(- квадратный корень из 3)
    24 Найти точное значение csc(60 градусов)
    25 Найти точное значение сек(45 градусов)
    26 Найти точное значение csc(30 градусов)
    27 Найти точное значение грех(0)
    28 Найти точное значение грех(120)
    29 Найти точное значение соз(90)
    30 Преобразовать из радианов в градусы пи/3
    31 Найти точное значение желтовато-коричневый(30)
    32
    35 Преобразовать из радианов в градусы пи/6
    36 Найти точное значение детская кроватка(30 градусов)
    37 Найти точное значение арккос(-1)
    38 Найти точное значение арктан(0)
    39 Найти точное значение детская кроватка(60 градусов)
    40 Преобразование градусов в радианы 30
    41 Преобразовать из радианов в градусы (2 шт. )/3
    42 Найти точное значение sin((5pi)/3)
    43 Найти точное значение sin((3pi)/4)
    44 Найти точное значение тан(пи/2)
    45 Найти точное значение грех(300)
    46 Найти точное значение соз(30)
    47 Найти точное значение соз(60)
    48 Найти точное значение соз(0)
    49 Найти точное значение соз(135)
    50 Найти точное значение cos((5pi)/3)
    51 Найти точное значение cos(210)
    52 Найти точное значение сек(60 градусов)
    53 Найти точное значение грех(300 градусов)
    54 Преобразование градусов в радианы 135
    55 Преобразование градусов в радианы 150
    56 Преобразовать из радианов в градусы (5 дюймов)/6
    57 Преобразовать из радианов в градусы (5 дюймов)/3
    58 Преобразование градусов в радианы 89 градусов
    59 Преобразование градусов в радианы 60
    60 Найти точное значение грех(135 градусов)
    61 Найти точное значение грех(150)
    62 Найти точное значение грех(240 градусов)
    63 Найти точное значение детская кроватка(45 градусов)
    64 Преобразовать из радианов в градусы (5 дюймов)/4
    65 Найти точное значение грех(225)
    66 Найти точное значение грех(240)
    67 Найти точное значение cos(150 градусов)
    68 Найти точное значение желтовато-коричневый(45)
    69 Оценить грех(30 градусов)
    70 Найти точное значение сек(0)
    71 Найти точное значение cos((5pi)/6)
    72 Найти точное значение КСК(30)
    73 Найти точное значение arcsin(( квадратный корень из 2)/2)
    74 Найти точное значение загар((5pi)/3)
    75 Найти точное значение желтовато-коричневый(0)
    76 Оценить грех(60 градусов)
    77 Найти точное значение arctan(-( квадратный корень из 3)/3)
    78 Преобразовать из радианов в градусы (3 пи)/4 
    79 Найти точное значение sin((7pi)/4)
    80 Найти точное значение угловой синус(-1/2)
    81 Найти точное значение sin((4pi)/3)
    82 Найти точное значение КСК(45)
    83 Упростить арктан(квадратный корень из 3)
    84 Найти точное значение грех(135)
    85 Найти точное значение грех(105)
    86 Найти точное значение грех(150 градусов)
    87 Найти точное значение sin((2pi)/3)
    88 Найти точное значение загар((2pi)/3)
    89 Преобразовать из радианов в градусы пи/4
    90 Найти точное значение грех(пи/2)
    91 Найти точное значение сек(45)
    92 Найти точное значение cos((5pi)/4)
    93 Найти точное значение cos((7pi)/6)
    94 Найти точное значение угловой синус(0)
    95 Найти точное значение грех(120 градусов)
    96 Найти точное значение желтовато-коричневый ((7pi)/6)
    97 Найти точное значение соз(270)
    98 Найти точное значение sin((7pi)/6)
    99 Найти точное значение arcsin(-( квадратный корень из 2)/2)
    100 Преобразование градусов в радианы 88 градусов

    Калькулятор — sin(y*x) — Solumaths

    Грех, онлайн-исчисление

    Резюме:

    Тригонометрическая функция sin для вычисления синуса угла в радианах, градусов или градианов.

    sin online


    Описание:

    Калькулятор позволяет использовать большинство из тригонометрических функций , есть возможность вычислить синус , косинус и касательная угла через одноименные функции.

    Тригонометрическая функция синус отметил синус , позволяет вычислить синус угла онлайн , можно использовать разные угловые единицы: градус, градус и радианы, которые по умолчанию являются угловыми единицами.

    1. Расчет синуса
    2. Синус вычисляет угол в радианах

      Калькулятор синуса позволяет с помощью функции sin вычислить онлайн синус синус угла в радианах, сначала нужно выберите нужную единицу, нажав на кнопку параметров расчетного модуля. После этого можно приступать к расчетам.

      Чтобы вычислить синус онлайн от `pi/6`, введите sin(`pi/6`), после вычисления результат `1/2` возвращается.

      Обратите внимание, что функция синуса способна распознавать некоторые специальные углы и делать расчеты со специальными связанными значениями в точной форме.

      Вычислить синус угла в градусах

      Чтобы вычислить синус угла в градусах, необходимо сначала выбрать нужную единицу измерения нажав на кнопку модуля расчета параметров. После этого можно приступать к вычислениям.

      Чтобы вычислить синус 90, введите sin(90). результат 1 возвращается.

      Вычислить синус угла в градианах

      Для вычисления синуса угла в градианах необходимо сначала выбрать нужную единицу измерения нажав на кнопку модуля расчета параметров. После этого можно приступать к вычислениям.

      Чтобы вычислить синус 50, введите sin(50), после вычисления возвращается результат `sqrt(2)/2`.

      Обратите внимание, что функция синуса способна распознавать некоторые специальные углы и выполнять исчисление со специальными ассоциированными точными значениями.

    3. Таблица специальных синусоидальных значений
    4. Синус допускает некоторые специальные значения, которые калькулятор может определить в точных формах. Вот таблица значения общего синуса :

      sin(`2*pi`) `0`
      sin(`pi`) `0`
      sin(`pi/90 `2`)4 0 10`004
      5
      sin(`pi/4`) `sqrt(2)/2`
      sin(`pi/3`) `sqrt(3)/2`
      sin(`pi/6`) `1/2`
      sin(`2*pi/3`) `sqrt(3) /2`
      sin(`3*pi/4`) `sqrt(2)/2`
      sin(`5*pi/6`) `1/2`
      sin(`0`) `0`
      sin(`-2*pi`) `0`
      sin(`-pi`) sin(`pi/2`) `-1`
      sin(`-pi/4`) `-sqrt(2)/2`
      sin(`-pi/3`) `-sqrt(3)/2`
      sin(`-pi/6`) `-1/2`
      sin(`-2*pi/3`) `-sqrt(3)/2`
      sin( `-3*pi/4`) `-sqrt(2)/2`
      sin(`-5*pi/6`) `-1/2`

    5. Основные свойства
    6. `AA x в RR, k в ZZ`,

      • `sin(-x)= -sin(x)`
      • `sin(x+2*k*pi)=sin(x)`
      • `sin(pi-x)=sin(x)`
      • `sin(pi+x)=-sin(x)`
      • `sin(pi/2-x)=cos(x)`
      • `sin(pi/2+x)=cos(x)`

    7. Производная синуса
    8. Производная синуса равна cos(x).

    9. Первообразная синуса
    10. Первообразная синуса равна -cos(x).

    11. Свойства функции синуса
    12. Функция sine является нечетной функцией, для каждого действительного x `sin(-x)=-sin(x)`. Следствием для кривой, представляющей синусоидальную функцию, является то, что она допускает начало отсчета как точку симметрии.

    13. Уравнение с синусом
    14. Калькулятор имеет решатель, который позволяет решать уравнение с синусом вида cos(x)=a . Расчеты для получения результата детализированы, поэтому можно будет решать уравнения типа `грех(х)=1/2` или `2*sin(x)=sqrt(2)` с этапами расчета.

      Синтаксис:

      sin(x), где x — мера угла в градусах, радианах или градах.


      Примеры:

      sin(`0`), возвращает 0


      Производный синус:

      Чтобы дифференцировать синус функции онлайн, можно использовать калькулятор производной, который позволяет вычислить производную функции синуса

      производная sin(x) является производной(`sin(x)`)=`cos(x)`


      Синус первообразной :

      Калькулятор первообразных позволяет вычислить первообразную функции синуса.

      Первопроизводная sin(x) является первообразной(`sin(x)`)=`-cos(x)`


      Предельный синус :

      Калькулятор предела позволяет вычислить пределы функции синуса.

      предел sin(x) is limit(`sin(x)`)


      Обратная функция синуса :

      обратная функция синуса является функцией арксинуса, отмеченной как arcsin.



      График синуса :

      Графический калькулятор может отображать синусоидальную функцию в заданном интервале.



      Свойство функции синуса:

      Функция синуса является нечетной функцией.


      Расчет онлайн с sin (синусом)

      См. также

      Список связанных калькуляторов:

      • Арккосинус : arccos. Функция arccos позволяет вычислять арккосинус числа. Функция arccos является обратной функцией функции косинуса.
      • Арксинус : арксинус. Функция arcsin позволяет вычислить арксинус числа. Функция arcsin является обратной функцией функции синуса.
      • Арктангенс: арктангенс. Функция арктангенса позволяет вычислить арктангенс числа. Функция арктангенса является обратной функцией функции тангенса.
      • Тригонометрический калькулятор: simple_trig. Калькулятор, который использует тригонометрическую формулу для упрощения тригонометрического выражения.
      • Косинус: cos. Кос-тригонометрическая функция вычисляет косинус угла в радианах, градусов или градианов.
      • Косеканс : косеканс. Тригонометрическая функция sec позволяет вычислить секанс угла, выраженного в радианах, градусах или градусах.
      • Котангенс : котанг. Тригонометрическая функция котана для вычисления котана угла в радианах, градусов или градианов.
      • Тригонометрическое расширение: expand_trigo.

        Добавить комментарий

        Ваш адрес email не будет опубликован. Обязательные поля помечены *

        © 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

        Карта сайта