Метод интервалов, решение неравенств
Решение неравенств
Метод интервалов
Перенос знаков
Выбор точек
Система и совокупность
Точка знакопостоянства
Что нельзя делать в неравенстве, даже под пытками:
1) Домножать на знаменатель.
2) Умножать/делить на отрицательное число, не меняя знак.
3) Убирать бездумно логарифм или основание.
Начнем с простого:
Линейные уравнения решаются обычным переносом. Икс в одной части оставим, а числа перенесем в другую:
А само значение −4 нам подходит?
Нет, поэтому ставим круглые скобочки ()
Ответ: x ∈ ( −4; +oo).
Разберемся со скобками:
Когда мы включаем точку (корень числителя), или стоят знаки нестрогие (≥, ≤), ставим «[ ]» — квадратные скобки. Если не включаем (корень знаменателя), или знак строгий (>, <), скобки круглые «( )».
Если же возьмем пример, где придется делить или умножать на отрицательное число, то знак поменяется:
Ответ: x ∈ ( 0; +oo).
Следующий пример уже с дробью:
Приравняем числитель к нулю и скажем, что знаменатель не равен нулю:
к.ч. (корни числителя)
к.з. (корни знаменателя)
Расставляем корни числителя и знаменателя на одной прямой (сколько решаем неравенств, столько же чертим прямых). Попробуем подставить х = 0, чтобы определить знаки:
Там, где «0» (перед двойкой), ставим знак «−», а дальше знаки чередуем:
Из-за того, что знаком неравенства был «≥», нам подходят промежутки со знаком «+» и закрашенная точка:
Когда мы включаем точку (корень числителя), или стоят знаки (≥, ≤), ставим «[ ]» — квадратные скобки. Если не включаем (корень знаменателя), или знак строгий (>, <), скобки круглые «( )».
Ответ: x ∈ (2; 7].
Данный пример можно решить по-другому. Подумаем, когда дробь больше нуля? Конечно, когда числитель и знаменатель — положительные значения или когда оба отрицательные. Поэтому данное неравенство можно разбить на две системы в совокупности:
Отметим на прямой решение каждого неравенства.
Решением системы «{» является тот участок, который подходит обоим неравенствам.
Решением совокупности «[» является тот участок, который включен хотя бы в одно неравенство.
Мой любимый пример:
Покажу мастер-класс, как делать не надо. Дома не повторять!
А теперь через метод интервалов разберемся, как сделать правильно:
Там, где ноль, ставим знак «−», рисуем прямую и отмечаем корни каждой скобки. А дальше чередуем:
В данном неравенстве знак меньше, поэтому записываем в ответ промежуток, где знак «−».
Ответ: x ∈ (−3; 3).
Перейдем к квадратному уравнению:
Разложим на множители и подставим x = 10, чтобы определить знак:
Нам требуются положительные значения:
Второй способ разложить на множители:
Ответ: x ∈ (−oo; −1) ∪ (5; +oo).
А теперь простой, но крайне показательный пример:
Убирать квадрат ни в коем случае нельзя. Простенький контрпример:
Надеюсь, убедил. Вместо знака больше поставим знак равно и попробуем решить методом интервалов:
Если корень повторяется четное количество раз, то в этой точке знак меняться не будет. Отмечать будем такую точку восклицательным знаком (а внутри него ±, чуть ниже объясню, зачем это).
Проверим это:
В данном неравенстве знак больше, тогда отметим те промежутки, где стоит знак «+».
Только точка «0» не подходит, 0 > 0 — неверно!
Ответ: x ∈ R \ {0} или x ∈ (−oo; 0) ∪ (0; +oo).
Переходим на новый уровень:
Все говорят, что домножать на знаменатель нельзя, а я говорю, что буду! (joke)
По методу координат найдем корни числителя и знаменателя:
Отметим все корни на одной прямой (сколько неравенств, столько же и прямых). Ноль — корень четной кратности, над ним рисуем восклицательный знак! Если это корень числителя, то точка будет закрашена, если знаменателя — выколота (на ноль делить нельзя).
Требуется найти промежутки, где выражение больше или равно нулю. Нам подойдут все «промежутки», где знак плюс. Для этого подставим значение x = 1 и с промежутка [0; 3] начнем расставлять знаки. Там же находится единица.
Вот для чего ставят в восклицательном знаке ±: чтобы не потерять отдельные точки, в данном случае 0.
Ответ: (−oo; − 6) ∪ {0} ∪ [ 3; +oo).
Дальше интереснее:
По той же схеме корни числителя и знаменателя:
Определим знак при x = 10 и расставим знаки с промежутка, где присутствует 10:
Все точки от − 2 закрашены, значит эти промежутки можно объединить в один.
Ответ: {−3} ∪ (−2; +oo).
Закрепляем последовательность:
Точка x = 3 встречается 3 раза (2 раза в числителе и 1 раз в знаменателе), знак через нее меняться будет! А также эта точка будет выколота, проверь это, подставив в уравнение x = 3. На ноль же делить нельзя?
Подставим x = 10 и расставим знаки:
Ответ: [ −oo; −5) ∪ [ 3; 5).
Все скользкие моменты разобрали, стало понятнее?
Резюме:
- Если знак строгий (>, <), все точки выколотые (в круглые скобки).
- Если знак нестрогий (≥, ≤), корни числителя закрашенные, точки знаменателя выколотые [в квадратные скобки].
- Если корень является решением уравнения четное кол-во раз (2, 4, 6, 8), то в этой точке знак меняться не будет.
- Отдельная точка записывается {в фигурных скобках}.
Нашел ошибку/опечатку — напиши.
Группа с полезной информацией и легким математическим юмором.
Метод интервалов — Умскул Учебник
На этой странице вы узнаете- Как мы ежедневно расставляем знаки неравенства в жизни?
- Как быстро определить верное обозначение точки на прямой?
- Как правильно чередовать знаки на числовой прямой?
Решая уравнение, мы стремимся к тому, чтобы обе части были равны. Но существуют такие примеры, где мы заведомо знаем, что два выражения не могут быть равны между собой. Они называются неравенствами.
Метод интерваловНеравенство — это алгебраическое выражение, в котором одна сторона имеет отличное от другой значение. В неравенствах обычно одна сторона больше другой.
Для записи неравенств используют знаки > , < , ≥ , ≤ .
При этом “>” и “<” — это строгие знаки неравенства, а “≥” и “≤” — нестрогие знаки неравенства.
Их отличие в том, что нестрогие знаки неравенства включают граничные точки в итоговый промежуток, а строгие — нет.
Как мы ежедневно расставляем знаки неравенства в жизни? Посмотрим на привычные ситуации с точки зрения строгости знаков неравенства. Например, возьмем известную игру “Камень, ножницы, бумага”. |
Рассмотрим пример неравенства (х — 10)(х + 21) > 0.
Его можно решить несколькими способами. Например, вспомним, что положительным будет произведение двух положительных или двух отрицательных множителей, тогда получается совокупность из двух систем.
Однако этот способ решения очень трудоемкий и требует много времени. А если множителей будет больше, например, три или четыре, то время на решение в разы увеличивается.
Небольшой секрет тайм-менеджмента: как сократить время при решении неравенств? В таких случаях на помощь приходит метод интервалов.
Метод интервалов — специальный алгоритм решения для сложных неравенств вида f(x) > 0. При этом знак неравенства может быть любым.
Интервал — это промежуток на числовой прямой, ограниченный двумя различными числами.
Алгоритм решения неравенств методом интервалов
1 шаг. Перенести все части неравенства в одну сторону так, чтобы с другой остался только 0.
2 шаг. Найти нули функции, для этого необходимо решить уравнение f(x) = 0.
3 шаг. Начертить числовую прямую и отметить на ней все полученные корни. Таким образом, числовая прямая разобьется на интервалы.
4 шаг. Определить знаки на каждом интервале. Для этого необходимо подставить любое удобное значение в f(x) и определить, какой знак будет иметь функция на данном интервале.
Расставляя полученные корни на прямой, необходимо отмечать их точками. При этом от того, какая отмечена точка (выколотая или закрашенная), будет зависеть ответ.
- Если в неравенстве стоит строгий знак неравенства, то все точки на прямой должны быть выколотыми.
Таким образом, граничные точки не будут включены в итоговый промежуток. Для записи таких точек используют круглые скобочки. Например, в промежуток (2;3) включаются все значения от 2 до 3, но не включаются граничные точки.
- Если в неравенстве стоит нестрогий знак неравенства, то найденные корни должны быть отмечены закрашенными точками.
Это означает, что мы включаем их в итоговый промежуток. Для записи таких точек используют квадратные скобочки. Например, в промежуток [2;3] включаются все значения от 2 до 3, в том числе и граничные точки.
- Если в неравенстве появляются ограничения и некоторые точки нельзя взять в ответ, то такие точки должны быть выколотыми на числовой прямой, при этом знак самого неравенства может быть как строгим, так и нестрогим.
Например, если необходимо решить неравенство с дробью, то нули знаменателя на числовой прямой обязательно должны быть обозначены выколотыми точками.
Как быстро определить верное обозначение точки на прямой? В случае сомнений мы всегда можем проверить себя по простой схеме. |
Стоит отметить, что непрерывная функция будет менять знак только в точках, в которых она равна 0. Подробнее узнать про смену знака функции можно в статье «Определение и график функции». Именно поэтому в методе интервалов мы ищем и отмечаем нули функции на прямой — только при переходе через них будет меняться знак функции.
При этом существует способ, с помощью которого можно быстро расставить знаки на прямой. Достаточно определить знак на одном из интервалов, а дальше чередовать знаки при переходе через каждую точку на прямой.
Правила чередования знаков:
- Если корень повторяется нечетное количество раз (то есть его степень нечетная), то знак при переходе на следующий интервал меняется.
- Если корень повторяется четное количество раз (его степень четная), то знак при переходе на следующий интервал не меняется.
Как правильно чередовать знаки на числовой прямой? Всегда будет нелишним перепроверить знак на каждом интервале, подставив значения в функцию, и убедиться в правильности расстановки знаков на прямой. Но при расстановке можно пользоваться следующим алгоритмом, что значительно сократит время расстановки знаков. |
Методом интервалов можно решить практически любое неравенство в задании 14 из ЕГЭ по профильной математике, также он может понадобиться в заданиях 8, 11 и 17 «профиля» или в задании 17 ЕГЭ по базовой математике.
На ОГЭ данным методом можно воспользоваться при решении неравенств из первой и второй частей — №13 и №20.
Так что осваивайте метод и 2 балла ЕГЭ или 3 балла ОГЭ будут у вас в кармане. Обязательно следуйте алгоритму решения неравенств методом интервалов, тогда вы точно решите неравенство верно.
Практика
Рассмотрим несколько примеров, чтобы на практике разобрать применение метода интервалов для решения неравенств.
Пример 1. Решить неравенство x2 + 8x — 33 > 0.
Шаг 1. Первым шагом необходимо найти нули функции, для этого приравниваем выражение слева к 0: x2 + 8x — 33 = 0.
Шаг 2. Находим корни уравнения, получаем х = 3 и х = -11.
Шаг 3. Расставляем полученные корни на числовой прямой. Поскольку знак неравенства строгий, то точки должны быть выколотыми:
Шаг 4. Дальше необходимо определить знаки на каждом интервале. Для этого подставим х = -12 в x2 + 8x — 33. Получаем:
(-12)2 + 8*(-12) — 33 = 144 — 96 — 33 = 15. 2 ((-3) + 2)} = \frac{9 + 3 — 2}{9 * (-1)} = \frac{10}{-9}\)
Промежуток отрицательный.
4. Дальше расставляем знаки, чередуя их. При этом следует заметить, что х = 0 — корень, повторяющийся четное количество раз (поскольку у х2 четная степень). Следовательно, при переходе через эту точку знак функции меняться не будет.
В ответ необходимо включить отрицательные промежутки, следовательно: х ∈ (-∞; -2) U [-1; 0) U (0; 2].
Давайте подведем итог. Для чего мы это изучили?
Конечно же, эти знания пригодятся на экзаменах, а также в решении школьных примеров с 8 класса по 11 класс.
Советуем после прочтения этой статьи попрактиковаться в рубрике «Проверь себя», чтобы закрепить полученные знания. После чего можете приступить к решению заданий посложнее, чтобы на экзамене у вас точно получилось решить подобные задания и набрать за них максимум баллов.
Фактчек- Метод интервалов позволяет упростить решение любого неравенства, а также экономит время, которое ограничено на экзамене.
- Чтобы решить неравенство с помощью метода интервалов необходимо найти нули функции, расставить их на числовой прямой, а после определить знак каждого полученного интервала.
- Нули функции на прямой обозначаются точками, при этом закрашенные точки включают граничные значения в итоговый промежуток, а незакрашенные, напротив, исключают их из промежутка.
- Для определения знака на каждом интервале необходимо подставить любое значение из этого интервала в функцию.
- Для упрощения расстановки знаков можно пользоваться правилами чередования, определив знак только на одном интервале, а дальше менять знаки на каждом следующем. При этом если корень встречается в функции нечетное количество раз, то знак при переходе через эту точку на следующий интервал меняется, а если корень встречается четное количество раз, то знак на следующем интервале не меняется.
Задание 1.
Какие знаки неравенства существуют?
- Строгие
- Нестрогие
- Строгие и нестрогие
- Больше и меньше
Задание 2.
Какой знак неравенства может встретиться в методе интервалов?
- Только больше или меньше.
- Только “больше или равно” или “меньше или равно”.
- Только “больше” и “больше или равно” или только “меньше” и “меньше или равно”.
- Любой.
Задание 3.
Какое утверждение верное?
- Если в неравенстве строгий знак неравенства, то точки на числовой прямой закрашены.
- Если в неравенстве строгий знак неравенства, то точки на числовой прямой выколоты.
- Если в неравенстве нестрогий знак неравенства, то все точки на числовой прямой закрашены, даже если в неравенстве есть ограничения.
- Если в неравенстве нестрогий знак неравенства, то все точки на числовой прямой выколоты.
Задание 4.
Какое утверждение верное?
- При переходе на числовой прямой на следующий интервал, знак на интервале всегда будет меняться.
- Если корень встречается в неравенстве четное количество раз, то при переходе через него на следующий интервал знак не меняется.
- Если корень встречается в неравенстве нечетное количество раз, то при переходе через него на следующий интервал знак не меняется.
- Невозможно определить правильное чередование знаков на прямой, не подставляя значение из каждого интервала в функцию.
Задание 5.
Если в неравенстве строгий знак неравенства, то какие скобочки могут встретиться в ответе?
- Круглые
- Квадратные
- И круглые, и квадратные
- Ни один из перечисленных вариантов
Ответы: 1. — 3 2. — 4 3. — 2 4. — 2 5. — 1
Уравнения и неравенства Нестрогие неравенства
- Home /
- Алгебра /
- Уравнения и неравенства /
- Темы /
- Неравенство с одной переменной /
- Не-страшные неравенства
- Введение
- Темы
- Solutions to Equations
- Solving Equations with One Variable
- Complicated Equations
- Solving Equations with Multiple Variables
- Single-Variable Inequalities
- Strict Inequalities
- Equivalent Inequalities
- Non-Strict Inequalities
- Solving Inequalities
- В реальном мире
- Примеры
- Упражнения
- Задачи Math Shack
- Условия
- Лучшее из Интернета
- Викторины
- Раздаточный материал
- Содержание
- НАЗАД
- СЛЕДУЮЩИЙ
Неравенство, допускающее равенство
Ладно, тайм-аут. Как вы можете быть неравенством и допускать равенство? Разве это не оксюморон? Можете ли вы также совершить несправедливость, которая справедлива? Или есть расстройство желудка во время пищеварения?
Ответ заключается в том, что некоторые неравенства не являются полностью неравными: есть перекрытие. Неравенства, с которыми мы уже работали, — те, которые содержат символы «<» и «>», — называются строгими неравенствами, потому что переменная не может равняться числу, с которым она сравнивается. Если x < 3, то x может быть 2,9, 2,99, 2,999 и т. д., но x не может равняться 3.
≥». Символ «≤» означает «меньше или равно», а «≥» — это сокращение от «больше или равно». Значения на каждой стороне символа не совсем равны, что делает его неравенством, и все же одно из возможных решений равно значению на противоположной стороне, поэтому оно немного равно. Понял?
Примеры задач
- «Двойка меньше или равна x » может быть записана символами как 2 ≤ x . Другими словами, x должно быть не менее 2.
- Мы можем сократить « x меньше или равно -1″ как x ≤ -1.
- Неравенство 4 ≥ y означает, что «4 больше или равно y «. Другими словами, y не больше 4.
Неравенства «≤» и «≥» позволяют переменной равняться числу, с которым она сравнивается. Эти ребята известны в мире математики. как нестрогих неравенств . Мы могли бы также назвать их «снисходительными неравенствами». по сравнению, мы можем думать о них как о неравенствах, которые «допускают равенство», или как о «расслабленных» неравенствах. Нам нравится второй вариант. Он заставляет нас думать об отпуске9.0023
Примеры задач
- y = 4 является решением неравенства 4 ≥ y .
- x = 5 является решением неравенства x ≥ 5.
У нас все еще есть эквивалентные способы записи нестрогих неравенств.
Пример задачи
Чтобы представить неравенство 4 ≥ x или эквивалентное неравенство x ≤ 4, мы заштриховываем все значения до и , включая 4.
Будьте осторожны: Чтобы представить строгое неравенство на числовой прямой, используйте пустой кружок. Чтобы представить нестрогое неравенство на числовой прямой, используйте замкнутый круг или большую закрашенную точку. Будьте осторожны, чтобы нарисовать правильный круг, и внимательно следите за изображениями, которые у вас получились. Если вы получаете пейзаж швейцарской деревни, что-то пошло не так.
- НАЗАД
- СЛЕДУЮЩИЙ
Процитировать эту страницу
регуляризация — Проблемы оптимизации и строгие и нестрогие неравенства?
спросил
Изменено 4 года, 10 месяцев назад
Просмотрено 539 раз
$\begingroup$
- оптимизация
- регуляризация
$\endgroup$
3
$\begingroup$
Я предполагаю, что вас интересует задача условной оптимизации с непрерывной целевой функцией. В общем виде эту задачу можно записать так:
$$\text{Maximise }f(\mathbf{x}) \quad \text{subject to} \quad \mathbf{x} \in \mathcal{G },$$
где $\mathcal{G}$ — ограничение, установленное в задаче. Набор ограничений может состоять из ограничений равенства или ограничений строгого/нестрогого неравенства.
Одна из трудностей с этими задачами заключается в том, что может не быть никакого максимального значения целевой функции по набору ограничений. Это может произойти, когда функция не имеет верхней границы набора ограничений или когда функция приближается к супремуму в граничной точке набора ограничений, но в той граничной точке, которая фактически не находится в наборе ограничений.
Таким образом, первая проблема, с которой вы сталкиваетесь в этих проблемах, заключается в том, что решения может вообще не быть.Существует известный математический результат, называемый теоремой Вейерштрауса об экстремальном значении, который дает достаточные условия для существования максимизирующего значения. Если $f$ непрерывна и $\mathcal{G}$ является компактом (ограниченным и замкнутым), то в задаче будет существовать одно или несколько максимизирующих значений, и поэтому супремум может быть получен в точности как максимум.
Теорема Вейерштрауса применима, когда ваш набор ограничений ограничен набором ограничений равенства и/или ограничений нестрогого неравенства, так что множество значений, подчиняющихся ограничениям, замкнуто и ограничено. Строгие ограничения неравенства дают вам открытые точки на границе набора ограничений. Так что в последнем случае вы иногда будете сталкиваться с ситуациями, когда максимизирующего значения нет, и вы просто все ближе и ближе приближаетесь к супремуму, не достигая его.