Как в уравнении избавиться от дроби: § Как решить уравнение с неизвестным в дроби

Содержание

Решение уравнений с дробями — как решать дробные уравнения

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это запись числа в математике, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:

        
  • обыкновенный вид — ½ или a/b,
  •     
  • десятичный вид — 0,5.

Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

        
  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 — 0,3)/5.
  2.     
  3. Алгебраические — состоят из переменных. Например, (x + y)/(x — y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3\5.

                                                                       
Основные свойства дробей
            
                    
  1. Дробь не имеет значения, при условии, если делитель равен нулю.
  2.                 
  3. Дробь равна нулю, если числитель равен нулю, а знаменатель — нет.
  4.                 
  5. Две дроби a/b и c/d называются равными, если a * d = b * c.
  6.                 
  7. Если числитель и знаменатель умножить или разделить на одно и то же натуральное число, то получится равная ей дробь
  8.             
            

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить.

Также, дроби можно сравнивать между собой и возводить в степень.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

        
  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  •     
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

                                                                                                 
Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.             

Что поможет в решении:

            
                    
  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  •                 
  • если а равно нулю — у уравнения нет корней;
  •                 
  • если а и b равны нулю, то корень уравнения — любое число.
  •             
            
Квадратное уравнение выглядит так:ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Приходите решать увлекательные задачки по математике в детскую школу Skysmart. Поможем разобраться в сложной теме, подтянем оценки и покажем, что математика может быть захватывающим приключением.

Запишите ребенка на бесплатный вводный урок: познакомим с форматом, выявим пробелы и наметим индивидуальную программу обучения.

Ты можешь записаться на онлайн-уроки по математике для учеников 1-11 классов!

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Такие уравнения еще называют дробно-рациональными

. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

 

Как решать уравнения с дробями

                                                                       
Универсальный алгоритм решения
            
                    
  1. Определить область допустимых значений.
  2.                 
  3. Найти общий знаменатель.
  4.                 
  5. Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.
  6.                 
  7. Раскрыть скобки, если нужно и привести подобные слагаемые.
  8.                 
  9. Решить полученное уравнение.
  10.                 
  11. Сравнить полученные корни с областью допустимых значений.
  12.                 
  13. Записать ответ, который прошел проверку.
  14.             
            

А теперь еще несколько способов, которые пригодятся ребенку на уроках математики.

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

Как решаем:

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

        
  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  •     
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Вот так просто мы получили тот же ответ, что и в прошлый раз.

                                                                       
Что еще важно учитывать при решении
            
                    
  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  •                 
  • делить и умножать уравнение на 0 нельзя.
  •             
            

А вот и полезные видео для закрепления материала:

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

Как решаем:

        
  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2.     
  3. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  4.     
  5. Избавимся от знаменателя. Умножим каждый член уравнения на х.     

    1 + 2x = 5х

        
  6.     
  7. Решим обычное уравнение.     

    5x — 2х = 1

        

    3x = 1

        

    х = 1/3

        

Ответ: х = 1/3.

Пример 2. Найти корень уравнения

Как решаем:

        
  1. Область допустимых значений: х ≠ −2.
  2.     
  3. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  4.     
  5. Избавимся от знаменателя. Умножим каждый член уравнения на х.     

        
  6.     
  7. Переведем новый множитель в числитель..     

        
  8.     
  9. Сократим левую часть на (х+2), а правую на 2.     

    4 = х + 2

        

    х = 4 — 2 = 2

        

Ответ: х = 2.

Пример 3. Решить дробное уравнение:

Как решаем:

        
  1. Найти общий знаменатель:     

    3(x-3)(x+3)

        
  2.     
  3. Умножим обе части уравнения на общий знаменатель.
    Сократим. Получилось:     

    3(x+3)(x+3)+3(x-3)(x-3)=10(x-3)(x+3)+3*36

        
  4.     
  5. Выполним возможные преобразования. Получилось квадратное уравнение:     

    x2-9=0

        
  6.     
  7. Решим полученное квадратное уравнение:     

    x2=9

        
  8.     
  9. Получили два возможных корня:     

    x1=−3, x2=3

        

    х = 4 — 2 = 2

        
  10.     
  11. Если x = −3, то знаменатель равен нулю:     

    3(x-3)(x+3)=0

        

    Если x = 3 — знаменатель тоже равен нулю.

        
  12.     
  13. Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.

Ответ: нет решения.

Если нужно решить уравнение с дробями быстро — поможет онлайн-калькулятор дробей. Пользуйтесь им, если уже разобрались с темой и щелкаете задачки легко и без помощников:

Как решать дробные уравнения? | О математике понятно

        Итак, друзья, продолжаем осваивать решение основных типов алгебраических уравнений.

Мы с вами уже хорошо (надеюсь) знаем, как именно надо решать линейные и квадратные уравнения. Осталось разобрать ещё одним основным типом уравнений — дробными уравнениями.

        Иногда их называют более научно и солидно — дробные рациональные уравнения. Или дробно-рациональные уравнения. Это сути не меняет.)

        Дробные уравнения — незаменимая вещь во многих других темах математики. Особенно — в текстовых задачах. Но для успешного их решения жизненно необходимо ориентироваться в трёх смежных темах:

        1. Дроби и действия с дробями и дробными выражениями.

        2. Тождественные преобразования уравнений.

        3. Решение линейных и квадратных уравнений.

        Без этих трёх китов браться за решение дробных уравнений слишком уж самонадеянно, я бы сказал. Почему? Да потому, что непонимание, как, скажем, работать с дробями (сокращать, приводить к общему знаменателю и т.д.) автоматически будет приводить к полному провалу и в дробных уравнениях. Намёк понятен?)

        Так что тем, у кого проблемы хотя бы по одной из вышеперечисленных тем — настоятельно рекомендую освежить их в памяти, да и по ссылочкам пройтись.

        Итак, вперёд!

 

Что такое дробное уравнение? Примеры.

        Дробное уравнение, как следует непосредственно из названия, — это уравнение, в котором есть дроби. Обязательно. Причём (важно!) не просто дроби, а дроби, у которых есть икс в знаменателе. Хотя бы в одном.

        Например, вот такое уравнение:

        

        Или такое:

        

        Или вот такое:

        

        И так далее.) Напоминаю, что, если в знаменателях сидят только числа, то такие уравнения к дробным не относятся. Либо это линейные уравнения, либо квадратные.

        Например:

        

        Это линейное уравнение, хотя тут тоже есть дроби. Почему? Да потому, что знаменатели дробей — четвёрка и пятёрка. Т.е. просто числа. И ни один из знаменателей не содержит иксов.

        Или такое уравнение:

        

        Это обычное квадратное уравнение, несмотря на двойку в знаменателе. Опять же, по причине того, что двойка — не икс, и деления на неизвестное в дроби нету.

        В общем, вы поняли.

 

Как решать дробные уравнения? Убираем дроби!

        Как это ни странно, дробные уравнения в большинстве своём решаются довольно просто. По чётким и несложным правилам. Каким же именно образом?

        Первым делом надо избавиться от дробей! Это ключевой шаг в решении любого дробного уравнения, который должен быть освоен идеально. Ибо после того, как все дроби исчезли, уравнение, чаще всего, превращается в линейное или квадратное. А дальше мы уже с вами знаем, что делать.)

        Но… Как же нам избавиться от дробей?! Легко! Применяя всё те же старые добрые тождественные преобразования! В чём же суть?

        Вникаем. Нам надо помножить обе части уравнения на одно и то же выражение. Но не на какое попало, а на такое, чтобы все знаменатели посокращались! Одним махом.) Ибо дальше, без знаменателей, жизнь становится гораздо проще и приятнее.)

        Это только на конкретном примере показать можно. Итак, решаем первое уравнение из нашего списка:

        Первое, что приходит на ум — перенести всё в одну сторону, привести всё к общему знаменателю и т.д. Забудьте, как кошмарный сон! Так делают только в одном случае — при решении дробно-рациональных неравенств методом интервалов. Это отдельная большая тема.

        А в уравнениях нам надо сразу умножить обе части на такое выражение, которое нам позволит сократить все знаменатели. И какое же это выражение?

        Давайте его конструировать.) Смотрим ещё раз на уравнение:

        

        Понятно, что в левой части для ликвидации знаменателя нам необходимо умножение на (х+3), а в правой — на 3. Но математика позволяет умножать обе части уравнения только на одно и то же выражение! На разные — не катит. Ничего не поделать, так уж она устроена…)

        Значит, нам надо скомбинировать такое выражение, которое одновременно делилось бы как на (х+3), так и на тройку. Причём очень важно — только с помощью умножения! И какое же это выражение? Очевидно, это 3(х+3). То есть, по сути, общий знаменатель обеих дробей.

        Итак, для ликвидации всех дробей наше уравнение надо умножать на выражение 3(х+3).

        Умножаем:

        

        Это самое обычное умножение дробных выражений, но, так уж и быть, расписываю детально:

        

        Прошу обратить внимание: скобки (х+3) я не раскрываю! Прямо так, целиком, их и пишу, как будто бы это одна буква. Ибо наша основная на данный момент задача — дроби убрать. Чего без произведения никак не сделаешь… И зачем же нам тогда париться с раскрытием скобок?!

        А вот теперь мы видим, что в левой части сокращается целиком (х+3), а в правой 3. Чего мы и добивались! И теперь с чувством глубокого удовлетворения производим сокращение:

        

        Вот и отлично. Дроби исчезли. После сокращения получилось безобидное линейное уравнение:

        2∙3 = х+3

        А его (надеюсь) уже решит каждый:

        х = 3

 

        Решаем следующий примерчик:

        

        И опять избавляемся от того, что нам не нравится. В данном примере это дробь 20/х. Одна единственная. Для её ликвидации правую часть надо домножить на знаменатель. То есть, просто на х. Но тогда и левую часть тоже надо домножить на х: так уж второе тождественное преобразование требует.

        Вот и домножаем! Всю левую часть и всю правую часть:

        

        Напоминаю, что эта вертикальная чёрточка с умножением всего лишь означает, что обе части нашего уравнения мы умножаем на «х».     

        Вперёд!

        

        А вот теперь — снова внимание! Очередные грабли. Заметьте, что при умножении левой части на икс, выражение (9 — х) я взял в скобки! Почему? Потому, что мы умножаем на икс всю левую часть целиком, а не отдельные её кусочки!

        Дело всё в том, что частенько после умножения народ записывает левую часть вот так:

        

        Это категорически неверно. Дальше можно уже не решать, да…)

        Но у нас всё хорошо, будем дорешивать.

        С чистой совестью сокращаем икс справа и получаем уравнение уже безо всяких дробей, в одну строчку.

        (9 — х)∙х = 20

        Вот и отлично. Все дроби исчезли напрочь, теперь можно и скобки раскрыть:

        9х — х2 = 20

        Переносим всё влево и приводим к стандартному виду:

        

        Получили классическое квадратное уравнение. Но минус перед квадратом икса — нехорош. Забыть его проще простого! От него всегда можно избавиться умножением (или делением) уравнения на (-1). Проще говоря, меняем в левой части все знаки на противоположные. А справа как был ноль, так ноль же и останется:

        

        Решаем через дискриминант (или подбираем по теореме Виета) и получаем два корня:

        х1 = 4

        х2 = 5

        И все дела.)

        Как вы видите, в первом случае уравнение после преобразований стало линейным, а здесь — квадратным.

        А бывает и так, что после ликвидации дробей вообще все иксы сокращаются и остаётся чистая правда. Что-нибудь типа 3=3.  Это означает, что икс может быть любым. Какой икс ни возьми — всё равно всё посокращается и останется железное равенство 3=3.

 

        Или наоборот, может получиться какая-нибудь белиберда, типа 3=4. А это будет означать, что корней нет. Какой икс ни возьми — всё сократится и останется бред…

        Надеюсь, такие сюрпризы вас уже нисколько не удивят. ) Если всё же удивят, то прогуляйтесь по ссылочке: Линейные уравнения. Как решать линейные уравнения? А чуть конкретнее — особые случаи при решении линейных уравнений. Эти сюрпризы (полная пропажа иксов после преобразований) — они ко всем видам уравнений относятся. И дробные — не исключение.)

        Разумеется, при попытке ликвидации дробей встречаются и неожиданности. И одну из них мы рассмотрим прямо сейчас.

 

Раскладываем на множители!

        Решаем третье уравнение по списку:

        

        А вот тут некоторые могут и зависнуть. На что же такое надо домножить всё уравнение, чтобы за один шаг сократились все знаменатели? Можно, конечно, взять и тупо перемножить все три знаменателя, получить

        x(x2+2x)(x+2)

        и домножить на эту конструкцию всё уравнение. Математика не возражает.) Но… Может быть, есть выражение попроще?

        Что ж, вскрою тайну: да, всё гораздо проще! Если в совершенстве владеть таким мощным приёмом, как разложение на множители. Привет седьмому классу!)

        А попробуем-ка разложить на множители каждый из знаменателей? Ну, с х и х+2 точно ничего не сделать, а вот х2+2х вполне себе раскладывается! Выносим один икс за скобку и получаем:

        х2+2х = х(х+2)

        Отлично. Вставим наше разложение в исходное уравнение:

        

        Вот теперь всё и прояснилось.) Теперь уже отчётливо видно, что гораздо проще будет умножать обе части уравнения на х(х+2). Это выражение гораздо короче и прекрасно делится на каждый из знаменателей: и на x, и на (х+2), и само на себя — на х(х+2).

        Вот на х(х+2) и умножаем:

        

        И снова расписываю подробно, дабы не запутаться. В левой части я буду использовать скобки: там сумма дробей. В правой части скобки не нужны: там одна дробь. Вот и пишем:

        

        А теперь производим умножение. В левой части большие скобки умножаем на наше выражение х(х+2). Разумеется, по правилу раскрытия скобок, сначала первую дробь, затем — вторую. Ну, а в правой части, по правилу умножения дробей, просто умножаем числитель:

        

        Я уж не стал здесь рисовать единички в знаменателях, несолидно… И, опять же, малые скобки в числителях я не раскрываю! Они нам сейчас для сокращения понадобятся! И да… Откуда появились скобки (х — 3) в числителе первой дроби — думаю, уже не стоит объяснять?)

        С удовольствием сокращаем все дроби:

        

        (x-3)(x+2) + 3 = x

        Раскрываем оставшиеся скобки, приводим подобные и собираем всё слева:

        x2 + 2x — 3x — 6 + 3 — х = 0

        x2 — 2x — 3 = 0

        И снова получили квадратное уравнение. ) Решаем и получаем два корня:

        x1 = -1

        x2 = 3

        Вот и всё. Это и есть ответ.)

        Из этого примера можно сделать важный вывод:

 

        Если знаменатели дробей можно разложить на простые множители — обязательно делаем это! Пригодится при ликвидации дробей. Причём раскладываем всё до упора, используя все возможные способы из алгебры седьмого класса!

 

        Как вы видите, всё просто и логично. Мы меняем исходное уравнение так, чтобы после наших преобразований из примера исчезло всё то, что нам не нравится. Или мешает. В данном случае это — дроби. И точно так же мы будем поступать и со всякими логарифмами, синусами, показателями и прочей жестью.) Мы всегда будем от всего этого избавляться.)

        Ну что, порешаем?)

        Решить уравнения:

        

 

        Ответы (как обычно, вразброс):

        x = 3

        x1 = 0,5;    x2 = 3

        x = 2

        х = 6

        x = 2,6

        x1 = 2;    x2 = 5

 

        Последнее задание не решается? Что ж, формулы сокращённого умножения всяко помнить надо, да…)

        Всё решилось? Что ж, здорово! Значит, полпути в решении дробных уравнений мы с вами уже преодолели. Эта первая часть пути — избавление от дробей. Осталась вторая. Не менее важная!

        Всё просто, но… Пришло время открыть вам горькую правду. Успешное решение дробных уравнений этого урока вовсе не гарантирует успех в решении всех остальных примеров этой темы. Даже очень простых, подобных этим. К сожалению…

        Но об этом — дальше.)

Решение уравнений умножением

Неизвестная величина может быть связана с известной величиной не только знаком + или -, но может быть разделена на какую-нибудь величину, как в этом уравнении: $\frac{x}{a} = b$.

Здесь решение не может быть найдено, как в предыдущих примерах, переносом члена уравнения. Но если оба члена уравнения умножить на a, уравнение примет вид
         $x = ab.$

То есть, знаменатель дроби в левой части сокращается. Это может быть доказано свойствами дробей.

Так, $x = \frac{ax}{a} = \frac{3x}{3} = \frac{(a + b)x}{a + b} = \frac{dx + 5x}{d + 5}$. Для каждого из этих примеров, x умножается и делится на одну и ту же величину, и такое действие не изменяет значения величин. Поэтому,

Когда неизвестная величина разделена на известную величину, уравнение решается путем умножения каждой стороны на эту известную величину.

Те же самые переносы должны быть сделаны в этом случае, как и в предыдущих примерах. Однако надо помнить, что умножать необходимо каждый член уравнения.

Пример 1. Решите уравнение      $\frac{x}{c} + a = b + d$
Умножаем обе стороны на      $c$
Произведение будет        $x + ac = bc + cd$
И         $x = bc + cd — ac$.

Пример 1. Решите уравнение      $\frac{x}{a+b} + d = h$
Умножаем на $a + b$      $x + ad + bd = ah + bh$.
И         $x = ag + bh — ad — bd.$

Когда неизвестное значение находится в знаменателе дроби, уравнение решается похожим способом, то есть умножением уравнения на знаменатель.

Пример 3. Решите уравнение      $\frac{6}{10-x} + 7 = 8$
Умножая на $10 — x$       $6 + 70 — 7x = 80 — 8x$
Тогда          $x = 4$.

Хотя это и не обязательно, но часто очень удобно избавиться от знаменателя дроби, состоящего только из известных величин. Это можно сделать, похожим способом, когда избавляются от знаменателя, включающего в себя неизвестную величину.

Возьмем для примера      $\frac{x}{a} = \frac{d}{b} + \frac{h}{c}$
Умножаем на a      $x = \frac{ad}{b} + \frac{ah}{c}$
Умножаем на b      $bx = ad + \frac{abh}{c}$
Умножаем на c      $bcx = acd + abh$.

Или, мы можем умножить на произведение всех знаменателей сразу.

В этом же самом уравнении      $\frac{x}{a} = \frac{d}{b} + \frac{h}{c}$
Умножаем члены на abc      $\frac{abcx}{a} = \frac{abcd}{b} + \frac{abch}{c}$

После сокращения каждого одинакового значения в одной дроби, получим      $bcx = acd + abh$, как и в предыдущем варианте. Отсюда,

В уравнении можно избавиться от дробей, умножая каждую сторону уравнения на все знаменатели.

При избавлении от дробей в уравнении необходимо соблюдать правильность написания знаков и коэффициентов каждой дроби в процессе раскрытия скобок

Уравнение      $\frac{a — d}{x} = c — \frac{3b — 2hm — 6n}{r}$ является
равным этому уравнению      $ar — dr = crx -3bx + 2hmx + 6nx$.

Область определения выражения под корнем

Среди всех иррациональных уравнений и неравенств, содержащих корень в знаменателе дроби, можно, в первую очередь, выделить те, которые содержат и , или подобные иррациональные выражения. Эти иррациональные уравнения аналогичны рациональным уравнениям из §II.3.

Задача заключается в выделении полного квадрата выражения . И перехода к квадратному уравнению с новой переменной.

Затем нужно выделить те уравнения и неравенства, где всю иррациональную дробь можно заменить на новую переменную, например, в уравнении:

Можно ввести замену и получить уравнение:t + 2/t = 3

Еще можно выделить уравнения и неравенства, в которых можно преобразовать дроби, содержащие корень, за счет различных алгебраических преобразований, среди которых наиболее популярна разность квадратов и нередко встречаются делители 1.

За счет этих преобразований нередко удается избавиться от иррациональности в знаменателе. Например уравнение:

За счет использования формулы разности квадратов в числителе дроби превращается в:

Если к уравнению или неравенству не удается применить ни один из описанных выше подходов, тогда, чаще всего, решение следует начинать с приведения всех слагаемых к общему знаменателю.

Причем если знаменатель содержит только корни, то его можно отбросить даже при решении неравенств, так как он является положительным. Например в неравенстве:

После приведения к общему знаменателю получим знаменатель , который можно отбросить и решать далее неравенство:

В некоторых простых случаях, особенно когда имеется одна дробь под знаком корня, предпочтительнее сначала возвести в квадрат, а потом приводить к общему знаменателю. (Приведение к общему знаменателю должно сопровождаться его выделением из под корня, что есть не вполне корректная операция. )

Внимание ловушка! Будьте внимательны при расчете ОДЗ уравнений и неравенств, содержащих дроби и корни:

  1. ОДЗ корня в знаменателе задается неравенством “Подкоренное выражение > 0”, а не “Подкоренное выражение ³ 0”, например в неравенстве:
    ОДЗ будет x О ( 0 ; 6 ), а не x О [ 0 ; 6 ].
  2. ОДЗ дроби под корнем, , отличается от ОДЗ отношения корней, , в первом случае ОДЗ задается системой неравенства во втором – системойЭто объясняется тем, что если числитель и знаменатель отрицательны, то сама дробь положительна и корень извлечь из нее можно, но при этом ни из числителя, ни из знаменателя корень извлечь нельзя. (И это несмотря на то, что при преобразовании выражений эти два выражения обычно считаются эквивалентными.) Например, ОДЗ для выражения будет , а для ОДЗ для будетx О ( 0 ; Ґ ).
  3. Отбрасывая знаменатель не забывайте, что он все таки влияет на ОДЗ.

Внимательными нужно быть и при расчете ДУ, возникающего при возведении в квадрат дробей и произведений многочленов.

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Предварительные навыки

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5.

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x, значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.


Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

8 + 2

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

8 + 2 = 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

2 = 10 − 8

Мы выразили число 2 из равенства 8 + 2 = 10. Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8. Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

или

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

8 + 2 = 10

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

8 = 10 − 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

8 + 2 = 10

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

10 = 8 + 2


Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

8 = 6 + 2

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

8 − 2 = 6

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

2 = 8 − 6


Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Вернем получившееся равенство  в первоначальное состояние:

3 × 2 = 6

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3


Пример 4. Рассмотрим равенство 

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

15 = 3 × 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3


Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Чтобы выразить число 2, мы поступили следующим образом:

2 = 10 − 8

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

8 + x = 10

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + = 10, а переменная x берет на себя роль так называемого неизвестного слагаемого

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + = 10. Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10. Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

2 = 10 − 8

А сейчас, чтобы найти неизвестное слагаемое x, мы должны из суммы 10 вычесть известное слагаемое 8:

x = 10 − 8

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

x = 2

Мы решили уравнение. Значение переменной x равно 2. Для проверки значение переменной x отправляют в исходное уравнение 8 + = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

x + 2 = 10

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x, нужно из суммы 10 вычесть известное слагаемое 2

x = 10 − 2

x = 8


Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Чтобы выразить число 8, мы поступили следующим образом:

8 = 6 + 2

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

x − 2 = 6

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6. Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x, мы должны к разности 6 прибавить вычитаемое 2

x = 6 + 2

Если вычислить правую часть, то можно узнать чему равна переменная x

x = 8


Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

8 − x = 6

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

x = 8 − 6

Вычисляем правую часть и находим значение x

x = 2


Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Чтобы выразить число 3 мы поступили следующим образом:

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

x × 2 = 6

В этом случае переменная x берет на себя роль неизвестного множимого.

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6. Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x, нужно произведение 6 разделить на множитель 2.

Вычисление правой части позволяет нам найти значение переменной x

x = 3

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x.

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6. Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства  позволяет узнать чему равно x

x = 2

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18. Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Отсюда .

Решим уравнение × 3 = 27. Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Отсюда .


Вернемся к четвертому примеру из предыдущей темы, где в равенстве  требовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Чтобы выразить число 15 мы поступили следующим образом:

15 = 3 × 5

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве  вместо числа 15 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного делимого.

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства . Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x, нужно частное 3 умножить на делитель 5

x = 3 × 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x.

x = 15


Теперь представим, что в равенстве  вместо числа 5 располагается переменная x.

В этом случае переменная x берет на себя роль неизвестного делителя.

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства .  Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x, нужно делимое 15 разделить на частное 3

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x.

x = 5

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма


Компонентами вычитания являются уменьшаемое, вычитаемое и разность


Компонентами умножения являются множимое, множитель и произведение


Компонентами деления являются делимое, делитель и частное

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

x = 60 − 45

Вычислим правую часть, получим значение x равное 15

x = 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение 

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

При этом слагаемое 2x содержит переменную x. После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Вычислим правую часть получившегося уравнения:

Мы получили новое уравнение . Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, — множитель, 4 — произведение

При этом переменная x является не просто множителем, а неизвестным множителем

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Вычислим правую часть, получим значение переменной x

Для проверки найденный корень отправим в исходное уравнение  и подставим вместо x

Получили верное числовое равенство. Значит уравнение решено правильно.


Пример 3. Решить уравнение 3+ 9+ 16= 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Имеем дело с компонентами умножения. 28 — множимое, — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Отсюда x равен 2


Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56, мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56. Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3+ 9+ 16= 56 мы нашли корень равный 2. Подставим этот корень сначала в уравнение 3+ 9+ 16= 56, а затем в уравнение 28= 56, которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Согласно порядку действий, в первую очередь выполняется умножение:

Подставим корень 2 во второе уравнение 28= 56

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3+ 9+ 16= 56 и 28= 56 действительно являются равносильными.

Для решения уравнения 3+ 9+ 16= 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28= 56, которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.


Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

и аналогично:

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение

Вычтем из обеих частей уравнения число 10

Приведем подобные слагаемые в обеих частях:

Получили уравнение 5= 10. Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x, нужно произведение 10 разделить на известный сомножитель 5.

Отсюда .

Вернемся к исходному уравнению  и подставим вместо x найденное значение 2

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение мы вычли из обеих частей уравнения число 10. В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения  так же равен 2


Пример 2. Решить уравнение 4(+ 3) = 16

Раскроем скобки в левой части равенства:

Вычтем из обеих частей уравнения число 12

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 4x, а в правой части число 4

 

 

Получили уравнение 4= 4. Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x, нужно произведение 4 разделить на известный сомножитель 4

Отсюда 

Вернемся к исходному уравнению 4(+ 3) = 16 и подставим вместо x найденное значение 1

 

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(+ 3) = 16 мы вычли из обеих частей уравнения число 12. В результате получили равносильное уравнение 4= 4. Корень этого уравнения, как и уравнения 4(+ 3) = 16 так же равен 1


Пример 3. Решить уравнение

Раскроем скобки в левой части равенства:

Прибавим к обеим частям уравнения число 8

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 2x, а в правой части число 9

В получившемся уравнении 2= 9 выразим неизвестное слагаемое x

 

Отсюда 

Вернемся к исходному уравнению  и подставим вместо x найденное значение 4,5

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение  мы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения  так же равен 4,5


Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Получается верное равенство. Значит число 2 действительно является корнем уравнения .

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Получилось уравнение 12 = 9x − 3x. Приведем подобные слагаемые в правой части данного уравнения:

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда = 2. Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3= 9x и 3x − 9= −12. В этот раз в уравнении 12 + 3= 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса


Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение 

При решении уравнений, содержащих дробные выражения, сначала  принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

В результате останется простейшее уравнение

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Вернемся к исходному уравнению   и подставим вместо x найденное значение 4

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение . Корень этого уравнения, как и уравнения  равен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение , мы умножили обе части на множитель 8 и получили следующую запись:

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения  на множитель 8 желательно переписать следующим образом:


Пример 2. Решить уравнение 

Умнóжим обе части уравнения на 15

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Перепишем то, что у нас осталось:

Раскроем скобки в правой части уравнения:

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Приведем подобные слагаемые в обеих частях, получим

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда 

Вернемся к исходному уравнению   и подставим вместо найденное значение 5

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15. Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x. Корень этого уравнения, как и уравнения  равен 5. Значит эти уравнения равносильны.


Пример 3. Решить уравнение 

Умнóжим обе части уравнения на 3

В левой части можно сократить две тройки, а правая часть будет равна 18

Останется простейшее уравнение . Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда 

Вернемся к исходному уравнению   и подставим вместо найденное значение 9

Получается верное числовое равенство. Значит уравнение решено правильно.


Пример 4. Решить уравнение 

Умнóжим обе части уравнения на 6

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Сократим в обеих частях уравнениях то, что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки в обеих частях уравнения:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x, сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Приведем подобные слагаемые в обеих частях:

Теперь найдем значение переменной x. Для этого разделим произведение 28 на известный сомножитель 7

Отсюда = 4.

Вернемся к исходному уравнению  и подставим вместо x найденное значение 4

Получилось верное числовое равенство. Значит уравнение решено правильно.


Пример 5. Решить уравнение 

Раскроем скобки в обеих частях уравнения там, где это можно:

Умнóжим обе части уравнения на 15

Раскроем скобки в обеих частях уравнения:

Сократим в обеих частях уравнения, то что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки там, где это можно:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Приведем подобные слагаемые в обеих частях уравнения:

Найдём значение x

В получившемся ответе можно выделить целую часть:

Вернемся к исходному уравнению и подставим вместо x найденное значение 

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A, а правую часть равенства в переменную B

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Значение переменной А равно . Теперь найдем значение переменной B. То есть значение правой части нашего равенства. Если и оно равно , то уравнение будет решено верно

Видим, что значение переменной B, как и значение переменной A равно . Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30+ 14+ 14 = 70− 40+ 42. Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Подставим найденное значение 2 вместо x в исходное уравнение:

Теперь попробуем разделить все слагаемые уравнения 30+ 14+ 14 = 70− 40+ 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Выполним сокращение в каждом слагаемом:

Перепишем то, что у нас осталось:

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Получили корень 2. Значит уравнения 15+ 7+ 7 = 35x − 20+ 21 и 30+ 14+ 14 = 70− 40+ 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7= 14, нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Этим методом мы тоже будем пользоваться часто.


Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1.

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение . Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Приведем подобные слагаемые:

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения . Это есть произведение минус единицы и переменной x

То есть минус, стоящий перед переменной x, относится не к самой переменной x, а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение  на самом деле выглядит следующим образом:

Имеем дело с компонентами умножения. Чтобы найти х, нужно произведение −5 разделить на известный сомножитель −1.

или разделить обе части уравнения на −1, что еще проще

Итак, корень уравнения  равен 5. Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения  на минус единицу:

После раскрытия скобок в левой части образуется выражение , а правая часть будет равна 10

Корень этого уравнения, как и уравнения  равен 5

Значит уравнения  и  равносильны.


Пример 2. Решить уравнение 

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение . Для этого умнóжим обе части данного уравнения на −1.

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения  на −1 можно записать подробно следующим образом:

либо можно просто поменять знаки всех компонентов:

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения  на −1, мы получили уравнение . Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.


Пример 3. Решить уравнение 

Умнóжим обе части уравнения на −1. Тогда все компоненты поменяют свои знаки на противоположные:

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые: 


Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение . Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Приведем подобные слагаемые в левой части:

Прибавим к обеим частям 77, и разделим обе части на 7


Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении  мы произведение 10 делили на известный сомножитель 2

Но если в уравнении  обе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет  равна 5

Уравнения вида  мы решали выражая неизвестное слагаемое:

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении слагаемое 4 можно перенести в правую часть, изменив знак:

Далее разделить обе части на 2

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда .

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

В случае с уравнениями вида  удобнее делить произведение на известный сомножитель. Сравним оба решения:

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.


Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9.

В уравнении x(x + 9) = 0 нужно было найти такое значение при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9), которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

x = 0 или x + 9 = 0

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0. Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение + 9 = 0. Несложно догадаться, что корень этого уравнения равен −9. Проверка показывает, что корень верный:

−9 + 9 = 0


Пример 2. Решить уравнение

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2). А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2)).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Подставляем по-очереди найденные значения в исходное уравнение  и убеждаемся, что при этих значениях левая часть равняется нулю:


Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение 

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14. Это равенство будет получаться при любом x


Пример 2. Решить уравнение 

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x


Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение не имеет корней, поскольку при любом значении x, левая часть уравнения не будет равна правой части. Например, пусть . Тогда уравнение примет следующий вид

Пусть


Пример 2. Решить уравнение 

Раскроем скобки в левой части равенства:

Приведем подобные слагаемые:

Видим, что левая часть не равна правой части. И так будет при любом значении y. Например, пусть y = 3.


Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения  определить расстояние, нужно выразить переменную s.

Умнóжим обе части уравнения  на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении левую и правую часть поменяем местами:

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения  определить время. Для этого нужно выразить переменную t.

Умнóжим обе части уравнения на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении v × t = s обе части разделим на v

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

v = 50 км/ч

А расстояние равно 100 км

s = 100 км

Тогда буквенное уравнение примет следующий вид

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t. Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Затем разделить обе части на 50


Пример 2. Дано буквенное уравнение . Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Разделим обе части уравнения на b

Теперь, если нам попадется уравнение вида a + bx = c, то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10. Оно похоже на буквенное уравнение a + bx = c.  Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0), поскольку деление на ноль на допускается.


Пример 3. Дано буквенное уравнение . Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x, сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

В левой части вынесем за скобки множитель x

Разделим обе части на выражение a − b

В левой части числитель и знаменатель можно сократить на a − b. Так окончательно выразится переменная x

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d), то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(+ 4). Оно похоже на уравнение a(x − c) = b(x + d). Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(+ 4) значения параметров a, b, c, d. Это позволит нам не ошибиться при подстановке:

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0). Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d). В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:


Пример 4. Дано буквенное уравнение . Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Умнóжим обе части на a

В левой части x вынесем за скобки

Разделим обе части на выражение (1 − a)


Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2(x + 3) = 16. Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2+ 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2= 16 − 6. Вычислим правую часть, получим 2= 10. Чтобы найти x, разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2(x + 3) = 16 является линейным. Оно свелось к уравнению 2= 10, для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2= 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x. Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0, то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax b примет вид 0= 0. При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0, то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0= 5. Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0, и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3, и b равно какому-нибудь числу, скажем числу 6, то уравнение  примет вид .
Отсюда .

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0. Это то же самое уравнение, что и ax = b, но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7− 77 = 0. Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

Задания для самостоятельного решения

Задание 1. Используя метод переноса слагаемого, решите следующее уравнение:

Задание 2. Используя метод прибавления (или вычитания) числа к обеим частям, решите следующее уравнение:

Задание 3. Решите уравнение:

Задание 4. Решите уравнение:

Задание 5. Решите уравнение:

Задание 6. Решите уравнение:

Задание 7. Решите уравнение:

Задание 8. Решите уравнение:

Задание 9. Решите уравнение:

Задание 10. Решите уравнение:

Задание 11. Решите уравнение:

Задание 12. Решите уравнение:

Задание 13. Решите уравнение:

Задание 14. Решите уравнение:

Задание 15. Решите уравнение:

Задание 16. Решите уравнение:

Задание 17. Решите уравнение:

Задание 18. Решите уравнение:

Задание 19. Решите уравнение:

Задание 20. Решите уравнение:

Задание 21. Решите уравнение:

Задание 22. Решите уравнение:

Задание 23. Решите уравнение:

Задание 24. Решите уравнение:

Задание 25. Решите уравнение:

Задание 26. Решите уравнение:

Задание 27. Решите уравнение:

Задание 28. Решите уравнение:

Задание 29. Решите уравнение:

Задание 30. Решите уравнение:

Задание 31. Решите уравнение:

Задание 32. В следующем буквенном уравнении выразите переменную x:

Задание 33. В следующем буквенном уравнении выразите переменную x:

Задание 34. В следующем буквенном уравнении выразите переменную x:

Задание 35. В следующем буквенном уравнении выразите переменную x:

Задание 36. В следующем буквенном уравнении выразите переменную y:

Задание 37. В следующем буквенном уравнении выразите переменную z:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Навигация по записям

5 класс уравнения с дробями

Вы искали 5 класс уравнения с дробями? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и 6 класс уравнения с дробями примеры, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «5 класс уравнения с дробями».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как 5 класс уравнения с дробями,6 класс уравнения с дробями примеры,7 класс как решать уравнения с дробями,дроби с х как решать,дробное уравнение,дробное уравнение как решать,дробные уравнения,дробные уравнения как решать,дробные уравнения как решить,как в уравнении избавиться от дроби,как в уравнении избавиться от знаменателя дроби,как избавиться от дроби в уравнении,как избавиться от знаменателя в уравнении,как найти корень дробного уравнения,как найти корень уравнения с дробями,как находить корень уравнения с дробями,как решать дроби с х,как решать дробное уравнение,как решать дробные уравнения,как решать уравнение дробное,как решать уравнение с дробью,как решать уравнение с дробями,как решать уравнения 7 класс по алгебре с дробями,как решать уравнения с дробью,как решать уравнения с дробями 5 класс,как решать уравнения с дробями 9 класс,как решать уравнения с дробями десятичными,как решаются дробные уравнения,как решаются уравнения с дробями,как решить дробное уравнение,как решить уравнение 7 класс по алгебре с дробями,как решить уравнение с дробями десятичными,найти корень уравнения с дробями,примеры уравнение с дробями 5 класс,решение дробного уравнения,решение дробных уравнений,решение уравнений с дробями алгебра 7 класс,решения дробных уравнений,решить дробное уравнение,решить уравнение с дробями 7 класс по алгебре,уравнение как решать с дробью,уравнение с дробью как решать,уравнение с дробями 5 класс примеры,уравнение с дробями десятичными,уравнения 5 класс с дробями,уравнения с дробью как решать,уравнения с дробями 5 класс,уравнения с дробями примеры 6 класс. На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и 5 класс уравнения с дробями. Просто введите задачу в окошко и нажмите «решить» здесь (например, 7 класс как решать уравнения с дробями).

Где можно решить любую задачу по математике, а так же 5 класс уравнения с дробями Онлайн?

Решить задачу 5 класс уравнения с дробями вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

Отрицательные дроби. Действия с отрицательными дробями

Отрицательные дроби — это дроби, числитель или знаменатель которых является отрицательным числом.

Отрицательные дроби могут быть записаны по-разному. Например, рассмотрим два частных:

-2 : 7    и    2 : (-7),

каждое из них равно отрицательному числу

Каждое из данных частных можно записать в виде дроби, в которой дробная черта заменит знак деления:

-2 : 7 = -2    и    2 : (-7) = 2 .
7-7

Следовательно, при записи отрицательных дробей знак минус можно ставить перед дробью, перед числителем или перед знаменателем:

Сложение и вычитание

Чтобы сложить две отрицательные дроби, надо сначала привести их к общему знаменателю, а затем сложить числители по правилам сложения рациональных чисел.

Пример.

Приведём дроби к общему знаменателю:

2 +  (-1)  = -8 + -5 .
542020

Теперь сложим числители дробей по правилам сложения рациональных чисел:

-8 + -5 = -8 + (-5) = -13 = 13 .
2020202020

Таким образом:

2 +  (-1)  = -8 + -5 =
542020

-8 + (-5) = -13 = 13 .
202020

Для вычисления разности двух отрицательных дробей можно вычитание заменить сложением, взяв уменьшаемое со свои знаком, а вычитаемое с противоположным.

Пример.

5 — (-11)  = 5 + (+11)  =
12121212

5 + 11 = -5 + 11 = 6 .
12121212

Сложение и вычитание отрицательных дробей производится по правилам сложения обыкновенных дробей, то есть сначала идёт приведение к общему знаменателю, если это нужно, а затем производятся вычисления.

Умножение и деление

Чтобы найти произведение двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем перемножить дроби по правилу умножения дробей.

Пример.

2 · (-4)  = -2 · -4 = -2 · (-4) = 8 .
35353 · 515

Так как при умножении двух отрицательных чисел результат будет положительным, то данный пример можно решить сразу, отбросив оба минуса:

2 · (-4)  = 2 · 4 = 2 · 4 = 8 .
35353 · 515

При умножении отрицательной дроби на положительную результат будет отрицательным.

Пример.

2 · 4 = 2 · 4 = 8 .
353 · 515

К отрицательным дробям можно применять любые законы умножения. Поэтому предыдущий пример можно переписать так:

4 ·  (-2)  = 4 · 2 = 8 .
535 · 315

То есть при умножении положительной дроби на отрицательную результат будет отрицательным.

Чтобы найти частное двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем произвести вычисления.

Пример.

2 : (-4)  = -2 : -4 =
3535

-2 · 5 = -10 = 10 .
3 · (-4)-1212

Знак результата умножения или деления отрицательных дробей можно узнать по правилам знаков целых чисел.


Начало алгебры
Урок 14: Решение линейных уравнений

Цели обучения


По завершении этого руководства вы сможете:
  1. Решите линейные уравнения, используя сочетание упрощения и использования различные свойства равенства.

Введение



В Урок 12: Свойство сложения равенства мы рассмотрели, используя свойство сложения равенство чтобы помочь нам решить линейные уравнения. В учебнике 13: Свойство умножения равенства , которое мы рассмотрели, используя свойство умножения равенства, а также положить эти две идеи все вместе. В этом уроке мы будем решать линейные уравнения, используя комбинация упрощения и различных свойств равенства.

Умение решать линейные уравнения откроет дверь к возможности работать с множеством других типов проблем, с которыми вы столкнетесь в ваш различные классы алгебры. Очень важно иметь это концепция вниз, прежде чем двигаться вперед. Убедитесь, что вы не смакуете тайна поиска вашей переменной, но проработайте некоторые из этих типов проблем, пока у вас не будет этой концепции.

Учебник




Стратегия решения линейного Уравнение

Обратите внимание, что ваш учитель или книга ты использование, возможно, сформулировало эти шаги немного иначе, чем я, но Это все сводится к одной и той же концепции — включите свою переменную один сторона и все остальное с другой, используя обратные операции.

Шаг 1. При необходимости упростите каждую сторону.


Шаг 2: Используйте Доп. / Под. Свойства для переместить переменную срок в одну сторону и все остальные условия в другую сторону.

Шаг 3: Используйте Mult./Div. Свойства для удалить любые значения которые находятся перед переменной.

Шаг 4. Проверьте свой ответ.

Я считаю, что это самый быстрый и Самый простой способ приблизиться к линейным уравнениям.


Пример 1 : Решите уравнение.


* Инверсия доп.10 является суб. 10

* Инверсная по отношению к мульт. на -3 — это div. по -3


Будьте осторожны, начиная со строки 4 к строке 5. Да, есть отрицательный знак. Но операция между -3 и x — это умножение, а не вычитание. Итак, если бы вы Добавлять 3 в обе стороны, вы получите -3 x + 3 вместо желаемых x .

Если вы вернете 1 вместо x в исходной задаче, вы увидим, что 1 это решение, которое мы ищем.



Пример 2 : Решите уравнение.

* Получить все условия x с одной стороны

* Инверсия доп.3 является суб. 3

* Инверсная по отношению к мульт. на -1 — это div. по -1


Если вы вернете 9 вместо x в исходной задаче, вы увидим, что 9 — это то решение, которое мы ищем.



Пример 3 : Решите уравнение..

* Чтобы избавиться от дроби,
мульт. с обеих сторон ЖК-дисплеем 4

* Получить все условия x на одной стороне

* Инверсия доп. 2 является суб. 2

* Инверсная по отношению к мульт.на -3 — это div. по -3


Если вы вернете 4/3 вместо x в исходной задаче вы увидите, что 4/3 это решение, которое мы ищем.



Пример 4 : Решите уравнение.

* Чтобы избавиться от десятичных знаков,
mult. обе стороны по 100

* Получить все условия и на одной стороне

* Обратное от sub. 20 добавлено 20

* Инверсная по отношению к мульт. на 20 дел.по 20


Если вы вставите 3/2 обратно для y дюйма оригинал проблема вы увидите, что 3/2 — это решение, которое мы ищем.



Противоречие

Противоречие — это уравнение с одной переменной, которая не имеет решения.



Пример 5 : Решите уравнение.

* Получить все условия x на одной стороне


Куда делась наша переменная, x, ??? Он исчез на нас.Также обратите внимание, как мы получили оператор FALSE , -1 не равно 12. Это не означает, что x = 12 или x = -1.

Когда ваша переменная падает из И вы закончите с ложным утверждением, то после всей вашей тяжелой работы есть НЕТ РЕШЕНИЕ.

Итак, ответ — нет решения.




Личность

Идентичность — это уравнение с одной переменной
который имеет все числа как решение.



Пример 6 : Решите уравнение.

* Получить все условия x на одной стороне


На этот раз, когда наша переменная выпал, мы закончил с ИСТИННЫМ заявлением.Когда бы это ни случилось, твой ответ ВСЕ РЕАЛЬНЫЕ ЧИСЛА.

Итак, ответ — все действительные числа .




Практические задачи


Это практические задачи, которые помогут вам следующий уровень. Это позволит вам проверить и понять, понимаете ли вы эти типы проблем. Math работает так же, как что-нибудь иначе, если вы хотите добиться успеха в этом, вам нужно практиковаться Это. Даже лучшие спортсмены и музыканты получали помощь и много практиковаться, практиковаться, практиковаться, чтобы стать лучше в своем виде спорта или инструменте. На самом деле не бывает слишком много практики.

Чтобы получить максимальную отдачу от них, вы должны работать проблема на свой собственный, а затем проверьте свой ответ, щелкнув ссылку для ответ / обсуждение для этой проблемы .По ссылке вы найдете ответ а также любые шаги, которые позволили найти этот ответ.

Практика Задачи 1a — 1d: Решите данное уравнение.

Нужна дополнительная помощь по этим темам?





Последний раз редактировал Ким Сьюард 26 июля 2011 г.
Авторские права на все содержание (C) 2001 — 2010, WTAMU и Kim Seward. Все права защищены.

Решение уравнений с очисткой дробей

Результаты обучения

  • Используйте наименьший общий знаменатель, чтобы исключить дроби из линейного уравнения перед его решением
  • Решите уравнения с дробями, которые требуют нескольких шагов

Вы можете чувствовать себя ошеломленным, когда видите дроби в уравнении, поэтому мы собираемся показать метод решения уравнений с дробями, в котором вы используете общий знаменатель, чтобы исключить дроби из уравнения.Результатом этой операции будет новое уравнение, эквивалентное первому, но без дробей.

Обратите внимание на то, что каждый член в уравнении умножается на наименьший общий знаменатель. Вот что отличает его от оригинала!

ПРИМЕР

Решение: [латекс] \ frac {1} {8} x + \ frac {1} {2} = \ frac {1} {4} [/ latex].

Решение:

[латекс] \ frac {1} {8} x + \ frac {1} {2} = \ frac {1} {4} \ quad {LCD = 8} [/ latex]
Умножьте обе части уравнения на этот ЖК-дисплей, [латекс] 8 [/ латекс].Это очищает фракции. [латекс] \ color {красный} {8 (} \ frac {1} {8} x + \ frac {1} {2} \ color {red} {)} = \ color {red} {8 (} \ frac {1} {4} \ color {red} {)} [/ latex]
Использовать распределительную собственность. [латекс] 8 \ cdot \ frac {1} {8} x + 8 \ cdot \ frac {1} {2} = 8 \ cdot \ frac {1} {4} [/ латекс]
Упростите — и заметьте, никаких дробей! [латекс] x + 4 = 2 [/ латекс]
Решите, используя общую стратегию решения линейных уравнений. [латекс] x + 4 \ color {red} {- 4} = 2 \ color {red} {- 4} [/ latex]
Упростить. [латекс] x = -2 [/ латекс]
Проверить: Пусть [латекс] x = -2 [/ латекс]

[латекс] \ frac {1} {8} x + \ frac {1} {2} = \ frac {1} {4} [/ latex]

[латекс] \ frac {1} {8} (\ color {red} {- 2}) + \ frac {1} {2} \ stackrel {\ text {?}} {=} \ Frac {1} { 4} [/ латекс]

[латекс] \ frac {-2} {8} + \ frac {1} {2} \ stackrel {\ text {?}} {=} \ Frac {1} {4} [/ latex]

[латекс] \ frac {-2} {8} + \ frac {4} {8} \ stackrel {\ text {?}} {=} \ Frac {1} {4} [/ latex]

[латекс] \ frac {2} {8} \ stackrel {\ text {?}} {=} \ Frac {1} {4} [/ latex]

[латекс] \ frac {1} {4} = \ frac {1} {4} \ quad \ checkmark [/ latex]

В последнем примере наименьший общий знаменатель был [латекс] 8 [/ латекс].Теперь ваша очередь найти ЖК-дисплей и очистить дроби, прежде чем решать эти линейные уравнения.

Обратите внимание, что после того, как мы очистили уравнение дробей, оно было похоже на те, которые мы решили ранее в этой главе. Мы изменили проблему на ту, которую уже знали, как решить!

Решите уравнения, очистив знаменатели

  1. Найдите наименьший общий знаменатель для всех дробей в уравнении.
  2. Умножьте обе части уравнения на этот ЖК-дисплей.Это очищает фракции.
  3. Выделите переменные члены с одной стороны и постоянные члены с другой.
  4. Упростите обе стороны.
  5. Используйте свойство умножения или деления, чтобы коэффициент переменной был равен [latex] 1 [/ latex].

Вот пример с тремя переменными членами. После того, как вы очистите дроби с помощью ЖК-дисплея, вы упростите три члена переменной, а затем выделите переменную.

Пример

Решить: [латекс] 7 = \ frac {1} {2} x + \ frac {3} {4} x- \ frac {2} {3} x [/ latex].

Показать решение

Решение:
Мы хотим очистить дроби, умножив обе части уравнения на ЖК-дисплей всех дробей в уравнении.

Найдите наименьший общий знаменатель всех дробей в уравнении. [латекс] 7 = \ frac {1} {2} x + \ frac {3} {4} x- \ frac {2} {3} x \ quad {LCD = 12} [/ latex]
Умножьте обе части уравнения на [латекс] 12 [/ латекс]. [латекс] \ color {red} {12} (7) = \ color {red} {12} \ cdot (\ frac {1} {2} x + \ frac {3} {4} x- \ frac {2 } {3} x) [/ латекс]
Распространить. [латекс] 12 (7) = 12 \ cdot \ frac {1} {2} x + 12 \ cdot \ frac {3} {4} x-12 \ cdot \ frac {2} {3} x [/ латекс ]
Упростите — и заметьте, никаких дробей! [латекс] 84 = 6x + 9x-8x [/ латекс]
Объедините похожие термины. [латекс] 84 = 7x [/ латекс]
Разделить на [латекс] 7 [/ латекс]. [латекс] \ frac {84} {\ color {red} {7}} = \ frac {7x} {\ color {red} {7}} [/ latex]
Упростить. [латекс] 12 = х [/ латекс]
Проверить: Пусть [латекс] x = 12 [/ латекс].
[латекс] 7 = \ frac {1} {2} x + \ frac {3} {4} x- \ frac {2} {3} x [/ латекс]

[латекс] 7 \ stackrel {\ text {?}} {=} \ Frac {1} {2} (\ color {red} {12}) + \ frac {3} {4} (\ color {red} {12}) — \ frac {2} {3} (\ color {red} {12}) [/ latex]

[латекс] 7 \ stackrel {\ text {?}} {=} 6 + 9-8 [/ латекс]

[латекс] 7 = 7 \ четырехугольник \ галочка [/ латекс]

А теперь попробуйте аналогичную задачу. Очистите дроби, упростите и решите.

Внимание!

Одна из самых распространенных ошибок при очистке дробей — это забвение умножения ОБЕИХ частей уравнения на ЖК-дисплей. Если ваш ответ не проходит, убедитесь, что вы умножили обе части уравнения на ЖК-дисплей.

В следующем примере у нас будут переменные и дроби с обеих сторон уравнения. После того, как вы очистите дроби с помощью ЖК-дисплея, вы увидите, что это уравнение похоже на уравнения с переменными с обеих сторон, которые мы решили ранее.Не забудьте выбрать переменную сторону и постоянную сторону, чтобы помочь вам организовать свою работу.

Пример

Решение: [latex] x + \ frac {1} {3} = \ frac {1} {6} x- \ frac {1} {2} [/ latex].

Показать решение

Решение:

Найдите на ЖК-дисплее все дроби в уравнении. [латекс] x + \ frac {1} {3} = \ frac {1} {6} x- \ frac {1} {2}, \ quad {LCD = 6} [/ latex]
Умножьте обе стороны на ЖК-дисплей. [латекс] \ color {red} {6} (x + \ frac {1} {3}) = \ color {red} {6} (\ frac {1} {6} x- \ frac {1} {2 }) [/ latex]
Распространить. [латекс] 6 \ cdot {x} +6 \ cdot \ frac {1} {3} = 6 \ cdot \ frac {1} {6} x-6 \ cdot \ frac {1} {2} [/ латекс ]
Упростите — больше никаких дробей! [латекс] 6x + 2 = x-3 [/ латекс]
Вычтите [латекс] x [/ латекс] с обеих сторон. [латекс] 6x- \ color {красный} {x} + 2 = x- \ color {красный} {x} -3 [/ латекс]
Упростить. [латекс] 5x + 2 = -3 [/ латекс]
Вычтите 2 с обеих сторон. [латекс] 5x + 2 \ color {red} {- 2} = — 3 \ color {red} {- 2} [/ latex]
Упростить. [латекс] 5x = -5 [/ латекс]
Разделить на [латекс] 5 [/ латекс]. [латекс] \ frac {5x} {\ color {red} {5}} = \ frac {-5} {\ color {red} {5}} [/ latex]
Упростить. [латекс] x = -1 [/ латекс]
Проверить: Заменить [латекс] x = -1 [/ латекс].
[латекс] x + \ frac {1} {3} = \ frac {1} {6} x- \ frac {1} {2} [/ latex]

[латекс] (\ color {red} {- 1}) + \ frac {1} {3} \ stackrel {\ text {?}} {=} \ Frac {1} {6} (\ color {red} {-1}) — \ frac {1} {2} [/ latex]

[латекс] (- 1) + \ frac {1} {3} \ stackrel {\ text {?}} {=} — \ frac {1} {6} — \ frac {1} {2} [/ латекс ]

[латекс] — \ frac {3} {3} + \ frac {1} {3} \ stackrel {\ text {?}} {=} — \ frac {1} {6} — \ frac {3} { 6} [/ латекс]

[латекс] — \ frac {2} {3} \ stackrel {\ text {?}} {=} — \ frac {4} {6} [/ latex]

[латекс] — \ frac {2} {3} = — \ frac {2} {3} \ quad \ checkmark [/ latex]

Теперь вы можете попробовать решить уравнение с дробями, у которых переменные находятся по обе стороны от знака равенства.Ответ может быть дробным.

В следующем видео мы показываем еще один пример того, как решить уравнение, которое содержит дроби и переменные по обе стороны от знака равенства.

В следующем примере мы начинаем с уравнения, в котором переменный член заключен в скобки и умножен на дробь. Вы можете очистить дробь, или, если вы используете свойство распределения, оно удалит дробь. Вы понимаете почему?

ПРИМЕР

Решение: [латекс] 1 = \ frac {1} {2} \ left (4x + 2 \ right) [/ latex].

Показать решение

Решение:

[латекс] 1 = \ frac {1} {2} (4x + 2) [/ латекс]
Распространить. [латекс] 1 = \ frac {1} {2} \ cdot4x + \ frac {1} {2} \ cdot2 [/ latex]
Упростить. Теперь дробей нет! [латекс] 1 = 2x + 1 [/ латекс]
Вычтите 1 с обеих сторон. [латекс] 1 \ color {красный} {- 1} = 2x + 1 \ color {красный} {- 1} [/ латекс]
Упростить. [латекс] 0 = 2x [/ латекс]
Разделить на [латекс] 2 [/ латекс]. [латекс] \ frac {0} {\ color {red} {2}} = \ frac {2x} {\ color {red} {2}} [/ latex]
Упростить. [латекс] 0 = x [/ латекс]
Проверить: Пусть [latex] x = 0 [/ latex].
[латекс] 1 = \ frac {1} {2} (4x + 2) [/ латекс]

[латекс] 1 \ stackrel {\ text {?}} {=} \ Frac {1} {2} (4 (\ color {red} {0}) + 2) [/ latex]

[латекс] 1 \ stackrel {\ text {?}} {=} \ Frac {1} {2} (2) [/ латекс]

[латекс] 1 \ stackrel {\ text {?}} {=} \ Frac {2} {2} [/ latex]

[латекс] 1 = 1 \ квадратик \ галочка [/ латекс]

Теперь вы можете попробовать решить уравнение, в котором переменный член в скобках умножен на дробь.

Уравнения и неравенства, исключающие дроби

Ой … что они с тобой сделали?

Когда используется много дробей, есть еще один способ упростить уравнение перед его решением: избавиться от дробей. Сметите их, упакуйте в мешки для мусора и выбросьте в залив. Но не совсем, потому что это мусор. Чтобы избавиться от дробей, мы выбираем полезное число и умножаем обе части уравнения на это число. Число полезно, если при умножении исключаются все дроби.

Плюс, если номер достаточно хорошо справляется с очисткой фракций, может быть, мы увидим, как это работает с нашей спальней.

Пример задачи

Решите уравнение.

Способ 1: Вычтите 2 / 3 с каждой стороны, чтобы затем упростить эту правую сторону.

Способ 2: Найдите на ЖК-дисплее дроби — в данном случае 6. Умножьте левую часть уравнения на 6 и правую часть уравнения на 6, чтобы получить:

Oy .Так много дробей и скобок, что нам лучше упростить эту лоху. К счастью, это упрощается до:

4 + 6 x = 1

Намного лучше. Обратите внимание, что в уравнении больше нет дробей, не говоря уже о том, что скобки тоже пропали, что является приятным бонусом. Теперь вычтите 4 с обеих сторон.

6 x = -3

Таково решение уравнения. В любом случае, мы закончили с небольшой долей, но было приятно хоть какое-то время без них.

Убедитесь, что вы понимаете, что избавление от дробей — это не то же самое, что «упрощение». Когда мы «упрощаем», мы переписываем выражения на каждой стороне знака =, чтобы они были более аккуратными, но мы не меняем значение ни одного выражения. Когда мы исключаем дроби, мы умножаем обе части выражения на одно и то же число и, следовательно, меняем значения обоих выражений, но таким образом, чтобы масштаб оставался сбалансированным. Каждая сторона намного тяжелее. Фактически, нам, вероятно, следует положить все это на более прочный стол.

Решение многоступенчатых линейных уравнений с дробями

Нам нужно более двух операций, чтобы решить линейное уравнение . Использовать обратные операции для отмены каждой операции в обратном порядке.

Если уравнение содержит дроби, умножьте обе части уравнения на наименьший общий знаменатель (ЖК-дисплей) для очистки дробей.

Шаги для решения многоступенчатого уравнения:

Шаг 1 Очистите уравнение дробей.

Шаг 2 Использовать Распределительное свойство чтобы убрать скобки с каждой стороны.

Шаг 3 Объединение похожих терминов с каждой стороны.

Шаг 4 Отменить сложение или вычитание.

Шаг 5 Отменить умножение или деление.

Пример:

Решать 2 у 3 + у 2 знак равно 7 .

Решение

Наименьший общий знаменатель (ЖКД) в этом случае — 6 . Итак, умножьте обе части уравнения на 6 .

6 ( 2 у 3 + у 2 ) знак равно 6 ( 7 )

Использовать распределительный закон в левой части уравнения.

6 ( 2 у 3 ) + 6 ( у 2 ) знак равно 6 ( 7 )

Умножить.

4 у + 3 у знак равно 42

Объедините похожие термины.

7 у знак равно 42

Отменить умножение.Разделите каждую сторону на 7 .

7 у 7 знак равно 42 7

Упрощать.

у знак равно 6

Уравнения с дробями — Полный курс алгебры

24

Очистка фракций

2-й уровень

Чтобы решить уравнение с дробями, мы преобразуем его в уравнение без дробей, которое мы умеем решать.Методика называется очисткой от фракций.

Пример 1. Решите относительно x :

x
3
+ x — 2
5
= 6.

Решение . Очистить следующие дроби:

Умножьте обе части уравнения — каждый член — на НОК знаменателей.Тогда каждый знаменатель разделит на его кратное. Тогда у нас будет уравнение без дробей.

НОК 3 и 5 равно 15. Следовательно, умножьте обе части уравнения на 15.

15 · x
3
+ 15 · x — 2
5
= 15 · 6

Слева распределите по 15 на каждый член.Теперь каждый знаменатель разделится на 15 — вот в чем суть — и мы получим следующее простое уравнение, «очищенное» от дробей:

5 x + 3 ( x -2) = 90.
Легко решается следующим образом:
5 x + 3 x — 6 = 90
8 x = 90 + 6
x = 96
8
= 12.

Мы говорим «умножить» обе части уравнения, но мы пользуемся тем фактом, что порядок, в котором мы умножаем или делим, не имеет значения. (Урок 1.) Поэтому мы сначала разделим НОК на каждый знаменатель и таким образом очистим дроби.

Мы выбираем кратное каждого знаменателя, потому что каждый знаменатель будет тогда его делителем.

Пример 2. Очистите дроби и решите относительно x :

.
x
2
5 x
6
= 1
9

Решение .НОК 2, 6 и 9 равно 18. (Урок 23 по арифметике). Умножьте обе части на 18 — и отмените.

9 x -15 x = 2.

Нет необходимости писать 18. Ученик должен просто взглянуть на и увидеть, что 2 перейдет в 18 девять (9) раз. Таким образом, этот член становится 9 x .

Затем посмотрите и увидите, что 6 будет в 18 три раза (3).Таким образом, этот член становится 3 · −5 x = −15 x .

Наконец, посмотрите и увидите, что 9 переходит в 18 два раза (2). Таким образом, этот член становится 2 · 1 = 2.

Вот очищенное уравнение и его решение:

9 x -15 x = 2
−6 x = 2
x = 2
−6
x = 1
3

Пример 3.Решить относительно x :

½ (5 x — 2) = 2 x + 4.

Решение . Это уравнение с дробью. Очистить дроби путем умножения обеих сторон на 2:

5 x -2 = 4 x + 8
5 x -4 x = 8 + 2
x = 10.

В следующих задачах очистить дроби и решить для x :

Чтобы увидеть каждый ответ, наведите указатель мыши на цветную область.
Чтобы закрыть ответ еще раз, нажмите «Обновить» («Reload»).
Сначала решите проблему самостоятельно!

Задача 1. x
2
x
5
= 3
LCM — это 10.Вот очищенное уравнение и его решение:
5 х 2 х = 30
3 х = 30
х = 10.

При решении любого уравнения с дробями в следующей строке вы пишете —

5 x -2 x = 30

— должно иметь без дробей .

Задача 2. x
6
= 1
12
+ x
8
LCM — это 24.Вот очищенное уравнение и его решение:
4 х = 2 + 3 х
4 x — 3 x = 2
х = 2
Проблема 3. x — 2
5
+ x
3
= x
2
LCM — это 30. Вот очищенное уравнение и его решение:
6 (x -2) + 10 x = 15 х
6 x — 12 + 10 x = 15 х
16 x -15 x = 12
х = 12.

Задача 4. Дробь равна дроби.

x — 1
4
= x
7
LCM — это 28. Вот очищенное уравнение и его решение:
7 ( х — 1) = 4 х
7 x — 7 = 4 х
7 x -4 x = 7
3 х = 7
х = 7
3

Мы видим, что когда единственная дробь равна единственной дроби, тогда уравнение может быть очищено «перекрестным умножением».«

Если
a
b
= c
d
,
, затем
объявление = до н.э. .
Задача 5. x — 3
3
= x -5
2
Вот очищенное уравнение и его решение:
2 ( x — 3) = 3 ( x — 5)
2 x — 6 = 3 х -15
2 x — 3 x = — 15 + 6
х = −9
х = 9
Проблема 6. x — 3
x — 1
= x + 1
x + 2
Вот очищенное уравнение и его решение:
( x — 3) ( x + 2) = ( x — 1) ( x + 1)
x ² — x — 6 = x ² — 1
х = −1 + 6
х = 5
х = −5.
Задача 7. 2 x — 3
9
+ x + 1
2
= x -4
LCM — это 18. Вот очищенное уравнение и его решение:
4 x -6 + 9 x + 9 = 18 х — 72
13 х + 3 = 18 х — 72
13 x — 18 x = — 72 — 3
−5 х = −75
х = 15.
Задача 8. 2
x
3
8 x
= 1
4
LCM — это 8 х . Вот очищенное уравнение и его решение:
16–3 = 2 х
2 х = 13
х = 13
2

2-й уровень

Следующий урок: задачи Word

Содержание | Дом


Сделайте пожертвование, чтобы TheMathPage оставалась в сети.
Даже 1 доллар поможет.


Авторские права © 2021 Лоуренс Спектор

Вопросы или комментарии?

Эл. Почта: [email protected]


Решение рациональных уравнений

Решение рациональных уравнений Вот шаги, необходимые для решения рациональных уравнений:
Шаг 1 : Удалите все дроби. При решении рациональных уравнений у вас есть выбор из двух способов исключить дроби.Опция 1; умножьте всю проблему на наименьший общий знаменатель или ЖКД. Вариант 2; вы можете крестить умножение. Вариант 1 подойдет для любой задачи, но вы можете выполнить перекрестное умножение только в том случае, если у вас есть одна дробь, равная одной дроби, то есть если дроби пропорциональны. Щелкните ссылку, чтобы просмотреть шаги по поиску ЖК-дисплея. Обратите внимание, что при решении рациональных уравнений все дроби должны исчезнуть после первого шага.
Шаг 2 : Упростите полученное уравнение.Чтобы упростить уравнение, вам может потребоваться распределить и объединить похожие термины.
Шаг 3 : Решите упрощенное уравнение. Если упрощенное уравнение имеет более высокие степени, например x 2 или x 3 , вы можете решить уравнение, приравняв его к нулю и разложив на множители. Если упрощенная задача не содержит более высоких степеней, тогда решите для x, получив x с одной стороны и числа с другой.
Шаг 4 : Проверьте каждое решение.Подставьте каждое решение в знаменатель исходного вопроса и отклоните любые решения, которые приводят к тому, что знаменатель равен нулю, потому что это делает проблему неопределенной. Этот шаг не гарантирует правильного ответа; это только гарантирует, что ответ приемлем.

Пример 1 — Решить:

Шаг 1 : Удалите все дроби. В этом случае нам нужно умножить на ЖК-дисплей, чтобы исключить дроби.
Шаг 2 : Упростите полученное уравнение. Чтобы упростить уравнение, вам может потребоваться распределить и объединить похожие термины.
Шаг 3 : Решите упрощенное уравнение. В этом случае нам нужно получить x на одной стороне и числа на другой стороне.
Шаг 4 : Проверьте каждое решение. В этом случае единственное число, которое делает проблему неопределенной, — 0.Поскольку наш ответ не равен 0, ответ принят.

Пример 2 — Решить:

Шаг 1 : Удалите все дроби. В этом случае нам нужно умножить на ЖК-дисплей, чтобы исключить дроби.
Шаг 2 : Упростите полученное уравнение. Чтобы упростить уравнение, вам может потребоваться распределить и объединить похожие термины.
Шаг 3 : Решите упрощенное уравнение.В этом случае нам нужно получить x на одной стороне и числа на другой стороне.
Шаг 4 : Проверьте каждое решение. В этом случае единственными числами, которые могут сделать проблему неопределенной, являются 3 или –3. Поскольку наш ответ не равен 3 или –3, ответ принят.

Щелкните здесь, чтобы узнать о практических задачах

Пример 3

Шаг 1 : Удалите все дроби.В этом случае мы можем либо умножить на ЖК-дисплей, либо крест-накрест, чтобы исключить дроби.
Шаг 2 : Упростите полученное уравнение. Чтобы упростить уравнение, вам может потребоваться распределить и объединить похожие термины.
Шаг 3 : Решите упрощенное уравнение. В этом случае нам нужно получить x на одной стороне и числа на другой стороне, потому что члены x 2 будут сокращаться.
Шаг 4 : Проверьте каждое решение. В этом случае единственные числа, которые делают проблему неопределенной, — это 2 или 5. Поскольку наш ответ — не 2 или 5, ответ принимается.

Щелкните здесь, чтобы узнать о практических задачах

Пример 4

Шаг 1 : Удалите все дроби. В этом случае нам нужно умножить на ЖК-дисплей, чтобы исключить дроби.
Шаг 2 : Упростите полученное уравнение. Чтобы упростить уравнение, вам может потребоваться распределить и объединить похожие термины.
Шаг 3 : Решите упрощенное уравнение. В этом случае нам нужно получить x на одной стороне и числа на другой стороне.
Шаг 4 : Проверьте каждое решение. В этом случае единственные числа, которые делают проблему неопределенной, — это 1 или 4.Поскольку наш ответ равен 4, ответ не принимается, что означает:

Щелкните здесь, чтобы узнать о практических задачах

Пример 5

Шаг 1 : Удалите все дроби. В этом случае мы можем либо умножить на ЖК-дисплей, либо крест-накрест, чтобы исключить дроби.
Шаг 2 : Упростите полученное уравнение. Чтобы упростить уравнение, вам может потребоваться распределить и объединить похожие термины.
Шаг 3 : Решите упрощенное уравнение. В этом случае нам нужно получить уравнение, равное нулю, и решить его путем факторизации.
Шаг 4 : Проверьте каждое решение. В этом случае единственные числа, которые делают проблему неопределенной, — это 0 или –12/5. Поскольку наши ответы не равны 0 или –12/5, ответы принимаются.

Щелкните здесь, чтобы узнать о практических задачах

Пример 6

Шаг 1 : Удалите все дроби.В этом случае нам нужно умножить на ЖК-дисплей, чтобы исключить дроби.
Шаг 2 : Упростите полученное уравнение. Чтобы упростить уравнение, вам может потребоваться распределить и объединить похожие термины.
Шаг 3 : Решите упрощенное уравнение. В этом случае нам нужно получить уравнение, равное нулю, и решить его путем факторизации.
Шаг 4 : Проверьте каждое решение.В этом случае единственными числами, которые могут сделать проблему неопределенной, являются 1, –1 или –2. Поскольку наши ответы не равны 1, –1 или –2, ответы принимаются.

Щелкните здесь, чтобы узнать о практических задачах

Решение уравнений с дробями или десятичными знаками — элементарная алгебра

Решение линейных уравнений и неравенств

Цели обучения

К концу этого раздела вы сможете:

  • Решите уравнения с дробными коэффициентами
  • Решите уравнения с десятичными коэффициентами

Прежде чем начать, пройдите тест на готовность.

  1. Умножить:
    Если вы пропустили эту проблему, просмотрите (рисунок).
  2. Найдите ЖК-дисплей и.
    Если вы пропустили эту проблему, просмотрите (рисунок).
  3. Умножьте 4,78 на 100.
    Если вы пропустили эту проблему, просмотрите (рисунок).

Решите уравнения с дробными коэффициентами

Давайте воспользуемся общей стратегией решения линейных уравнений, введенной ранее для решения уравнения,.

Этот метод работал нормально, но многие студенты не чувствуют себя уверенно, когда видят все эти дроби.Итак, мы собираемся показать альтернативный метод решения уравнений с дробями. Этот альтернативный метод исключает дроби.

Мы применим свойство равенства умножения и умножим обе части уравнения на наименьший общий знаменатель всех дробей в уравнении. Результатом этой операции будет новое уравнение, эквивалентное первому, но без дробей. Этот процесс называется «очисткой» уравнения дробей.

Давайте решим аналогичное уравнение, но на этот раз воспользуемся методом исключения дробей.

Как решать уравнения с дробными коэффициентами

Решить:.

Решить:.

Решить:.

Обратите внимание на (рисунок), когда мы очистили уравнение дробей, уравнение стало похоже на те, которые мы решали ранее в этой главе. Мы изменили проблему на ту, которую уже знали, как решить! Затем мы использовали общую стратегию решения линейных уравнений.

Стратегия решения уравнений с дробными коэффициентами.

  1. Найдите наименьший общий знаменатель всех дробей в уравнении.
  2. Умножьте обе части уравнения на этот ЖК-дисплей. Это очищает фракции.
  3. Решите, используя общую стратегию решения линейных уравнений.

Решить:.

Решение

Мы хотим очистить дроби, умножив обе части уравнения на ЖК-дисплей всех дробей в уравнении.

Решить:.

Решить:.

В следующем примере у нас снова есть переменные по обе стороны уравнения.

Решить:.

Решить:.

Решить:.

В следующем примере мы начнем с использования свойства распределения. Этот шаг сразу очищает дроби.

Решить:.

Решить:.

Решить:.

В следующем примере, даже после распределения, у нас все еще есть дроби, которые нужно очистить.

Решить:.

Решить:.

Решить:.

Решить:.

Решить:.

Решить:.

Решить:.

Решить:.

Решить:.

Решить:.

Решить:.

Решить:.

Решите уравнения с десятичными коэффициентами

В некоторых уравнениях есть десятичные дроби.Такое уравнение возникает, когда мы решаем проблемы, связанные с деньгами или процентами. Но десятичные дроби также можно выразить дробями. Например, и. Итак, с уравнением с десятичными знаками мы можем использовать тот же метод, который мы использовали для очистки дробей, — умножить обе части уравнения на наименьший общий знаменатель.

Решить:.

Решение

Посмотрите на десятичные дроби и подумайте об эквивалентных дробях.

Обратите внимание, ЖК-дисплей — 100.

Умножая на ЖК-дисплей, мы удалим десятичные дроби из уравнения.

Решить:.

Решить:.

В следующем примере используется уравнение, типичное для денежных приложений из следующей главы. Обратите внимание, что мы распределяем десятичную дробь до того, как очистим все десятичные дроби.

Решить:.

Решить:.

Решить:.

Ключевые понятия

  • Стратегия решения уравнения с дробными коэффициентами
    1. Найдите наименьший общий знаменатель всех дробей в уравнении.
    2. Умножьте обе части уравнения на этот ЖК-дисплей. Это очищает фракции.
    3. Решите, используя общую стратегию решения линейных уравнений.
Практика ведет к совершенству

Решите уравнения с дробными коэффициентами

В следующих упражнениях решите каждое уравнение с дробными коэффициентами.

Решите уравнения с десятичными коэффициентами

В следующих упражнениях решите каждое уравнение с десятичными коэффициентами.

Повседневная математика

Монеты У Тейлора? 2.00 в десять центов и пенни. Количество пенни на 2 больше, чем количество монет. Решите уравнение для количества десятицентовиков.

Марки Паула купила марки стоимостью 49 центов и марки 21 цент на сумму 22,82 фунта стерлингов. Марок номиналом 21 цент было на 8 меньше, чем марок стоимостью 49 центов. Решите уравнение для s , чтобы найти количество 49-центовых марок, купленных Паулой.

Письменные упражнения

Объясните, как найти наименьший общий знаменатель для, и.

Если в уравнении несколько дробей, как умножение обеих частей на ЖК-дисплей облегчает решение?

Если в уравнении дроби только с одной стороны, зачем нужно умножать обе части уравнения на ЖК-дисплей?

Что такое ЖК-дисплей в уравнении? Откуда вы знаете?

100. Обоснования могут быть разными.

Самопроверка

ⓐ После выполнения упражнений используйте этот контрольный список, чтобы оценить свое мастерство в достижении целей этого раздела.

ⓑ В целом, после просмотра контрольного списка, думаете ли вы, что хорошо подготовились к следующему разделу? Почему или почему нет?

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *