Калькулятор градусы в радианы: Онлайн калькулятор: Перевод градусов в радианы

Калькулятор перевода из радиан в градусы. Радианы в градусы, градусы в радианы

С давних времён люди измеряют углы. Но что такое угол? Геометрия даёт нам ответ: «Угол — это два луча, проведённые из заданной точки» . Углы бывают разные: тупые, острые, прямые , развёрнутые, центральные, смежные . Возьмём точку O и проведём из неё луч O. A. Теперь из этой же точки проведём луч OB, параллельный лучу OA и направленный с ним в одну сторону. Про такие лучи говорят, что угол между ними составляет 0° (ноль градусов). Если мы теперь направим луч OB параллельно лучу OA, но в противоположную сторону, то получим развёрнутый угол, равный 180°.

Что означают градус и радиан

Так вот, мерой расхождения двух лучей, проведённых из одной точки друг от друга, будет градусное расстояние . Что такое градус? В переводе «градус» означает «шаг». Всего таких «шагов» может быть 360°. Это число было придумано ещё в глубокой древности математиками и астрономами, пользовавшимися шестидесятиричной системой счисления. Они брали круг, из центра которого проводили два радиуса. Мерой расхождения этих радиусов друг от друга был градус. Когда расстояние между радиусами в градусах отсчитывали против часовой стрелки, такой угол считался положительным, а когда против часовой — отрицательным.

Вращая один радиус относительно другого против часовой стрелки, мы будем получать разные углы. Когда эти отрезки совпадают, то между ними будет 0°, когда же отрезки отсекают сектор круга, равный одной четверти полного круга, то угол между ними составит 90°. Вращая дальше таким образом, мы получим следующие углы: 180° — радиусы лежат на диаметре круга и делят его пополам, 270° — радиусы отсекают три четверти круга, 360° — радиусы совпадают. Таким образом, полный круг составляет 360°. Для измерения углов существует транспортир .

Кроме градусной меры для измерения углов применяют меру радианную . Радиан — это мера центрального угла. «Радиан» означает «связанный с радиусом». Если из центра окружности радиусом R провести два луча, то они на ней отсекут дугу, длина которой l.

Так вот, угол α между указанными лучами называется центральным . Чтобы его измерить, нужно длину дуги окружности разделить на её радиус: α=l/R. Получится значение, выраженное в радианах (рад). Поскольку любому углу на плоскости можно сопоставить такой же центральный угол, то встаёт вопрос, как от обычной градусной меры перейти к радианной.

Как перевести градусы в радианы и обратно

Мы знаем, что центральному углу в 360° соответствует вся окружность, длина которой вычисляется по известной формуле l=2 π R. Разделим это выражение на R и получим: α= 2 π R/R=2 π рад≈6,28 рад. Если взять какое-то угловое расстояние в A град., то его радианная мера α получится из пропорции: А/360°=α/(2 π). Решив это уравнение, получим формулу перевода градусов в радианы — α=(π/180°) А, или формулу перевода радиан в градусы — А=(180°/π) α. Из этих формул мы придём к следующим соотношениям:

  • 1 рад=180°/π≈57,2958°;
  • 1°=π/180 рад≈0,01745 рад.

Сколько составит 180 градусов в радианах и 90 градусов в радианах? Воспользовавшись полученными выше формулами, придём к таким соотношениям:

  • 90°=π/2 рад≈1,571 рад;
  • 180°=π рад≈3,142 рад.

Итак, как правильно переводить градусную меру в радианную и обратно? В этом вам поможет следующее правило:

Чтобы найти число радиан, нужно градусную меру умножить на число π и поделить на 180. Чтобы найти число градусов, нужно радианную меру умножить на 180 и поделить на число π .

Примеры решения задач

Задача 1. Чему равна длина дуги окружности, если R=1 см, α=1 рад?

Решение. По формуле длины дуги найдём: l=R α=1 1=1 см.

Задача 2. Сколько рад в 45°?

Решение. Используя правило, получим: α=45 π/180=π/4 рад.

Задача 3. Сколько град. в π² рад?

Решение. Используя правило, найдём: А=π² 180/π=180π град.≈565,5°.

Задача 4. Чему равен средний угловой размер лунного диска, если среднее расстояние до Луны равно R=384399 км, а диаметр самой Луны D=3476 км?

Решение. Если мысленно на Луну с Земли провести два луча, которые пройдут через крайние точки диаметра её диска, мы получим центральный угол, исходящий из глаз наблюдателя. Поскольку расстояние до Луны намного превышает её диаметр, то этот диаметр можно будет приравнять длине дуги l окружности, образуемой радиусом R, т. е. D≈l=α R. Тогда искомый угловой размер составит: α≈D/R=3476/384399=0,00904268742 рад=0,51810782462°≈31’05”≈0,5°. Итак, видимый угловой диаметр Луны равен полградуса.

Минуты и секунды

Издревле для измерения углов пользовались так называемой шестидесятиричной системой исчисления . В этой системе вся окружность делится на 360°. Затем каждый градус делят на 60 минут, а каждую минуту — на 60 секунд. Минуты обозначаются значком «»”, а секунды — значком «””. Отсюда пошло измерение времени. Кроме того, циферблат — это символ круга, а стрелки часов отмеряют центральные углы. Для перевода этих единиц используйте следующие соотношения:

  • 1°=60’=3600”;
  • 1’=(1/60)°=60”;
  • 1”=(1/3600)°=(1/60)’;
  • 1 рад≈3438′.

Необходимость в измерении углов появилась у людей с тех пор, как цивилизация достигла минимального технического уровня. Всем известна феноменальная точность соблюдения наклона и ориентации по странам света, обеспеченная строителями египетских пирамид. Современную градусную меру углов, как сейчас считается, изобрели древние аккадцы.

Что такое градусы?

Градус — общепринятая единица измерения углов. В полной окружности 360 градусов. Причина выбора именно этого числа неизвестна. Вероятно, аккадцы разделили окружность на сектора, используя угол равностороннего треугольника, а затем полученные сегменты снова разделили на 60 частей согласно своей системе счисления. Градус тоже делится на 60 минут, а минуты — на 60 секунд. Общепринятыми обозначениями являются:

° — угловые градусы

’ — минуты,

’’ — секунды.

За тысячелетия градусная мера углов прочно вошла во многие сферы человеческой деятельности. Она и сейчас незаменима во всех областях науки и техники — от картографии до расчета орбит искусственных спутников Земли.

Что такое радианы?

Архимеду приписывается открытие постоянства соотношения длины окружности и ее диаметра. Мы называем его числом π. Оно иррационально, то есть не может быть выражено в виде обычной или периодической дроби. Чаще всего используется значение числа π с точностью до двух знаков после запятой — 3,14. Длина окружности L с радиусом R легко вычисляется по формуле: L=2πR.

Окружность радиуса R=1 имеет длину 2π. Это соотношение используется в геометрии как формулировка радианной меры угла.

По определению, радиан — угол с вершиной в центре окружности, опирающийся на дугу с длиной, равной радиусу окружности. Международное обозначение радиана — rad, отечественное — рад. Размерности он не имеет.

Дуга окружности с радиусом R с угловой величиной α радиан, имеет длину α * R.

Зачем понадобилось вводить новую единицу измерения угла?

Развитие науки и техники привело к появлению тригонометрии и математического анализа, необходимых для точных расчетов механических и оптических устройств. Одной из его задач является измерение длины кривой линии. Самый распространенный случай — определение длины дуги окружности. Использование для этой цели градусной меры углов крайне неудобно. Идея сопоставить длину дуги с радиусом окружности возникала у многих математиков, но сам термин «радиан» был введен в научный обиход только во второй половине XIX века. Сейчас все тригонометрические функции в математическом анализе по умолчанию используют радианную меру угла.

Как переводить градусы в радианы

Из формулы длины окружности вытекает, что в нее укладывается 2π радиусов. Отсюда вытекает, что: 1⁰=2π/360= π/180 рад.

И простая формула перевода из радианов в градусы: 1 рад = 180/π.

Пусть мы имеем угол в N градусов. Тогда формула для перевода из градусов в радианы будет такой: α(радиан) = N/(180/π) = N*π/180.

Остались вопросы?

Ответы на них можно найти , где подробно разъяснены понятия длины окружности, радианной меры углов и на конкретных примерах показан перевод градусов в радианы. Знания упомянутого крайне важны для понимания математики, без которой невозможно существование современной цивилизации.

Калькулятор онлайн выполняет перевод градусов в радианы , перевевод радиан в градусы , перевод дробных градусов (градусы представленные десятичной дробью) в вид градусов, минут и секунд и выводит формулы с подробным решением.

    Перевести градусы в радианы : градусы необходимо умножить на π/180. Если градусы заданы в виде «градусов, минут и секунд», то вначале их необходимо перевести в десятичную форму по формуле: градусы + минуты/60 + секунды/3600;

    Формула перевода радиан в градусы : если угол равен α rad радиан, то он равен формула перевода радиан в градусы градусов, где π ≈ 3,1415.

    Перевести радианы в градусы : радианы необходимо умножить на 180/π. Целая часть полученного произведения — это количество градусов. Чтобы перевести дробную часть в минуты, необходимо ее умножить на 60. Целая часть полученного произведения — количество минут. Для вычисления секунд необходимо снова умножить дробную часть от предыдущей операции на 60, округлить полученное произведение до ближайшего целого — это количество секунд.

    Формула перевода градусов в радианы : если угол равен α deg радиан, то он равен формула перевода градусы в радианы радиан, где π ≈ 3,1415.

Дано: Решение:

Перевод градусов, минут и секунд в радианы

α° deg = градусов

перевод градусов в радианы


α» deg = минут
α» deg = секунд

Перевод радиан в градусы, минуты и секунды

α rad = радиан

перевод радиан в градусы, минуты и секунды

Перевод десятичных градусов в вид градусов, минут и секунд

α deg = градусов

выделение из десятичных градусов градусов, минут и секунд

перевод десятичных градусов в вид градусов, минут и секунд

округление до 1 2 3 4 5 знаков после запятой

Помощь на развитие проекта сайт

Уважаемый Посетитель сайта.
Если Вам не удалось найти, то что Вы искали — обязательно напишите об этом в комментариях, чего не хватает сейчас сайту. Это поможет нам понять в каком направлении необходимо дальше двигаться, а другие посетители смогут в скором времени получить необходимый материал.
Если же сайт оказался Ваме полезен — подари проекту сайт всего 2 ₽ и мы будем знать, что движемся в правильном направлении.

Спасибо, что не прошели мимо!

I. Примечание:

  1. Округление результатов расчета выполняется до указанного количества знаков после запятой (по умолчанию — округление до десятитысячных).

II. Для справки:

  1. Градусна мера угла — угловая мера, в которой за единицу принимается угол в 1 градус и показывающая сколько раз градус и его части (минута и секунда) укладывается в данном угле.
  2. Радианная мера угла — угловая мера, в которой за единицу принимается угол в 1 радиан и показывающая сколько раз радиан укладывается в данном угле.
  3. Градусы и радианы — единицы измерения плоских углов в геометрии.
  4. Один градус равен 1/180 части развернутого угла.
  5. Радиан — угол, соответствующий дуге, длина которой равна ее радиусу.

Номограмма для перевода радиан в градусы и градусов в радианы.

Mathway | Популярные задачи

1Найти точное значениеsin(30)
2Найти точное значениеsin(45)
3Найти точное значениеsin(30 град. )
4Найти точное значениеsin(60 град. )
5Найти точное значениеtan(30 град. )
6Найти точное значениеarcsin(-1)
7Найти точное значениеsin(pi/6)
8Найти точное значениеcos(pi/4)
9Найти точное значениеsin(45 град. )
10Найти точное значениеsin(pi/3)
11Найти точное значениеarctan(-1)
12Найти точное значениеcos(45 град. )
13Найти точное значениеcos(30 град. )
14Найти точное значениеtan(60)
15Найти точное значениеcsc(45 град. )
16Найти точное значениеtan(60 град. )
17Найти точное значениеsec(30 град. )
18Найти точное значениеcos(60 град. )
19Найти точное значениеcos(150)
20Найти точное значениеsin(60)
21Найти точное значениеcos(pi/2)
22Найти точное значениеtan(45 град. )
23Найти точное значениеarctan(- квадратный корень из 3)
24Найти точное значениеcsc(60 град. )
25Найти точное значениеsec(45 град. )
26Найти точное значениеcsc(30 град. )
27Найти точное значениеsin(0)
28Найти точное значениеsin(120)
29Найти точное значениеcos(90)
30Преобразовать из радианов в градусыpi/3
31Найти точное значениеtan(30)
32Преобразовать из градусов в радианы45
33Найти точное значениеcos(45)
34Упроститьsin(theta)^2+cos(theta)^2
35Преобразовать из радианов в градусыpi/6
36Найти точное значениеcot(30 град. )
37Найти точное значениеarccos(-1)
38Найти точное значениеarctan(0)
39Найти точное значениеcot(60 град. )
40Преобразовать из градусов в радианы30
41Преобразовать из радианов в градусы(2pi)/3
42Найти точное значениеsin((5pi)/3)
43Найти точное значениеsin((3pi)/4)
44Найти точное значениеtan(pi/2)
45Найти точное значениеsin(300)
46Найти точное значениеcos(30)
47Найти точное значениеcos(60)
48Найти точное значениеcos(0)
49Найти точное значениеcos(135)
50Найти точное значениеcos((5pi)/3)
51Найти точное значениеcos(210)
52Найти точное значениеsec(60 град. )
53Найти точное значениеsin(300 град. )
54Преобразовать из градусов в радианы135
55Преобразовать из градусов в радианы150
56Преобразовать из радианов в градусы(5pi)/6
57Преобразовать из радианов в градусы(5pi)/3
58Преобразовать из градусов в радианы89 град.
59Преобразовать из градусов в радианы60
60Найти точное значениеsin(135 град. )
61Найти точное значениеsin(150)
62Найти точное значениеsin(240 град. )
63Найти точное значениеcot(45 град. )
64Преобразовать из радианов в градусы(5pi)/4
65Найти точное значениеsin(225)
66Найти точное значениеsin(240)
67Найти точное значениеcos(150 град. )
68Найти точное значениеtan(45)
69Вычислитьsin(30 град. )
70Найти точное значениеsec(0)
71Найти точное значениеcos((5pi)/6)
72Найти точное значениеcsc(30)
73Найти точное значениеarcsin(( квадратный корень из 2)/2)
74Найти точное значениеtan((5pi)/3)
75Найти точное значениеtan(0)
76Вычислитьsin(60 град. )
77Найти точное значениеarctan(-( квадратный корень из 3)/3)
78Преобразовать из радианов в градусы(3pi)/4
79Найти точное значениеsin((7pi)/4)
80Найти точное значениеarcsin(-1/2)
81Найти точное значениеsin((4pi)/3)
82Найти точное значениеcsc(45)
83Упроститьarctan( квадратный корень из 3)
84Найти точное значениеsin(135)
85Найти точное значениеsin(105)
86Найти точное значениеsin(150 град. )
87Найти точное значениеsin((2pi)/3)
88Найти точное значениеtan((2pi)/3)
89Преобразовать из радианов в градусыpi/4
90Найти точное значениеsin(pi/2)
91Найти точное значениеsec(45)
92Найти точное значениеcos((5pi)/4)
93Найти точное значениеcos((7pi)/6)
94Найти точное значениеarcsin(0)
95Найти точное значениеsin(120 град. )
96Найти точное значениеtan((7pi)/6)
97Найти точное значениеcos(270)
98Найти точное значениеsin((7pi)/6)
99Найти точное значениеarcsin(-( квадратный корень из 2)/2)
100Преобразовать из градусов в радианы88 град.

градусов в радианы | Преобразователь Кайла

  1. Преобразователь Кайла >
  2. org/ListItem»> Угол >
  3. градусов >
  4. Градусов в Радиан
Градусы (°) Радиан (рад)
Точность: 0123456789121518

Обратное преобразование?
Радиан в Градусы
(или просто введите значение в поле «до»)

Пожалуйста, поделитесь, если вы нашли этот инструмент полезным:

Описание устройства
1 градус (дуги):
1 градус дуги определяется как 1/360 оборота. В единицах СИ 1° равен π/180 радиан.
1 Радиан:
1 Радиан определяется как угол, образуемый в центре окружности дугой, длина которой равна радиусу окружности. Один полный оборот составляет 2π радиан.
Conversions Table
1 Degrees to Radians = 0.0175 70 Degrees to Radians = 1.2217
2 Degrees to Radians = 0.0349 80 Degrees to Radians = 1.3963
3 градуса до радиан = 0,0524 90 градусов до радиан = 1,5708
4 градуса с радианами = 0,0698 100 градусов до радиан = 1,7453
5 градусов = 1,7453
5 градусов.0019 200 градусов до радиан = 3,4907
6 градусов с радианами = 0,1047 300 градусов с радианами = 5,236
7 градусов с радианами = 0,122277 7 градусов с радианами = 0,12227777777 40077 7 градусов с радианами = 0,1222777777777 40077 7. 7 градусов. Радианы = 0,1396 500 градусов до радиан = 8,7266
9 градусов с радианами = 0,1571 600 градусов с радианами = 10,472
10 градусов до Радиана = 0.1745
10 градусов до радио = 0.1745
10 градусов.0019 800 градусов до радиан = 13,9626
20 градусов с радианами = 0,3491 900 градусов до радиан = 15,708
30 градусов к радианам = 0,5236
30 градусов к радианам = 0,5236
30 градусов с радианами = 0,5236
30 градусов. to Radians = 0.6981 10,000 Degrees to Radians = 174.5329
50 Degrees to Radians = 0.8727 100,000 Degrees to Radians = 1745.3293
60 Degrees to Radians = 1.0472 1,000,000 Degrees to Radians = 17453.2925
Similar Angle Units
  • Degrees to Diameter Parts
  • Degrees to Gradians
  • Degrees to Binary Degrees
Common Units
  • Degrees to Radians
  • Degrees to Minutes of time
  • Градусов в Угловые секунды

Градусов в Радианы Генератор таблиц

Онлайн калькулятор градусов(°) в радианы(рад), таблица, формулы.

Градусы

Радианы

Точность

No DecimalsRounded to 1 DecimalRounded to 2 DecimalsRounded to 3 DecimalsRounded to 4 DecimalsRounded to 5 DecimalsRounded to 6 DecimalsRounded to 7 DecimalsRounded to 8 DecimalsRounded to 9 DecimalsRounded to 10 DecimalsRounded to 11 DecimalsRounded to 12 Decimals

   

Radians to Degrees converter ►


5 rad5 rad919 rad rad4 rad
Градусы Радианы
0.017453293 rad
0.034
0.052359878 rad
0.06981317 rad
0.087266463 rad
0.104719755 rad
0.122173048 rad
0. 13962634 rad
0.157079633 rad
10° 0.174532925 rad
11° 0.191986218 rad
12° 0.20943951 rad
13° 0.226892803 rad
14° 0.244346095 rad
15° 0.261799388 rad
16° 0.27925268 rad
17° 0.296705973 rad
18° 0.314159265 rad
19° 0.331612558 rad
20° 0.34
21° 0.366519143 rad
22° 0.383972435 rad
23° 0.401425728 rad
24° 0.41887902 rad
25° 0.436332313 rad
26° 0. 453785606 rad
27° 0.471238898 rad
28° 0.488692191 rad
29° 0.506145483 rad
30° 0.523598776 rad
31° 0.541052068 rad
32° 0.558505361 rad
33° 0.575958653 rad
34° 0.593411946 rad
35° 0.610865238 rad
36° 0.628318531 rad
37° 0.645771823 rad
38° 0.663225116 rad
39° 0.680678408 rad
40° 0.698131701 rad
41° 0.715584993 rad
42° 0.733038286 rad
43° 0.750491578 rad
44° 0. 767944871 rad
45° 0.785398163 rad
46° 0.802851456 rad
47° 0.820304748 rad
48° 0.837758041 rad
49° 0.855211333 rad
50° 0.872664626 rad
51° 0.8
52° 0.1211 rad
53° 0.925024504 rad
54° 0.942477796 rad
55° 0.959931089 rad
56° 0.977384381 rad
57° 0.994837674 rad
58° 1.012290966 rad
59° 1.029744259 rad
60° 1.047197551 rad
61° 1.064650844 rad
62° 1. 082104136 rad
63° 1.099557429 rad
64° 1.117010721 rad
65° 1.134464014 rad
66° 1.151917306 rad
67° 1.169370599 rad
68° 1.186823891 rad
69° 1.204277184 rad
70° 1.221730476 rad
71° 1.239183769 rad
72° 1.256637061 rad
73° 1.2740
74° 1.291543646 rad
75° 1.308996939 rad
76° 1.326450232 rad
77° 1.343
78° 1.361356817 rad
79° 1.378810109 rad
80° 1. 396263402 rad
81° 1.413716694 rad
82° 1.431169987 rad
83° 1.448623279 rad
84° 1.466076572 rad
85° 1.483529864 rad
86° 1.500983157 rad
87° 1.518436449 rad
88° 1.535889742 rad
89° 1.553343034 rad
90° 1.570796327 rad
91° 1.588249619 rad
92° 1.605702912 rad
93° 1.623156204 rad
94° 1.640609497 rad
95° 1.658062789 rad
96° 1.675516082 rad
97° 1.692969374 rad
98° 1.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

© 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

Карта сайта