Решение систем уравнений с буквенными коэффициентами
66. Примеры решения систем с буквенными коэффициентами. Особенные системы. Рассмотрим 2 примера решения систем уравнений с 3 неизвестными с буквенными коэффициентами.
1. x – 3y = a, y – 3z = b, z – 3x = c
Определим из 1-го уравнения x через y и из 2-го z через y и подставим в 3-е уравнение:
x = a + 3y; z = (y – b) / 3
(y – b) / 3 – 3 (a + 3y) = c
Отсюда
y – b – 9a – 27y = 3c
или
26y = –9a – b – 3c
и
y = –(9a + b + 3c) / 26
Тогда
x = a – (27a + 3b + 3c) / 26 = – (a + 3b + 9c) / 26
2. x + ay – a2z = a3
x + by – b2z = b3
x + cy – c2z = c3
Сначала из 1-го уравнения вычтем по частям 2-ое, — получим одно уравнение с y и z:
ay – by – a2z + b2z = a3 – b3
или
(a – b) y – (a2 – b2) z = a3 – b3.
Мы можем теперь обе части этого уравнения разделить на a – b [в самом деле, мы знаем, что a2 – b2 = (a + b) (a – b) и a3 – b3 = (a – b) (a2 + ab + b2) ]. Получим:
y – (a + b) z = a2 + ab + b2.
Затем вычтем по частям из 1-го третье уравнение, – получим другое уравнение с теми же неизвестными y и z:
ay – cy – a2z + c2z = a3 – c3.
Его упростим подобно предыдущему:
(a – c) y – (a2 – c2) z = a3 – c3
или
y – (a + c) z = a2 + ac + c2
Теперь сложим по частям оба полученных уравнения, умножив предварительно обе части одного из них (напр. 2-ое) на (–1):
y – (a + b) z = a2 + ab + b2
–y + (a + c) z = –a2 – ac – c2
–———————————
(c – b) z = ab – ac + b2 – c 2
или
–(b – c) z = a(b – c) + (b2 – c2).
Разделим обе части этого уравнения на (b – c):
–z = a + b + c
и
z = –(a + b + c)
Далее из уравнения y – (a + b) z = a2 + ab + b2 получим:
y = –(a + b) (a + b + c) + a2 + ab + b2
или
y = –ab – ac – bc = –(ab + ac + bc).
И из уравнения y – (a + b) z = a2 + ab + b2 получим:
y = –(a + b) (a + b + c) + a2 + ab + b2
или
y = – ab – ac – bc = –(ab + ac + bc).
И из уравнения x + ay – a2z = a3 получим теперь:
x = –ay + a2z + a3 = a2b + a2c + abc – a3 – a2b – a2c + a3
или
x = abc.
Рассмотрим теперь систему, подобную тем, какие были рассмотрены для двух неизвестных:
3/x + 2/y + 5/z = 1
6/x + 6/y – 5/z = 1 1/3
3/x + 4/y – 15/z = 0
Здесь не следует освобождать уравнения от дробей; наметим такой план: 1) из 1-го и 2-го при помощи уравнения числителей удалим z, 2) из 1-го и 3-го также исключим z и 3) решим два полученных уравнения с неизвестными x и y.
Решение уравнения x 1. Как решается система уравнений? Методы решения систем уравнения
Уравнение с одним неизвестным, которое после раскрытия скобок и приведения подобных членов принимает вид
aх + b = 0 , где a и b произвольные числа, называется линейным уравнением с одним неизвестным. Cегодня разберёмся, как эти линейные уравнения решать.
Например, все уравнения:
2х + 3= 7 – 0,5х; 0,3х = 0; x/2 + 3 = 1/2 (х – 2) — линейные.
Значение неизвестного, обращающее уравнение в верное равенство называется решением или корнем уравнения .
Например, если в уравнении 3х + 7 = 13 вместо неизвестного х подставить число 2 , то получим верное равенство 3· 2 +7 = 13. Значит, значение х = 2 есть решение или корень уравнения.
А значение х = 3 не обращает уравнение 3х + 7 = 13 в верное равенство, так как 3· 2 +7 ≠ 13. Значит, значение х = 3 не является решением или корнем уравнения.
Решение любых линейных уравнений сводится к решению уравнений вида
aх + b = 0.
Перенесем свободный член из левой части уравнения в правую, изменив при этом знак перед b на противоположный, получим
Если a ≠ 0, то х = ‒ b/a .
Пример 1. Решите уравнение 3х + 2 =11.
Перенесем 2 из левой части уравнения в правую, изменив при этом знак перед 2 на противоположный, получим
3х = 11 – 2.
Выполним вычитание, тогда
Чтобы найти х надо разделить произведение на известный множитель, то есть
х = 9: 3.
Значит, значение х = 3 является решением или корнем уравнения.
Ответ: х = 3 .
Если а = 0 и b = 0 , то получим уравнение 0х = 0. Это уравнение имеет бесконечно много решений, так как при умножении любого числа на 0 мы получаем 0,но b тоже равно 0. Решением этого уравнения является любое число.
Пример 2. Решите уравнение 5(х – 3) + 2 = 3 (х – 4) + 2х ‒ 1.
Раскроем скобки:
5х – 15 + 2 = 3х – 12 + 2х ‒ 1.
5х – 3х ‒ 2х = – 12 ‒ 1 + 15 ‒ 2.
Приведем подобные члены:
0х = 0.
Ответ: х — любое число .
Если а = 0 и b ≠ 0 , то получим уравнение 0х = — b. Это уравнение решений не имеет, так как при умножении любого числа на 0 мы получаем 0, но b ≠ 0 .
Пример 3. Решите уравнение х + 8 = х + 5.
Сгруппируем в левой части члены, содержащие неизвестные, а в правой ‒ свободные члены:
х – х = 5 ‒ 8.
Приведем подобные члены:
0х = ‒ 3.
Ответ: нет решений.
На рисунке 1 изображена схема решения линейного уравнения
Составим общую схему решения уравнений с одной переменной. Рассмотрим решение примера 4.
Пример 4. Пусть надо решить уравнение
1) Умножим все члены уравнения на наименьшее общее кратное знаменателей, равное 12.
2) После сокращения получим
4 (х – 4) + 3·2 (х + 1) ‒ 12 = 6·5 (х – 3) + 24х – 2 (11х + 43)
3) Чтобы отделить члены, содержащие неизвестные и свободные члены, раскроем скобки:
4х – 16 + 6х + 6 – 12 = 30х – 90 + 24х – 22х – 86 .
4) Сгруппируем в одной части члены, содержащие неизвестные, а в другой – свободные члены:
5) Приведем подобные члены:
‒ 22х = ‒ 154.
6) Разделим на – 22 , Получим
х = 7.
Как видим, корень уравнения равен семи.
Вообще такие уравнения можно решать по следующей схеме :
а) привести уравнение к целому виду;
б) раскрыть скобки;
в) сгруппировать члены, содержащие неизвестное, в одной части уравнения, а свободные члены ‒ в другой;
г) привести подобные члены;
д) решить уравнение вида aх = b,которое получили после приведения подобных членов.
Однако эта схема не обязательна для всякого уравнения. При решении многих более простых уравнений приходится начинать не с первого, а со второго (Пример. 2 ), третьего (Пример. 1, 3 ) и даже с пятого этапа, как в примере 5.
Пример 5. Решите уравнение 2х = 1/4.
Находим неизвестное х = 1/4: 2,
х = 1/8 .
Рассмотрим решение некоторых линейных уравнений, встречающихся на основном государственном экзамене.
Пример 6. Решите уравнение 2 (х + 3) = 5 – 6х.
2х + 6 = 5 – 6х
2х + 6х = 5 – 6
Ответ: ‒ 0, 125
Пример 7. Решите уравнение – 6 (5 – 3х) = 8х – 7.
– 30 + 18х = 8х – 7
18х – 8х = – 7 +30
Ответ: 2,3
Пример 8. Решите уравнение
3(3х – 4) = 4 · 7х + 24
9х – 12 = 28х + 24
9х – 28х = 24 + 12
Пример 9. Найдите f(6), если f (x + 2) = 3 7-х
Решение
Так как надо найти f(6), а нам известно f (x + 2),
то х + 2 = 6.
Решаем линейное уравнение х + 2 = 6,
получаем х = 6 – 2, х = 4.
Если х = 4, тогда
f(6) = 3 7-4 = 3 3 = 27
Ответ: 27.
Если у Вас остались вопросы, есть желание разобраться с решением уравнений более основательно, записывайтесь на мои уроки в РАСПИСАНИИ .
Также TutorOnline советует посмотреть новый видеоурок от нашего репетитора Ольги Александровны, который поможет разобраться как с линейными уравнениями, так и с другими.
сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.
На этапе подготовки к заключительному тестированию учащимся старших классов необходимо подтянуть знания по теме «Показательные уравнения». Опыт прошлых лет свидетельствует о том, что подобные задания вызывают у школьников определенные затруднения. Поэтому старшеклассникам, независимо от уровня их подготовки, необходимо тщательно усвоить теорию, запомнить формулы и понять принцип решения таких уравнений. Научившись справляться с данным видом задач, выпускники смогут рассчитывать на высокие баллы при сдаче ЕГЭ по математике.
Готовьтесь к экзаменационному тестированию вместе со «Школково»!
При повторении пройденных материалов многие учащиеся сталкиваются с проблемой поиска нужных для решения уравнений формул. Школьный учебник не всегда находится под рукой, а отбор необходимой информации по теме в Интернете занимает долгое время.
Образовательный портал «Школково» предлагает ученикам воспользоваться нашей базой знаний. Мы реализуем совершенно новый метод подготовки к итоговому тестированию. Занимаясь на нашем сайте, вы сможете выявить пробелы в знаниях и уделить внимание именно тем заданиям, которые вызывают наибольшие затруднения.
Преподаватели «Школково» собрали, систематизировали и изложили весь необходимый для успешной сдачи ЕГЭ материал в максимально простой и доступной форме.
Основные определения и формулы представлены в разделе «Теоретическая справка».
Для лучшего усвоения материала рекомендуем попрактиковаться в выполнении заданий. Внимательно просмотрите представленные на данной странице примеры показательных уравнений с решением, чтобы понять алгоритм вычисления. После этого приступайте к выполнению задач в разделе «Каталоги». Вы можете начать с самых легких заданий или сразу перейти к решению сложных показательных уравнений с несколькими неизвестными или .
Те примеры с показателями, которые вызвали у вас затруднения, можно добавить в «Избранное». Так вы можете быстро найти их и обсудить решение с преподавателем.
Чтобы успешно сдать ЕГЭ, занимайтесь на портале «Школково» каждый день!
Онлайн калькулятор дробей позволяет производить простейшие арифметические операции с дробями: сложение дробей, вычитание дробей, умножение дробей, деление дробей. Чтобы произвести вычисления, заполните поля соответствующие числителям и знаменателям двух дробей.
Дробью в математике называется число, представляющее часть единицы или несколько её частей.
Обыкновенная дробь записывается в виде двух чисел, разделенных обычно горизонтальной чертой, обозначающей знак деления. Число, располагающееся над чертой, называется числителем. Число, располагающееся под чертой, называется знаменателем. Знаменатель дроби показывает количество равных частей, на которое разделено целое, а числитель дроби — количество взятых этих частей целого.
Дроби бывают правильными и неправильными.
- Правильной называется дробь, у которой числитель меньше знаменателя.
- Неправильная дробь – если у дроби числитель больше знаменателя.
Смешанной называется дробь, записанная в виде целого числа и правильной дроби, и понимается как сумма этого числа и дробной части. Соответственно, дробь, не имеющая целую часть, называется простой дробью. Любая смешанная дробь может быть преобразована в неправильную простую дробь.
Для того, чтобы перевести смешанную дробь в обыкновенную, необходимо к числителю дроби прибавить произведение целой части и знаменателя:
Как перевести обыкновенную дробь в смешанную
Для того, чтобы перевести обыкновенную дробь в смешанную, необходимо:
- Поделить числитель дроби на её знаменатель
- Результат от деления будет являться целой частью
- Остаток отделения будет являться числителем
Как перевести обыкновенную дробь в десятичную
Для того, чтобы перевести обыкновенную дробь в десятичную, нужно разделить её числитель на знаменатель.
Для того, чтобы перевести десятичную дробь в обыкновенную, необходимо:
Как перевести дробь в проценты
Для того, чтобы перевести обыкновенную или смешанную дробь в проценты, необходимо перевести её в десятичную дробь и умножить на 100.
Как перевести проценты в дробь
Для того, чтобы перевести проценты в дробь, необходимо получить из процентов десятичную дробь (разделив на 100), затем полученную десятичную дробь перевести в обыкновенную.
Сложение дробей
Алгоритм действий при сложении двух дробей такой:
- Выполнить сложение дробей путем сложения их числителей.
Вычитание дробей
Алгоритм действий при вычитании двух дробей:
- Перевести смешанные дроби в обыкновенные (избавиться от целой части).
- Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
- Вычесть одну дробь из другой, путем вычитания числителя второй дроби из числителя первой.
- Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
- Если числитель итоговой дроби больше знаменателя, то выделить целую часть.
Умножение дробей
Алгоритм действий при умножении двух дробей:
- Перевести смешанные дроби в обыкновенные (избавиться от целой части).
- Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
- Если числитель итоговой дроби больше знаменателя, то выделить целую часть.
Деление дробей
Алгоритм действий при делении двух дробей:
- Перевести смешанные дроби в обыкновенные (избавиться от целой части).
- Чтобы произвести деление дробей, нужно преобразовать вторую дробь, поменяв местами её числитель и знаменатель, а затем произвести умножение дробей.
- Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
- Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
- Если числитель итоговой дроби больше знаменателя, то выделить целую часть.
Онлайн калькуляторы и конвертеры:
Разберем два вида решения систем уравнения:
1. Решение системы методом подстановки.
2. Решение системы методом почленного сложения (вычитания) уравнений системы.
Для того чтобы решить систему уравнений методом подстановки нужно следовать простому алгоритму:
1. Выражаем. Из любого уравнения выражаем одну переменную.
2. Подставляем. Подставляем в другое уравнение вместо выраженной переменной, полученное значение.
3. Решаем полученное уравнение с одной переменной. Находим решение системы.
Чтобы решить систему методом почленного сложения (вычитания) нужно:
1. Выбрать переменную у которой будем делать одинаковые коэффициенты.
2.Складываем или вычитаем уравнения, в итоге получаем уравнение с одной переменной.
3. Решаем полученное линейное уравнение . Находим решение системы.
Решением системы являются точки пересечения графиков функции.
Рассмотрим подробно на примерах решение систем.
Пример №1:
Решим методом подстановки
Решение системы уравнений методом подстановки
2x+5y=1 (1 уравнение)
x-10y=3 (2 уравнение)
1. Выражаем
Видно что во втором уравнении имеется переменная x с коэффициентом 1,отсюда получается что легче всего выразить переменную x из второго уравнения.
x=3+10y
2.После того как выразили подставляем в первое уравнение 3+10y вместо переменной x.
2(3+10y)+5y=1
3.Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2
Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти x и у, потому что точка пересечения состоит их x и y. Найдем x, в первом пункте где мы выражали туда подставляем y.
x=3+10y
x=3+10*(-0,2)=1
Точки принято записывать на первом месте пишем переменную x, а на втором переменную y.
Ответ: (1; -0,2)
Пример №2:
Решим методом почленного сложения (вычитания).
Решение системы уравнений методом сложения
3x-2y=1 (1 уравнение)
2x-3y=-10 (2 уравнение)
1.Выбираем переменную, допустим, выбираем x. В первом уравнении у переменной x коэффициент 3, во втором 2. Нужно сделать коэффициенты одинаковыми, для этого мы имеем право домножить уравнения или поделить на любое число. Первое уравнение домножаем на 2, а второе на 3 и получим общий коэффициент 6.
3x-2y=1 |*2
6x-4y=2
2x-3y=-10 |*3
6x-9y=-30
2.Из первого уравнения вычтем второе, чтобы избавиться от переменной x.Решаем линейное уравнение.
__6x-4y=2
5y=32 | :5
y=6,4
3.Находим x. Подставляем в любое из уравнений найденный y, допустим в первое уравнение.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4,6
Точкой пересечения будет x=4,6; y=6,4
Ответ: (4,6; 6,4)
Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно . Без шуток.
для решения математики. Быстро найти решение математического уравнения в режиме онлайн . Сайт www.сайт позволяет решить уравнение почти любого заданного алгебраического , тригонометрического или трансцендентного уравнения онлайн . При изучении практически любого раздела математики на разных этапах приходится решать уравнения онлайн . Чтобы получить ответ сразу, а главное точный ответ, необходим ресурс, позволяющий это сделать. Благодаря сайту www.сайт решение уравнений онлайн займет несколько минут. Основное преимущество www.сайт при решении математических уравнений онлайн — это скорость и точность выдаваемого ответа. Сайт способен решать любые алгебраические уравнения онлайн , тригонометрические уравнения онлайн , трансцендентные уравнения онлайн , а также уравнения с неизвестными параметрами в режиме онлайн . Уравнения служат мощным математическим аппаратом решения практических задач. C помощью математических уравнений можно выразить факты и соотношения, которые могут показаться на первый взгляд запутанными и сложными. Неизвестные величины уравнений можно найти, сформулировав задачу на математическом языке в виде уравнений и решить полученную задачу в режиме онлайн на сайте www.сайт. Любое алгебраическое уравнение , тригонометрическое уравнение или уравнения содержащие трансцендентные функции Вы легко решите онлайн и получите точный ответ. Изучая естественные науки, неизбежно сталкиваешься с необходимостью решения уравнений . При этом ответ должен быть точным и получить его необходимо сразу в режиме онлайн . Поэтому для решения математических уравнений онлайн мы рекомендуем сайт www.сайт, который станет вашим незаменимым калькулятором для решения алгебраических уравнений онлайн , тригонометрических уравнений онлайн , а также трансцендентных уравнений онлайн или уравнений с неизвестными параметрами. Для практических задач по нахождению корней различных математических уравнений ресурса www.. Решая уравнения онлайн самостоятельно, полезно проверить полученный ответ, используя онлайн решение уравнений на сайте www.сайт. Необходимо правильно записать уравнение и моментально получите онлайн решение , после чего останется только сравнить ответ с Вашим решением уравнения. Проверка ответа займет не более минуты, достаточно решить уравнение онлайн и сравнить ответы. Это поможет Вам избежать ошибок в решении и вовремя скорректировать ответ при решении уравнений онлайн будь то алгебраическое , тригонометрическое , трансцендентное или уравнение с неизвестными параметрами.
Калькулятор одновременных уравнений
Калькулятор одновременных уравненийКак работает калькулятор одновременных уравнений?
Решает систему одновременных уравнений с 2 неизвестными, используя следующие 3 метода:
1) Метод подстановки (Прямая подстановка)
2) Метод исключения
3) Метод Крамерса или правило Крамерса
Выберите любые 3 метода решения системы уравнений
2 уравнения 2 неизвестных
Этот калькулятор имеет 2 входа.
Какая 1 формула используется для калькулятора одновременных уравнений?
- Δ = a * e — b * d
Дополнительные математические формулы см. в нашем досье формул
Какие 7 понятий рассматриваются в Калькуляторе одновременных уравнений?
- правило Крамерса
- явная формула для решения системы линейных уравнений, в которой столько уравнений, сколько неизвестных
- исключить
- удалить, избавиться или положить конец
- уравнение
- утверждение, объявляющее два математических выражения равными
- одновременные уравнения
- два или более алгебраических уравнения с общими переменными
- подставьте
- вместо другого. Чтобы заменить одно значение другим
- неизвестное
- число или значение, которое мы не знаем
- переменная
- Буквенный символ, представляющий число
Когда последний раз обновлялся Калькулятор одновременных уравнений?
Четверг, 22 сентября 2022 г.
Какие еще ресурсы могут помочь с Калькулятором одновременных уравнений?
Ознакомьтесь с нашим магазином справочных материалов по математике премиум-класса
Калькулятор одновременных уравнений Видео
- Электронная почта: [email protected]
- Тел.: 800-234-2933
- Математическая тревога
- судоку
- Информационный бюллетень о недобросовестном преимуществе
- Биографии математиков
- Подкаст цены за клик
- Математические Мемы
- Глоссарий по математике
- Предметы
- бейсбольная математика
- Друзья
- Свяжитесь с нами
- Вакансии учителя математики
- Политика в отношении файлов cookie
- Политика конфиденциальности
Калькулятор алгебры с дробями
- Выражение
- Уравнение
- Неравенство
- Свяжитесь с нами
- Упростить
- Factor
- Expand
- GCF
- LCM
- Solve
- Graph
- System
- Solve
- Graph
- System
- Math solver on your site
Наших пользователей:
Больше всего мне нравится в программном обеспечении Algebrator то, что я могу сохранять выражения в файле, поэтому я могу сохранить свою домашнюю работу на компьютере и распечатать ее для учителя, когда он попросит об этом, и это выглядит намного красивее, чем моя почерк.
М.Х., Иллинойс
Как учитель, большую часть своего времени я тратил на создание эффективных планов уроков. Алгебратор позволяет мне создавать каждый урок примерно вдвое быстрее. Моим детям это нравится, потому что я могу проводить с ними больше времени! Когда они станут достаточно взрослыми, я надеюсь, что эта программа им тоже пригодится.
Линда Ховард, Джорджия
Благодарю вас! У меня были проблемы с пониманием экспоненциальных выражений, когда мой друг рассказал мне о программном обеспечении Algebrator. Я не могу поверить, как легко программа помогла мне понять, как выполняется каждый шаг.
Роберт Дэвис, Калифорния
Эта версия в 1000 раз лучше предыдущей. Это проще в использовании и понимании. Я люблю это! Отличная работа!
Аллен Донленд, Джорджия
Студенты, борющиеся со всевозможными задачами по алгебре, узнают, что наше программное обеспечение спасает им жизнь.
Вот поисковые фразы, которые сегодняшние поисковики использовали, чтобы найти наш сайт. Сможете ли вы найти среди них свою?Поисковые фразы, использованные 19 мая 2014 г.:
- «вопросы о возможностях Java»
- преобразование десятичных дробей в дроби
- загрузок калькулятора алгебры
- калькулятор базы журнала изменений ti-84
- математические мелочи с ответами
- одновременных уравнений Matlab
- ks3 заметки по алгебре
- Решите текстовые задачи, создав систему из 2 уравнений с 2 неизвестными переменными
- уравнений с решателем дробей
- как уменьшить дробь и добавить
- сложение дробей
- листы заявок на факторинг
- онлайн калькулятор кубического корня
- гиперболический ти-83 как
- 7 класс скачать бесплатно математика
- сложение и вычитание чисел со знаком без «числовой строки»
- год 8 тест по математике
- Практические тесты Prentice Hall по математике
- Величайшая машина общего фактора
- холт коды ключей
- сб математических формул «шпаргалка»
- читерство с домашним заданием
- рабочие листы TAKS для старших классов
- Скотт Форман, 6-й класс, наука отвечает
- бесплатный калькулятор алгебры онлайн
- алгебра + текстовые задачи + бесплатные рабочие листы
- TI85 журнал2
- что такое уравнение для показательной?
- уравнения для изучения алгебры
- пошаговый способ решения алгебраических дробей
- Эддисон-Уэсли гр.