Random converter |
Калькулятор мощности постоянного токаЭлектрическая схема с резистивной нагрузкой и источником питания постоянного тока Этот калькулятор потребляемой мощности постоянного тока определяет электрическую мощность по известным значениям напряжения, тока и сопротивления. Можно ввести любые два значения и получить два неизвестных значения. Пример 1: Рассчитайте сопротивление нагрузки и мощность, потребляемую 12-вольтовой галогенной ксеноновой лампой, потребляющей ток 5,5 А. Пример 2: Рассчитайте мощность, потребляемую смартфоном, подключенным к зарядному устройству, и его сопротивление нагрузки, если напряжение зарядного устройства 5,05 В и зарядный ток 45 мА (см. рисунок ниже). Пример 3: Рассчитайте ток в нагрузке и напряжение на ее выводах, если нагрузка потребляет 2 Вт мощности и ее сопротивление 10 Ом. Напряжение Uмикровольт (мкВ)милливольт (мВ)вольт (В)киловольт (кВ)мегавольт (МВ) Ток Iмикроампер (мкА)миллиампер (мА)ампер (А)килоампер (кА) Сопротивление Rмиллиом (мОм)ом (Ом)килоом (кОм)мегаом (МОм) Мощность Pмикроватт (мкВт)милливатт (мВт)ватт (Вт)киловатт (кВт)мегаватт (МВт) Для расчета введите любые две величины и нажмите на кнопку Рассчитать. Поделиться Поделиться ссылкой на этот калькулятор, включая входные параметры Twitter Facebook Google+ VK Закрыть Определения и формулы Электрический разряд Сила тока Электрическое напряжение Электрическое сопротивление Электрическая мощность Расчет электрической мощности на постоянном токе Определения и формулыЭтот калькулятор используется для расчета мощности постоянного тока и всё, о чем тут говорится, относится, в основном, к постоянному току. Намного более сложный случай расчета мощности в цепях переменного тока рассматривается в нашем Калькуляторе мощности переменного тока. См. также Калькулятор пересчета ВА в ватты. Электрический разрядЛиния электропередачи — пример устройства для передачи энергии от места, где она вырабатывается, до места, где она потребляется. Электрический заряд или количество электричества — скалярная физическая величина, определяющая способность тел создавать электромагнитные поля и принимать участие в электромагнитном взаимодействии. На электрически заряженное тело, помещенное в электромагнитное поле, действует сила, при этом заряды противоположного знака притягиваются друг к другу, а одноименные заряды — отталкиваются. Единицей измерения электрического заряда в системе СИ является кулон, равный заряду, проходящему через поперечное сечение проводника с током один ампер в течение одной секунды. Несмотря на то, что мы наблюдаем перемещение зарядов в любой электрической схеме, количество заряда не изменяется, так как электроны не создаются и не разрушаются. Электрический заряд в движении представляет собой электрический ток, рассматриваемый ниже. При перемещении заряда из одного места в другое мы осуществляем передачу электрической энергии. Подробнее об электрическом заряде, линейной плотности заряда, поверхностной плотности заряда и объемной плотности заряда и единицах их измерения. Сила токаСила тока — физическая величина, представляющая собой скорость перемещения заряженных частиц или носителей заряда (электронов, ионов или дырок) через некоторое сечение проводящего материала, который может быть металлом (например, проводом), электролитом (например, нейроном) или полупроводником (например транзистором). Если говорить более конкретно, это скорость потока электронов, например в схеме, показанной на рисунке выше. В системе СИ единицей измерения силы тока является ампер (символ А). Один ампер — это ток, возникающий при движении заряженных частиц со скоростью один кулон в секунду. Обозначается электрический ток символом I и происходит от французского intensité du courant («интенсивность тока»). Электрический ток может протекать в любом направлении — от отрицательной к положительной клемме электрической схемы и наоборот, в зависимости от типа заряженных частиц. Положительные частицы (положительные ионы в электролитах или дырки в полупроводниках) движутся от положительного потенциала к отрицательному и это направление произвольно принято за направление электрического тока. Такое направление можно рассматривать как движение заряженных частиц от более высокого потенциала к более низкому потенциалу или более высокой энергии к более низкой энергии. Это определение направления электрического тока сложилось исторически и стало популярным до того, как стало понятно, что электрический ток в проводах определяется движением отрицательных зарядов. Такое произвольно принятое направление электрического тока можно также использовать для объяснения электрических явлений с помощью гидравлической аналогии. Мы понимаем, что вода движется из точки с более высоким давлением в точку с более низким давлением. Между точками с одинаковыми давлениями потока воды быть не может. Поведение электрического тока аналогично — он движется от точки с более высоким электрическим потенциалом (положительной клеммы) к точке с более низким потенциалом (отрицательной клемме). Труба с водой ведет себя как проводник, а вода в ней — как электрический ток. Давление в трубе можно сравнить с электрическим потенциалом. Мы также можем сравнить основные элементы электрических схем с их гидравлическими аналогами: резистор эквивалентен сужению в трубе (например, из-за застрявших там волос), конденсатор можно сравнить с установленной в трубе гибкой диафрагмой. Катушку индуктивности можно сравнить с тяжелой турбиной, помещенной в поток воды, а диод можно сравнить с шариковым обратным клапаном, который позволяет потоку жидкости двигаться только в одном направлении. В системе СИ сила тока измеряется в амперах (А) и названа в честь французского физика Андре Ампера. Ампер — одна из семи основных единиц СИ. В мае 2019 г. было принято новое определение ампера, основанное на использовании фундаментальных физических констант. Ампер также можно определить как один кулон заряда, проходящий через определенную поверхность в одну секунду. Подробную информацию об электрическом токе можно найти в наших конвертерах Электрический ток и Линейная плотность тока. Скорость передачи заряда можно изменять, и эта возможность используется для передачи информации. Все системы передачи связи, такие как радио (конечно, сюда относятся и смартфоны) и телевидение, основаны на этом принципе. Электрическое напряжениеЭлектрическое напряжение или разность потенциалов в статическом электрическом поле можно определить как меру работы, требуемой для перемещения заряда между выводами элемента электрической схемы. Элементом может быть, например, лампа, резистор, катушка индуктивности или конденсатор. Напряжение может существовать между двумя выводами элемента независимо от того протекает между ними ток или нет. Например, у 9-вольтовой батарейки имеется напряжение между клеммами даже если к ней ничего не присоединено и ток не протекает. Единицей напряжения в СИ является вольт, равный одному джоулю работы по переносу одного кулона заряда. Вольт назван в честь итальянского физика Алессандро Вольта. В Северной Америке для обозначения напряжения обычно используется буква V, что не слишком удобно. Фактически, это так же неудобно, как и использование футов и дюймов. Сравните, например, V = 5 V or U = 5 V. Что бы вы выбрали? Во многих других странах, считают, что для обозначения напряжения лучше использовать букву U — потому что так удобнее. В немецких, французских и русских учебниках используется U. Считается, что эта буква происходит от немецкого слова Unterschied, означающего разницу или разность (напряжение — разность потенциалов). Мы знаем, что энергия, которая была использована для перемещения заряда через элемент схемы, не может исчезнуть и должна где-то появиться в той или иной форме. Это называется принципом сохранения энергии. Например, если этим элементом был конденсатор или аккумулятор, то энергия будет храниться в форме электрической энергии, готовой для немедленного использования. Если же этот элемент был, например, нагревательным элементом в духовке, то электроэнергия была преобразована в тепловую. В громкоговорителе электрическая энергия преобразуется в акустическую, то есть механическую энергию, и тепловую энергию. Практически вся энергия, которую потребляет работающий компьютер, превращается в тепло, которое нагревает помещение, в котором он находится. Теперь рассмотрим электрический элемент в форме автомобильной аккумуляторной батареи, подключенной к генератору для зарядки. В этом случае энергия подается в элемент. Если же двигатель не работает, но работает акустическая система автомобиля, то энергия подается самим элементом (батареей). Если ток входит в одну из двух клемм аккумулятора и внешний источник тока (в нашем случае — генератор) должен расходовать энергию, чтобы получить этот ток, то такая клемма называется положительной по отношению к другой клемме аккумулятора, которая называется отрицательной. Отметим, что эти знаки «плюс» и «минус» выбраны условно и позволяют нам обозначить напряжение, существующее между двумя клеммами. Подробнее об электрическом потенциале и напряжении USB тестер с соединителями типа USB-C, подключенный к зарядному устройству и смартфону (см. Пример 2 выше) На рисунке выше показан рассмотренный в Примере 2 USB тестер с соединителями USB Type C, подключенный к зарядному устройству USB (слева). Справа к тестеру подключен заряжаемый смартфон. Тестер измеряет потребляемый смартфоном ток. Красной стрелкой на тестере показано текущее направление тока. Иными словами, на дисплее тестера показано, что нагрузка (смартфон) подключена к правому порту и заряжается. Отметим, что если вместо зарядного устройства к левому порту подключить какое-нибудь USB-устройство, например, флэш-накопитель (флэшку), то данный тестер покажет обратное направление движения тока и потребляемый флэшкой ток. Электрическое сопротивлениеЭлектрическое сопротивление — физическая величина, характеризующая свойство тел препятствовать прохождению электрического тока. Оно равно отношению напряжения на выводах элемента к протекающему через него току: Эта формула называется законом Ома. Многие проводящие материалы имеют постоянную величину сопротивления R, поэтому U и I связаны прямой пропорциональной зависимостью. Сопротивление материалов определяется, в основном, двумя свойствами: самим материалом и его формой и размерами. Например, электроны могут свободно двигаться через золотой или серебряный проводник и не так легко через стальной проводник. Они совсем не могут двигаться по изоляторам любой формы. Конечно, и другие факторы влияют на сопротивление, однако в значительной меньшей мере. Такими факторами являются, например, температура, чистота проводящего материала, механическое напряжение проводящего материала (используется в тензорезистивных датчиках) и его освещение (используется в фоторезисторах). Подробнее об электрическом сопротивлении, проводимости and удельной проводимости and удельном сопротивлении. Электрическая мощностьМощность представляет собой скалярную физическую величину, равную скорости изменения, передачи или потребления энергии в физической системе. В электродинамике мощность — физическая величина, характеризующая скорость передачи, преобразования или потребления электрической энергии. В системе СИ единицей электрической мощности является ватт (Вт), определяемый как 1 джоуль в секунду. Скорость передачи электрической энергии равна одному ватту, если один джоуль энергии расходуется на перемещение одного кулона заряда в течение одной секунды. Более подробную информацию о мощности вы найдете в нашем Конвертере единиц мощности. Расчет электрической мощности на постоянном токеМощность, необходимая для перемещения определенного числа кулонов в секунду (то есть для создания тока I в амперах) через элемент схемы с разностью потенциалов U пропорциональна току и напряжению, то есть В правой части этого уравнения находится произведение джоулей на кулоны (напряжение в вольтах) на кулоны в секунду (ток в амперах), в результате получаются джоули в секунду, как и ожидалось. Это уравнение определяет мощность, поглощенную в нагрузке, выраженную через напряжение на выводах нагрузки и протекающий через нее ток. Это уравнение используется в нашем калькуляторе вместе с уравнением закона Ома. Лабораторный блок питания, показывающий напряжение на нагрузке и протекающий через нее ток Автор статьи: Анатолий Золотков Вас могут заинтересовать и другие калькуляторы из группы «Электротехнические и радиотехнические калькуляторы»:Калькулятор резистивно-емкостной цепи Калькулятор параллельных сопротивлений Калькулятор параллельных индуктивностей Калькулятор емкости последовательного соединения конденсаторов Калькулятор импеданса конденсатора Калькулятор импеданса катушки индуктивности Калькулятор взаимной индукции Калькулятор взаимоиндукции параллельных индуктивностей Калькулятор взаимной индукции — последовательное соединение индуктивностей Калькулятор импеданса параллельной RC-цепи Калькулятор импеданса параллельной LC-цепи Калькулятор импеданса параллельной RL-цепи Калькулятор импеданса параллельной RLC-цепи Калькулятор импеданса последовательной RC-цепи Калькулятор импеданса последовательной LC-цепи Калькулятор импеданса последовательной RL-цепи Калькулятор импеданса последовательной RLC-цепи Калькулятор аккумуляторных батарей Калькулятор литий-полимерных аккумуляторов для дронов Калькулятор индуктивности однослойной катушки Калькулятор индуктивности плоской спиральной катушки для устройств радиочастотной идентификации (RFID) и ближней бесконтактной связи (NFC) Калькулятор расчета параметров коаксиальных кабелей Калькулятор светодиодов. Расчет ограничительных резисторов для одиночных светодиодов и светодиодных массивов Калькулятор цветовой маркировки резисторов Калькулятор максимальной дальности действия РЛС Калькулятор зависимости диапазона однозначного определения дальности РЛС от периода следования импульсов Калькулятор радиогоризонта и дальности прямой радиовидимости РЛС Калькулятор радиогоризонта Калькулятор эффективной площади антенны Симметричный вибратор Калькулятор частоты паразитных субгармоник (алиасинга) при дискретизации Калькулятор мощности переменного тока Калькулятор пересчета ВА в ватты Калькулятор мощности трехфазного переменного тока Калькулятор преобразования алгебраической формы комплексного числа в тригонометрическую Калькулятор коэффициента гармонических искажений Калькулятор законов Ома и Джоуля — Ленца Калькулятор времени передачи данных Калькулятор внутреннего сопротивления элемента питания батареи или аккумулятора Калькуляторы Электротехнические и радиотехнические калькуляторы |
Калькулятор перевода силы тока в мощность, ампер в ватты
Для расчёта нагрузки на электрическую сеть и затрат электроэнергии можно использовать специальный калькулятор перевода силы тока в мощность. Такая функция появилась недавно, значительно облегчив ручное определение.
Хотя формулы известны давно, далеко не все хорошо знают физику, чтобы самостоятельно определять силу тока в сети. Калькулятор помогает с этим, поскольку для работы достаточно знать напряжение и мощность.
Содержание
- Что такое мощность Ватт [Вт]
- Что такое Сила тока. Ампер [А]
- Сколько Ватт в 1 Ампере?
- Таблица перевода Ампер – Ватт
- Зачем нужен калькулятор
- Как пользоваться
Что такое мощность Ватт [Вт]
Мощность — величина, определяющая отношение работы, которую выполняет источник тока, за определённый промежуток времени. Один ватт соответствует произведению одного ампера на один вольт, но при определении трат на электроэнергию используется величина киловатт/час.
Она соответствует расходу одной тысячи ватт за 60 минут работы. Именно по этому показателю определяется стоимость услуг электроэнергии.
В большинстве случаев мощность, которую потребляет прибор, указана в технической документации или на упаковке. Указанное количество производится за один час работы.
Например, компьютер с блоком питания 500 Вт будет крутить 1 кВт за 2 часа работы.
Помочь определить силу тока при известной мощности поможет калькулятор, который делает перевод одной физической величины в другую.
Что такое Сила тока. Ампер [А]
Сила тока представляет собой скорость, с которой электрический заряд течёт по проводнику. Один ампер равен заряду в один кулон, который проходит через проводник за одну секунду. Один кулон представляет собой очень большой заряд, поэтому в большинстве устройств эта величина измеряется в миллиамперах.
Сила тока зависит от сечения проводника и его длины. Это необходимо учитывать при планировке сооружений, а также выборе электрических приборов. Хотя большинству не следует задумываться на этот счёт, поскольку это задача инженеров и проектировщиков.
Сколько Ватт в 1 Ампере?
Для определения мощности цепи также важно понятие напряжения. Это электродвижущая сила, перемещающая электроны. Она измеряется в вольтах. Большинство приборов имеют в документации эту характеристику.
Чтобы определить мощность при силе тока в один ампер, необходимо узнать напряжение сети. Так, для розетки в 220 вольт получится: P = 1*220 = 220 Вт. Формула для расчёта: P = I*U, где I — сила тока, а U — напряжение. В трёхфазной сети нужно учитывать поправочный коэффициент, отражающий процент эффективности работы. В большинстве случаев он составляет от 0,67 до 0,95.
Таблица перевода Ампер – Ватт
Для перевода ватт в амперы необходимо воспользоваться предыдущей формулой, развернув её. Чтобы вычислить ток, необходимо разделить мощность на напряжение: I = P/U. В следующей таблице представлена сила тока для приборов с различным напряжением — 6, 12, 24, 220 и 380 вольт.
Помните, что для сетей с высоким напряжением, указанная сила тока отличается в зависимости от коэффициента полезного действия.
Таблица соотношения ампер и ватт, в зависимости от напряжения.
6В | 12В | 24В | 220В | 380В | |
5 Вт | 0,83А | 0,42А | 0,21А | 0,02А | 0,008А |
6 Вт | 1,00А | 0,5А | 0,25А | 0,03А | 0,009А |
7 Вт | 1,17А | 0,58А | 0,29А | 0,03А | 0,01А |
8 Вт | 1,33А | 0,66А | 0,33А | 0,04А | 0,01А |
9 Вт | 1,5А | 0,75А | 0,38А | 0,04А | 0,01А |
10 Вт | 1,66А | 0,84А | 0,42А | 0,05А | 0,015А |
20 Вт | 3,34А | 1,68А | 0,83А | 0,09А | 0,03А |
30 Вт | 5,00А | 2,5А | 1,25А | 0,14А | 0,045А |
40 Вт | 6,67А | 3,33А | 1,67А | 0,13А | 0,06А |
50 Вт | 8,33А | 4,17А | 2,03А | 0,23А | 0,076А |
60 Вт | 10,00А | 5,00А | 2,50А | 0,27А | 0,09А |
70 Вт | 11,67А | 5,83А | 2,92А | 0,32А | 0,1А |
80 Вт | 13,33А | 6,67А | 3,33А | 0,36А | 0,12А |
90 Вт | 15,00А | 7,50А | 3,75А | 0,41А | 0,14А |
100 Вт | 16,67А | 3,33А | 4,17А | 0,45А | 0,15А |
200 Вт | 33,33А | 16,66А | 8,33А | 0,91А | 0,3А |
300 Вт | 50,00А | 25,00А | 12,50А | 1,36А | 0,46А |
400 Вт | 66,66А | 33,33А | 16,7А | 1,82А | 0,6А |
500 Вт | 83,34А | 41,67А | 20,83А | 2,27А | 0,76А |
600 Вт | 100,00А | 50,00А | 25,00А | 2,73А | 0,91А |
700 Вт | 116,67А | 58,34А | 29,17А | 3,18А | 1,06А |
800 Вт | 133,33А | 66,68А | 33,33А | 3,64А | 1,22А |
900 Вт | 150,00А | 75,00А | 37,50А | 4,09А | 1,37А |
1000 Вт | 166,67А | 83,33А | 41,67А | 4,55А | 1,52А |
Используя таблицу также легко определить мощность, если известны напряжение и сила тока. Это пригодится не только для расчёта потребляемой энергии, но и для выбора специальной техники, отвечающей за бесперебойную работу или предотвращающей перегрев.
Зачем нужен калькулятор
Онлайн-калькулятор применяется для перевода двух физических величин друг в друга. Перевести амперы в ватты при помощи такого калькулятора — минутное дело. Сервис позволит быстро вычислить необходимую характеристику прибора, определить электроэнергию, которую будет расходовать техника за час работы.
Как пользоваться
Чтобы перевести ток в мощность, достаточно ввести номинальное напряжение и указать вторую известную величину. Калькулятор автоматически рассчитает неизвестный показатель и выведет результат.
Узнать напряжение и стандартную силу тока можно в технической документации устройства. Для приборов бытовой техники обычно указывается мощность, из которой также легко вычислить ток. Для удобства в калькуляторе можно переключать ватты на киловатты, а ампера на миллиамперы.
Читайте далее:
Законодательный калькулятор OHM
, созданный Mateusz Muda и Julia żuławińska
, рассмотренные Bogna Szyk и Jack Bowater
Последнее обновление: 27 июля 2022
СОДЕРЖА уравнение мощности?Наш калькулятор закона Ома представляет собой небольшой удобный инструмент, который поможет вам найти соотношение между напряжением, током и сопротивлением на данном проводнике. Формула закона Ома и формула напряжения в основном используются в электротехнике и электронике. Кроме того, если вы знаете, как рассчитать мощность, это может оказаться очень полезным при изучении электронных схем. Все эти расчеты вы можете сделать с помощью нашего калькулятора сопротивления.
В остальной части статьи вы найдете:
- Формула закона Ома;
- Как использовать формулу напряжения;
- Что такое уравнение для мощности;
- Как рассчитать мощность; и
- Закон Ома для анизотропных материалов.
Предпочитаете смотреть, а не читать? Посмотрите наш видео-урок о резисторах и законе Ома здесь:
Формула закона Ома
Закон Ома является одним из основных законов физики. Он описывает взаимосвязь между напряжением, силой тока (также называемой током) и сопротивлением. Напряжение относится к разности потенциалов между двумя точками в электрическом поле. Сила тока связана с потоком носителей электрического заряда, обычно электронов или атомов с дефицитом электронов. Последний термин, сопротивление, представляет собой противодействие вещества протеканию электрического тока.
Закон Ома гласит, что ток течет по проводнику со скоростью, пропорциональной напряжению между концами этого проводника. Другими словами, соотношение между напряжением и током является постоянным:
I/V = const
Формулу закона Ома можно использовать для расчета сопротивления как отношения напряжения и тока.
R = V/I
Где:
- R — сопротивление
- В — напряжение
- Я — Текущий
Сопротивление выражается в омах. И единица, и правило названы в честь Георга Ома — физика и изобретателя закона Ома.
Помните, что формула закона Ома относится только к веществам, способным индуцировать энергию. таких как металлы и керамика. Однако есть много других материалов, для которых нельзя использовать формулу закона Ома, например полупроводники и изоляторы. Закон Ома также действует только при определенных условиях, например, при фиксированной температуре. Для получения подробной информации о токе, протекающем через проводник в цепи переменного тока, ознакомьтесь с нашим калькулятором глубины скин-слоя.
Ищете практическое применение закона Ома? Обязательно ознакомьтесь с калькулятором светодиодных резисторов!
Формула напряжения
Формула напряжения является одним из трех математических уравнений, связанных с законом Ома. Это формула, представленная в предыдущем абзаце, но переписанная так, чтобы вы могли рассчитать напряжение на основе тока и сопротивления, то есть формула напряжения представляет собой произведение тока и сопротивления. Уравнение:
В = IR
Это значение измеряется в вольтах.
Какое уравнение для мощности?
Другим значением, которое можно рассчитать на основе закона Ома, является мощность. Мощность является произведением напряжения и тока, поэтому уравнение выглядит следующим образом:
P = V x I
С помощью этой формулы можно рассчитать, например, мощность лампочки. Если вы знаете, что напряжение батареи составляет 18 В
, а ток равен 6 А
, вы можете определить, что мощность будет равна 108 при следующем расчете:
P = 6A x 18V = 108 Вт
Как рассчитать мощность?
Если вы все еще не знаете, как рассчитать мощность по приведенным формулам, или просто хотите сэкономить свое время, вы можете воспользоваться нашим калькулятором закона Ома.
Структура этого инструмента не слишком сложна, просто введите любые два из четырех значений, чтобы получить два других. Калькулятор закона Ома основан на формуле мощности вместе с формулой закона Ома. Все, что вам нужно сделать, чтобы получить значение мощности, это ввести:- Напряжение (выраженное в вольтах)
- Ток (выраженный в амперах)
Калькулятор закона Ома даст вам два значения — сопротивление, выраженное в омах, и мощность, выраженную в ваттах. Если вам нужен этот результат в других единицах, вы можете использовать наш калькулятор преобразования ватт в ампер.
Закон Ома для анизотропных материалов
Существует еще одна версия закона Ома, в которой используется положение электрических свойств внутри проводника. Некоторые предпочитают ее предыдущей формуле из-за ее объемного вида. Токопроводящие материалы подчиняются закону Ома, когда удельное сопротивление материалов не зависит от величины и направления приложенного электрического поля.
Вы можете найти следующую формулу, если вы нажмете кнопку Расширенный режим
:
ρ = E / J
, где
ρ
— удельное сопротивление проводящего материала.E
— вектор электрического поля.Дж
— вектор плотности тока.
Что касается изотропных материалов, лучше использовать первую формулу, так как она намного проще. Изотропные материалы — это материалы с одинаковыми электрическими свойствами во всех направлениях, например металлы и стекло. Эта формула может пригодиться, когда вы работаете с анизотропными материалами, такими как дерево или графит.
Часто задаваемые вопросы
Что утверждает закон Ома?
Закон Ома устанавливает связь между током, протекающим по проводнику, и разностью потенциалов, приложенной к его концам. В нем указано, что ток прямо пропорционален разности потенциалов .
Применяется ли закон Ома к полупроводникам?
№ , Закон Ома не применяется к полупроводникам. Согласно закону Ома, зависимость между током и приложенным напряжением (также известная как вольт-амперная характеристика) является линейной. Однако ВАХ полупроводника нелинейна.
Как рассчитать сопротивление по закону Ома?
Чтобы рассчитать сопротивление по закону Ома, следуйте приведенным инструкциям:
Измерьте падение напряжения на резисторе с помощью вольтметра.
Определите ток через резистор с помощью амперметра.
Разделите падение напряжения на ток .
Поздравляем! Вы рассчитали сопротивление по закону Ома.
Как рассчитать падение напряжения по закону Ома?
Чтобы рассчитать падение напряжения на резисторе по закону Ома, выполните следующие действия:
Узнайте сопротивление резистора.
Измерьте ток через резистор с помощью амперметра.
Умножьте ток на сопротивление , чтобы получить падение напряжения по закону Ома.
Матеуш Муха и Юлия Жулавиньская
Напряжение (В)
Ток (I)
Сопротивление (R)
Мощность (P)
Проверить 85 подобных частиц в электромагнетическом поле 900AC 903 9003 9003 мощность выключателя… 82 more
Калькулятор закона Ома
Введите любые два известных параметра цепи в приведенный ниже калькулятор закона Ома и рассчитайте оставшиеся два значения в соответствии с законом Ома.
Напряжение (В) : | Вольт | |
Ток (I) | Ампер Миллиампер | |
Сопротивление (R) | ОмКилоОмМегаОм | |
Мощность (П) | Вт |
Закон Ома является наиболее фундаментальным законом, который регулирует взаимосвязь между напряжением (V), током (I) и сопротивлением (R). Он был определен немецким ученым Георгом Симоном Омом и поэтому назван в его честь. Закон гласит, что « для любой цепи электрический ток (I) прямо пропорционален напряжению (В) и обратно пропорционален сопротивлению (R) ”.
Это самый фундаментальный закон, из которого были выведены все остальные понятия; возможно, это будет первый закон, который знакомят всех, кто интересуется электроникой. Концепция этого закона очень проста, это просто означает, что напряжение в любых двух точках цепи всегда будет равно произведению сопротивления между двумя точками и током, протекающим через цепь. Математически это можно выразить как
V = IR
Где, V=напряжение I=ток и R=сопротивление
Эту формулу также можно переписать в следующем виде:
В=ИК
И=В/Р
Р = В/И
Используя эти три формулы, вы можете рассчитать значение напряжения, тока или сопротивления. Как только вы узнаете любой из этих двух параметров, вы также можете рассчитать мощность, используя приведенные ниже формулы 9.0003
П=ВИ | П=И 2 Р | Р= В 2 /Р |
Давайте проверим наш принцип закона Ом на двух приведенных выше схемах. Источник напряжения для обеих цепей 12В. Но у нас есть два разных значения сопротивления для цепей: тот, что слева, использует 110 Ом, а тот, что справа, использует 220 Ом.
Рассчитаем ток, который должен протекать по цепи для обеих цепей. Мы знаем формулы I = V/R.
Для левой стороны Цепь I = V/R, что равно I = 12/110, и это дает нам 0,109 А, что составляет ~ 0,11 А, если проверить это с помощью амперметра (см. Амперметр на рисунке выше), мы получим значение Dame.