Функция КОРЕНЬ
Excel для Microsoft 365 Excel для Microsoft 365 для Mac Excel для Интернета Excel 2021 Excel 2021 for Mac Excel 2019 Excel 2019 для Mac Excel 2016 Excel 2016 для Mac Excel 2013 Excel 2010 Excel 2007 Excel для Mac 2011 Excel Starter 2010 Еще…Меньше
В этой статье описаны синтаксис формулы и использование функции КОРЕНЬ в Microsoft Excel.
Описание
Возвращает положительное значение квадратного корня.
Синтаксис
КОРЕНЬ(число)
Аргументы функции КОРЕНЬ описаны ниже.
Замечание
Если число отрицательное, то SQRT возвращает #NUM! значение ошибки #ЗНАЧ!.
Пример
Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД.
Данные |
||
---|---|---|
-16 |
||
Формула |
Описание |
Результат |
=КОРЕНЬ(16) |
Квадратный корень числа 16. |
4 |
=КОРЕНЬ(A2) |
Квадратный корень -16. Так как число отрицательное, #NUM! возвращается сообщение об ошибке. |
#ЧИСЛО! |
=КОРЕНЬ(ABS(A2)) |
Старайтесь не #NUM! сообщение об ошибке: сначала с помощью функции ABS можно найти абсолютное значение -16, а затем найти квадратный корень. |
4 |
математика — Корень из 2 в степени корень из 2 в степени корень из 2
Вопрос задан
Изменён 11 месяцев назад
Просмотрен 598 раз
Есть число, которое можно представить так:
Решаю его так:
Но тогда подходят 2 корня: 2 и 4.
Единственное место, где, как мне кажется, мог ошибиться это переход между первой и второй строчкой решения. Но вроде же нормальный рекурсивный переход. Что в этом решение не так?
- математика
- рекурсия
- уравнения
14
Итак, рассмотрим ряд
с k возведениями в степень. Тогда
Теперь по индукции докажем, что последовательность возрастающая и ограничена сверху 2. Базу индукции мы только что записали.
А вот теперь, когда мы доказали, что ряд возрастающий и ограничен сверху, т.е. сходится, мы применяем ваш метод (имеем право!).
И находим, что корень 4 не годится, так как ряд ограничен сверху двойкой.
Значит, остается единственное решение — 2.
Оригинал тут.
Если честно, я не вижу причину для волнения.
С одной стороны, итерационный процесс x_{i+1} = ln(x_i)*2/ln(2)
имеет две неподвижные точки: 2 и 4. 4 = 4 => x = sqrt(2)
2
3
Зарегистрируйтесь или войдите
Регистрация через Google
Регистрация через Facebook
Регистрация через почту
Отправить без регистрации
Почта
Необходима, но никому не показывается
Отправить без регистрации
Почта
Необходима, но никому не показывается
Нажимая на кнопку «Отправить ответ», вы соглашаетесь с нашими пользовательским соглашением, политикой конфиденциальности и политикой о куки
1 | Оценка с использованием заданного значения | квадратный корень из 50 | |
2 | Оценка с использованием заданного значения | квадратный корень из 45 | |
3 | Оценить | 5+5 | |
4 | Оценить | 7*7 | |
5 | Найти простую факторизацию | 24 | |
6 | Преобразование в смешанный номер | 52/6 | |
7 | Преобразование в смешанный номер | 93/8 | |
8 | Преобразование в смешанный номер | 34/5 | |
9 | График | у=х+1 | |
10 | Оценка с использованием заданного значения | квадратный корень из 128 | |
11 | Найдите площадь поверхности | сфера (3) | |
12 | Оценить | 54-6÷2+6 | |
13 | График | г=-2x | |
14 | Оценить | 8*8 | |
15 | Преобразование в десятичное число | 5/9 | |
16 | Оценка с использованием заданного значения | квадратный корень из 180 | |
17 | График | у=2 | |
18 | Преобразование в смешанный номер | 7/8 | |
19 | Оценить | 9*9 | |
20 | Решите для C | С=5/9*(Ф-32) | |
21 | Упростить | 1/3+1 1/12 | |
22 | График | у=х+4 | |
23 | График | г=-3 | |
24 | График | х+у=3 | |
25 | График | х=5 | |
26 | Оценить | 6*6 | |
27 | Оценить | 2*2 | |
28 | Оценить | 4*4 | |
29 | Оценить | 1/2+(2/3)÷(3/4)-(4/5*5/6) | |
30 | Оценить | 1/3+13/12 | |
31 | Оценка | 5*5 | |
32 | Решить для d | 2д=5в(о)-вр | |
33 | Преобразование в смешанный номер | 3/7 | |
34 | График | г=-2 | |
35 | Найдите склон | у=6 | |
36 | Преобразование в проценты | 9 | |
37 | График | у=2х+2 | |
38 | 92+5х+6=0|||
41 | Преобразование в смешанный номер | 1/6 | |
42 | Преобразование в десятичное число | 9% | |
43 | Найти n | 12н-24=14н+28 | |
44 | Оценить | 16*4 | |
45 | Упростить | кубический корень из 125 | |
46 | Преобразование в упрощенную дробь | 43% | |
47 | График | х=1 | |
48 | График | у=6 | |
49 | График | г=-7 | |
50 | График | у=4х+2 | |
51 | Найдите склон | у=7 | |
52 | График | у=3х+4 | |
53 | График | у=х+5 | |
54 | График | 92-9=0||
58 | Оценка с использованием заданного значения | квадратный корень из 192 | |
59 | Оценка с использованием заданного значения | квадратный корень из 25/36 | |
60 | Найти простую факторизацию | 14 | |
61 | Преобразование в смешанный номер | 7/10 | |
62 | Решите для | (-5а)/2=75 | |
63 | Упростить | х | |
64 | Оценить | 6*4 | |
65 | Оценить | 6+6 | |
66 | Оценить | -3-5 | |
67 | Оценить | -2-2 | |
68 | Упростить | квадратный корень из 1 | |
69 | Упростить | квадратный корень из 4 | |
70 | Найди обратное | 1/3 | |
71 | Преобразование в смешанный номер | 20.![]() | |
72 | Преобразование в смешанный номер | 7/9 | |
73 | Найти LCM | 11, 13, 5, 15, 14 | , , , , |
76 | График | 3x+4y=12 | |
77 | График | 3x-2y=6 | |
78 | График | у=-х-2 | |
79 | График | у=3х+7 | |
80 | Определить, является ли многочлен | 2x+2 | |
81 | График | у=2х-6 | |
82 | График | у=2х-7 | |
83 | График | у=2х-2 | |
84 | График | у=-2х+1 | |
85 | График | у=-3х+4 | |
86 | График | у=-3х+2 | |
87 | График | у=х-4 | |
88 | Оценить | (4/3)÷(7/2) | |
89 | График | 2x-3y=6 | |
90 | График | х+2у=4 | |
91 | График | х=7 | |
92 | График | х-у=5 | |
93 | Решение с использованием свойства квадратного корня 92-2x-3=0 | ||
95 | Найдите площадь поверхности | конус (12)(9) | |
96 | Преобразование в смешанный номер | 3/10 | |
97 | Преобразование в смешанный номер | 7/20 | 92)
GMAT Math: Как разделить на квадратный корень
Автор Mike MᶜGarry, , 8 марта 2017 г. , ОБНОВЛЕНО 15 января 2020 г., в GMAT Math Basics
Многие студенты, готовящиеся к GMAT Quant, особенно те, кто давно не занимался математикой, теряются, пытаясь разделить на квадратный корень. Однако деление на квадратные корни не должно вас пугать. Пройдя короткий курс повышения квалификации, вы сможете быстро делить на квадратные корни.
Практические вопросы: Как разделить на квадратный корень
Во-первых, рассмотрите эти три практических вопроса.
1. В приведенном выше уравнении x =
2. Треугольник ABC является равносторонним треугольником с высотой 6. Какова его площадь?
3. В приведенном выше уравнении x =
Второй добавляет немного геометрии. Вы можете просмотреть свойства 30-60-90 Треугольник и Равносторонний Треугольник, если они незнакомы. Первый — это простая арифметика. Третий довольно тяжелый. Для любого из них вполне может случиться так, что, даже если вы выполнили все ваши умножение и деление правильно, вы получили ответы в форме — что-то, разделенное на квадратный корень из чего-то — и вы задаетесь вопросом: почему не Этот ответ вообще не появляется среди вариантов ответов? Если это вас сбило с толку, вы нашли именно тот пост.
Дроби и радикалы
Когда мы впервые познакомились с дробями, в нашем нежном предпубертатном возрасте, и числители, и знаменатели были простыми положительными целыми числами. Как мы теперь понимаем, в числителе или знаменателе дроби может стоять любое действительное число, любое число на всей числовой прямой. Помимо прочего, радикалы, то есть выражения с квадратным корнем, могут появляться как в числителе, так и в знаменателе. Нет особой проблемы, если у нас есть квадратный корень в числителе. Например,
— отличная дробь. Фактически, те из вас, кто когда-либо занимался тригонометрией, могли бы даже узнать эту особую дробь. Предположим, однако, что у нас есть квадратный корень в знаменателе: что тогда? Возьмем обратное значение этой дроби.
Это уже не идеально хорошая фракция. Математически это дробь «без вкуса», потому что мы делим на квадратный корень. Эта фракция взывает к какому-то упрощению. Как нам это упростить?
Работа с квадратными корнями в знаменателе
Согласно стандартному математическому соглашению, которому следует GMAT, мы не оставляем квадратные корни в знаменателе дроби. Если в знаменателе дроби появляется квадратный корень, мы следуем процедуре под названием , рационализирующей знаменатель .
Мы знаем, что любой квадратный корень, умноженный на себя, равен целому положительному числу. Таким образом, если бы мы умножили знаменатель квадратного корня из 3 сам по себе, это было бы 3, а не радикал. Проблема в том, что мы не можем умножать знаменатель дроби на что-то, оставляя числитель в покое, и ожидать, что дробь сохранит свое значение. НО, помните проверенный временем трюк с дробью — мы всегда можем умножить дробь на A/A, на что-то сверх себя, потому что новая дробь будет равна 1, а умножение на 1 ничего не меняет.
Таким образом, чтобы упростить дробь с квадратным корнем из 3 в знаменателе, мы умножаем квадратный корень из 3 на квадратный корень из 3!
Это последнее выражение численно равно первому выражению, но в отличие от первого, оно теперь соответствует математическому «хорошему вкусу», потому что в знаменателе нет квадратного корня. Знаменатель был рационализирован (то есть дробь теперь является рациональным числом).
Иногда происходит некоторое сокращение между числом в исходном числителе и целым числом, полученным в результате рационализации знаменателя. Рассмотрим следующий пример:
Эта схема отмены в процессе упрощения может дать вам некоторое представление о практической проблеме № 1, описанной выше.
Квадратные корни и сложение в знаменателе
Это следующий уровень сложности деления на квадратные корни. Предположим, мы делим число на выражение, которое включает прибавление или вычитание квадратного корня. Например, рассмотрим эту дробь:
.Эта дробь нуждается в рационализации. НО, если мы просто умножим знаменатель сам на себя, это НЕ устранит квадратный корень — скорее, это просто создаст более сложное выражение, включающее квадратный корень. Вместо этого мы используем формулу разности двух квадратов,
= (а + б)(а – б). Факторы вида (a + b) и (a – b) называются сопряженными друг друга.![](/800/600/http/otvet.imgsmail.ru/download/4284aed26931f2e7385c7b1f7cad271c_i-52.jpg)
Обратите внимание, что умножение в знаменателе привело к упрощению «разности двух квадратов», которое убрало квадратные корни из знаменателя. Этот последний термин является полностью рационализированной и полностью упрощенной версией оригинала.
Резюме
Прочитав эти сообщения о делении на квадратные корни, вы можете еще раз попробовать ответить на три практических вопроса в начале этой статьи, прежде чем читать пояснения ниже. Если у вас есть какие-либо вопросы о делении на квадратные корни или объяснениях ниже, задавайте их в разделах комментариев! И удачи в их преодолении во время GMAT!
Объяснение практических вопросов
1) Чтобы найти x, мы начнем с перекрестного умножения. Обратите внимание, что
, потому что, вообще говоря, мы можем умножать и делить через радикалы.
Перемножая, получаем
Возможно, вы нашли это и задались вопросом, почему его нет в списке ответов. Это численно равно правильному ответу, но, конечно, как объясняется в этом посте, эта форма не рационализирована. Нам нужно рационализировать знаменатель.
Ответ = (Д)
2) Мы знаем высоту ABC и нам нужно найти основание. Итак, высота BD делит треугольник ABC на два треугольника 30-60-90. Из пропорций в треугольнике 30-60-90 мы знаем:
Я предпочитаю сразу рационализировать знаменатель.
Теперь AB упрощен. Мы знаем, что AB = AC, потому что ABC равносторонний, поэтому у нас есть основание.
Ответ = (С)
3) Начнем с деления на выражение в скобках, чтобы выделить x.
Конечно, эта форма не фигурирует среди вариантов ответа.